
www.summerofhpc.prace-ri.eu

2015

A long hot summer is time for a break, right?
Not necessarily! PRACE Summer of HPC
2015 final reports by participants are here.

HPC is
hard?
Leon Kos

There is no such thing as lazy
summer. At least not for the 20
participants and their mentors at 10
PRACE HPC sites.

With help from all the mentors and the PRACE
support staff, we have spent a wonderful
summer working on various supercomputing
projects. What a wonderful experience Summer

of HPC 2015 has been! Since the sun is shining brighter and
gently warms our hearts, there seem to be more smiles on
faces everywhere. This is definitely true for all the Summer
of HPC participants that have left their HPC sites. There were
no vacations for them over the summer. The proof being the
amazing projects they have created. I must thank them for
all the wonderful moments I have spent with them, both
teleconferencing and during site coordination.

I was involved in the PRACE Summer of HPC programme
more than I should have been, my wife said. But then, I
should explain why I was so excited and enthusiastic about
Summer of HPC. It’s because I had a similar experience when
I was a student and participated in an exchange program
with John Hopkins University. I’ve remembered that time as
one of the most pleasant experiences where I was enlight-
ened about many things. PRACE Summer of HPC made it
possible for me to revive those times again and again. That’s
why I am singing PRACE Summer of HPC will go on and on!
And I believe I am not alone as many were deeply touched by
the wonderful idea of Summer of HPC. The articles that the
students have written will prove that. It will demonstrate that
the programme we ran can be as effective as all the science
that is coming out of supercomputers by eminent scientists.
Because it broadens the overall understanding on Who is ca-
pable of governing supercomputers? That’s why I suggested
putting student photos next to each project colophon. I will
print complimentary copies of this publications and chal-
lenge people who say “HPC is hard!”. Yes, it is, but look at
what can be accomplished in just two short months. Summer
of HPC is thus not just an outreach program, as some might
think. It is a science for reality. Training activity in persona.
Students and mentors put all their knowledge and time into

projects . And some results will prove to be quite useful for a
broader HPC community.

What can I say at the end of this wonderful summer.
Really, autumn will be wonderful too. Don’t forget to smile!

Contents

1 GUI for PELE 3
2 GUI for RT monitoring in HPC 6
3 Optimised I/O and Topological Susceptibility 10
4 Optimization of Deflation Codes for GPUs 12
5 Hybrid High Performance Computing in Lattice

QCD 15
6 Visualising Mars Pole 18
7 A closer look at FFEA 21
8 Visualisation of proteins 24
9 ARCHER Challenge 26
10 Climate is unstable 28
11 Real-Time View in DL_POLY_4 35
12 BEM for Wi-Fi 37
13 ESPRESO Solver for SoHPC 40
14 3D Visualization from CT 43
15 Making Quarks Phli Further 46
16 Parallel FMM on a GPU 49
17 The power of GPUs for Atomistic Simulations 55
18 SIESTA,QE and HPC 57
19 Turbulence with OpenFOAM 60
20 Parallel Boundary Point Method 62

PRACE SoHPC2015 Coordinator
Leon Kos, University of Ljubljana
Phone: +386 4771 436 E-mail: leon.kos@lecad.fs.uni-lj.si

PRACE SoHPCMore Information
http://summerofhpc.prace-ri.eu Leon Kos

2

mailto:leon.kos@lecad.si
http://summerofhpc.prace-ri.eu

Developing an infrastructure for real time
visualization, analysis, and steering of HPC
molecular dynamics simulations

GUI
for PELE
Simos Kazantzidis

Every day, the need for
high-throughput visualisation and
analysis is growing rapidly. That’s
why scientists who work on docking
problems need an efficient molecular
tool for high-throughput screening.
With the assistance of PELE, a
simulation software which provides
the data pre-processing and analysis,
we will visualise PELE’s clustering
results in a user friendly graphical
interface, in order to evaluate the best
matches.

Molecular docking is a well
known procedure that
calculates and predicts
"molecule-molecule" com-

binations such as the ligand-protein.
PELE’s simulation software gives us the
opportunity to model such an inter-
action. Using our tornado server and
designing a user-friendly graphical User
Interface using WebSocket communi-
cation technology, in order to achieve
a client-server interaction, we are able
to successfully visualise, cluster, and
evaluate PELE’s results.

Introduction

In the field of Bio-informatics and, more
specifically, the dynamics of molecules,
the docking procedure is used in or-
der to predict a molecule’s orientation

so that it is able to bound to other
molecules. Scoring functions can be cal-
culated to show the strength of such
a binding. Molecular docking refers to
molecules such as proteins, lipids, nu-
cleic acids, and others.

The most common docking proce-
dure involves the goal of the ligand-
protein combination in the area of drug-
design. PELE, Protein Energy Landscape
Exploration, is a well known simula-
tion software which provides such mod-
elling by using protein structure predic-
tion algorithms and Monte Carlo sam-
pling. By inserting program database
files (pdb) with the protein structures
of interest, the PELE program starts
analysing and computing the best fit-
ting sites and presents an atomic view
of this interactions.

Our work here consists of develop-

ing a graphical interface which can visu-
alise and cluster PELE’s results in order
to evaluate docking solutions or to bet-
ter understand the binding process. The
user has the ability to determine the
clustering parameters. We do save his
preferences in a message format known
as json message and forward it to the
tornado server by using Web Sockets.
The json message is then delivered to
the PyProCT program where the cluster-
ing process can be accomplished. The re-
sults follow exactly the reverse path and
finally can be successfully visualised.

Methods

A combination of D3.js library, Web
Socket client/server web technology,
and JSmol visualisation technique is
used, in order to obtain our project’s

3

goals. More specifically, D3.js is a
JavaScript library that helped us cre-
ate and build the required data visu-
alisation framework by including useful
JavaScript functions and utilities and
giving us the opportunity to work with
existing web technologies like HTML
and CSS. Web Sockets technology al-
lowed the creation of a TCP socket con-
nection between the client(user) and
the server(tornado) in order to send the
json message that has been created to
our tornado server. Finally the visuali-
sation of the results’ is being rendered
through the 2D figure and if the user
has chosen a point, he will be able to
see the protein structure through the
JSmol.

The three layer connection between
PELE,tornado server, pyProCT, and our
GUI is as following:

Figure 1: A diagram that describes how
PELE, Tornado, pyProCT and our GUI are
connected.

More specifically, the main idea is: A
user can upload his protein and ligand
in the PELE software. PELE will then cre-
ate spatial positions(moving and rotat-
ing the protein and the ligand) and get
metrics’ results. At this point our visuali-
sation procedure is being started.At the
beginning, protein and ligand confor-
mations are being represented as black
points. In our implementation, after the
user presses the button of the parame-
ters window, the clustering of PyProCT
is giving the results, and our GUI repre-
sents the clusters with different colours
on a Voronoi diagram.

The clustering strategy, is giving us
the opportunity to group and cluster our
unlabelled data. Every cluster’s objects
represent a specific piece of information
which are different from the objects that
belong to another cluster. In this way,
our results can be easily compared.

The Voronoi diagram is a partition-
ing of a given space into a number of re-
gions. The colour differentiation of the
cluster results is based on an algorithm
using the HSL geometric cylinder.

Figure 2: Using the HSL geometric cylinder,
we manage to get different color shades.

Using its Hue, Lightness, and Sat-
uration characteristics and setting up-
per and lower bounds, allows us to get
colour shades that can be distinguished
by the human eye. Lighter shades are
being used for Voronoi’s background.

A zooming semantic is being imple-
mented for the zoom in and zoom out
effect, so that the points can be success-
fully adapted and distinguished. Also
note that the web page is being adjusted
to the screen size each time as well.

Finally, having prepared a set of
questions for our test users and using
the eyes tracker, interviews were accom-
plished to improve the GUI. The work-
flow in our second video, presents tasks
similar to what the users performed.

Figure 3: Eyes Tracker Opacity Map, catches
the user’s eye attention.

Results

Following are the results of our visual-
isation represented while a user navi-
gates through our graphical interface.

At first the user is clicking the button
in order to get results(painted points).
Otherwise the diagram is represented
with black points (bullets).

Figure 4: The basic dialog box in order to
submit parameters.

Figure 5: Without Parameters black points
are returned since there aren’t clustering re-
sults.

After he has submitted the param-
eters, he can then plot a protein with
the One Clustering option. The user can
change axis parameters, use the zoom
in and zoom out, he also can plot an-
other clustering and, by selecting a dot
(protein), he can watch the protein’s
structure in the Jmol. The Rectangle op-
tion gives the user the opportunity to
select more than one point(protein) in
order to get information only for these
proteins and, finally, to compare them.

Figure 6: Rectangle tools in order to choose
the points for clustering.

The Multiple Clustering option al-
lows the user to plot all the clustering

4

results in the same window. By double-
clicking each plot, the plotted image
appears larger in order to see further
details.

Figure 7: With the Multiple Clustering op-
tion, the user can see all the clustering in
one figure.

Having selected one clustering, with
the Multiple Axis option we can get all
the possible axis combinations in one
figure. The shape of the points can help
the user compare results. With a double-
click, he can also plot an image in a
larger appearance.

Figure 8: Multiple Axis option, gives all the
possible axis combinations.

With the Bar Cluster option, cluster-
ing bars are represented with the scores
of each clustering that has been given
by PyproCT. A drop down menu gives
the option to select different values such
as Cluster Size, Noise etc.

Figure 9: With the Bar Clustering Result the
user is able to compare all the clustering by
choosing a parameter.

Another useful tool is the JSmol
appearance. The user can select be-
tween one, two, or none. If he selects
the appearance of two JSmols, two
icons are represented at each JSmols’
title, in order to be informed of which
dot has been selected in each. Further-
more, each JSmols’ background gets the
colour of the representative dot.

Figure 10: Jmol Appearance has the back-
ground color and icon in its title from the
chosen point.

Finally, the user can select the Gen-
eral Info option for the selected clus-
ter in order to get information about
it, such as the algorithm that has been
used, how many clusters it consists of
etc.

Figure 11: General Information give the
user information about the parameters and
the results

Note that for each button a
Mousover effect triggers a message in-
forming the user about this selection,
every time he places a mouse over this
area.

GUI Ready for Use

We have shown how to visualise, clus-
ter, and evaluate PELE’S results by using
a server, PyProCT’s clustering methods,
and a graphical interface. This visual-
isation provided more than a graphi-
cal representation of the proteins’ struc-
ture by pointing on a specific "dot" (pro-
tein) or by selecting a whole area of
"points"(proteins) with the "Rectangle"
choice.

General information is given every
time a user is interested in information,
such as Evaluation, Number of clusters,
etc. JMol View provides an optional
view of more than one protein simul-
taneously. Even the plotting options are
enriched with many functions.

Our GUI for PELE, is a user friendly
graphical interface which is easily man-
aged even by users with little experi-
ence in this field by using the tools
and effects it provides, such as the
Mouseover information triggering ef-
fect.

References
1 Victor A. Gil and Victor Guallar (2014). pyProCT: Au-

tomated Cluster Analysis for Structural Bioinformatics.
J. Chem. Theory Comput, 10:3236-3243.

PRACE SoHPCProject Title
Collaborative interface for in-situ
visualization and steering of HPC
molecular dynamics simulations

PRACE SoHPCSite
Barcelona Supercomputing Centre,
Spain

PRACE SoHPCAuthors
Simos Kazantzidis, [National and
Kapodistrian University of Athens,]
Greece

PRACE SoHPCMentor
Maria Ribera Sancho, UPC, Spain
Fernando Cucchietti, UPC, Spain Simos Kazantzidis

PRACE SoHPCContact
Maria, Ribera Sancho, UPC
Phone: +34 93 413 4035
E-mail: ribera@essi.upc.edu

PRACE SoHPCSoftware applied
Python, Node.js, Javascript, HTML, CSS, D3.js

PRACE SoHPCMore Information
http://d3js.org, http://nodeschool.io

PRACE SoHPCAcknowledgement
Author would like to thank his mentor as well as Jorge
Estrada, Victor A. Gi and David Garcia Povedano for the
IT support and Daniel Lecina, Luz Calvo Flores for their
contribution to the initial version of the GUI.

PRACE SoHPCProject ID
1501

5

Graphical interface for real time monitoring
and automatic event detection in HPC
parallel software

GUI for RT
Monitoring
in HPC
Rumyana Rumenova

Large HPC simulations can create
local signs of failure or success long
before a global signature is observed.
If these signs are detected early,
valuable computer resources could
be spared.

A lya is a simulation system de-
signed for large-scale research
computations to be run on
supercomputers. Initially used

for computational mechanics simula-
tions, it has expanded to other projects,
including a large-scale simulator of the
human heart. With the help of computa-
tional resources that have never before
been available, researchers are able to
better understand the inner workings
of the human body at a level of detail
much finer than was possible in the
past. The work on Alya continues into
other anatomical systems, to build a
highly accurate model of the human
body, which helps medical doctors diag-
nose pathologies, plan operations and
test new drugs.

Developed at the Barcelona Super-
computing Center (BSC), Alya is used
for several active projects to run simu-
lations on Marenostrum, Spain’s most
powerful supercomputer. A supercom-
puter is really a room full of computers
connected together through a fast net-
work. Thus, running computations, or
jobs, involves a complex partitioning of

the problem into smaller sub-problems
that can each be computed by one
machine. Arriving at the final result
requires tight coordination between
these.

This process creates many difficult
problems in achieving correctness and
efficiency. One of these is that a mistake
at the beginning of the computation
may go unnoticed until the end, when
results are aggregated - resulting in
wasteful computation. As resources
on a supercomputer are expensive, in
terms of both the energy used and the
support necessary, effort is often put
into minimising their usage. Of course,
researchers can also spend their time
more fruitfully than by waiting for
results.

The GUI in short

During this internship, I built a user in-
terface which aims to help researchers
manage their running jobs, evaluate the
seriousness of any issues, and monitor
performance metrics. It is based on

BSC’s real-time monitoring tool which
finds potential errors in jobs running on
an HPC cluster. My piece of the project
will hopefully allow researchers to diag-
nose errors by interacting with visual
representations of both the simulation
problem (as a 3d rendering) and the
connectivity between computing nodes
(as a graph) on which it is running.

It can be seen at http://www.bsc.
es/viz/alyaevents/

Usage

Users can navigate through differ-
ent simulation tasks which have been
submitted (problems) with several in-
stances of the simulation per problem
running on the supercomputer (a run).
Some general information on the prob-
lem is always displayed, together with
line charts which illustrate it.

For each run, users can interact with a
3d representation of the object (mesh)
that’s being simulated, as well as a 2d
graph illustrating the communication
between separate subproblems (sub-

6

Top Left: The interface dashboard on a real problem run. Right: Neighbour selection in action. Bottom left: Results of user tests with
eye-tracking camera.

domains), which may be running on
one or several machines. A subdomain
corresponds to one node in the graph
and one region in the mesh. Users may
select subdomains to find out more
information on them, or discover subdo-
mains which are exchanging messages
with this subdomain (neigbhours) to
arrive at the final computation output.
This can be done through interaction
with either the graph or the mesh.

Locations where a potential problem
may have occurred (events), as detected
by the real-time monitoring tool, are
displayed within the mesh. Clicking on
them shows the user more information
on the problem, as well as an automat-
ically generated image illustrating the
event.

Functionality in detail

On the server side, the project is driven
by a couple of scripts which find the
available problems and runs, and then
generate JSON objects to represent the
connectivity graph. The outputs of these
are read by the client application and
displayed.

3d mesh - three.js

The simulation object is displayed as
a wireframe to ease visibility. Subdo-
mains are loaded as separate meshes
and grouped into one when the ap-
plication needs to make computations
such as the object’s bounding box, its
center, etc. As images shown on the
screen are 2d, a rendering involves a
projection from 3d to 2d coordinates.
For interaction with separate meshes,
"unprojection" (raycasting) is used to
find the 3d object corresponding to
a cursor hovering over or clicking on
a mesh or event. Changes in colour
represent hovering or selection of a
3d element. Should the user choose
to display them, neighbours are also
highlighted using different opacities, on
both the 3d mesh and the connectivity
graph.

Mouse controls are used to allow the
user to navigate the 3d mesh by rotat-
ing it or zooming in and out. A user may
also enable animation which rotates the
mesh around its y-axis, if they want to
view it from all sides more easily.

Data on the 3d representation is read
from STL files on the server. These are
rendered on the client machine’s GPU
using Three.js over WebGL. Function-
ality is implemented as functions in

webGLplot.js, allowing for code modu-
larity such as one-line showing/hiding
events, turning navigation and ani-
mation on/off, functions reused to
implement "deselect all" functionality,
etc. Some debug options (turned off
by default) are also available, such as
a rendering status screen which dis-
plays current frames per second and a
small graph of recent graphics perfor-
mance. Console messages are shown if
a rendering is incomplete.

2d graph - d3.js

The connectivity graph is generated us-
ing a representation of its nodes and the
communication between them. Colour
is used to represent different char-
acteristics, highlighting nodes which
deviate significantly from the others -
this makes it easy signal a master node
to the user, or to let them examine the
nodes where communication is heavier.
Additional measures of this colour-
ing can be implemented in the future.
Selected nodes and optionally their
neighbours are visually represented by
a stroke around them, and changes over
selections in the graph are reflected on
their corresponding subdomain in the
3d mesh. Mouse controls enable zoom-
ing and panning of the graph.

7

Layout design sketches at different stages of development. Produced in order to ease user feedback, allowing to abstract away from
functionality.

Graph visualisation is data-driven,
drawing the graph from a simple JSON
object, and dynamically choosing its
colouring. Again, functionality (con-
tained in d3graph.js) is modular, for ex-
ample, including a "select subdomain"
function which calls the appropriate "se-
lect node" from d3graph.js and "select
mesh" from webGLplot.js.

Problem information - d3.js

As well as textual output, information
is represented using line charts on var-
ious measures of interest. These are
drawn dynamically by calling a func-
tion which takes as arguments the
data path, measures to be displayed,
colours, linear/logarithmic scale, and
chart size. Their look and feel is speci-
fied in style.css. Charts can be generated
out of multiple files containing different
y-axis attribute values. Thus, they can
be made more interactive in the future,
adjusting their size or allowing the user
to choose the attributes they want to
see.

Methods

Our aim for this internship was to pro-
duce a minimal working version of
the tool, with an accent on usability. I
worked with the Scientific Visualisation
Group in BSC, who have put a lot of
thought into the best way to represent
this type data, and in collaboration with
the team that works on Alya, who will

be the first to use the application.

In prioritising separate tasks, we fol-
lowed user stories and consulted the
prospective users in person. The project
development followed an agile method-
ology, testing small incremental steps
throughout, and evaluating usability
continuously.

The tools used for this project
are the standard web development
HTML/CSS/JavaScript stack with ex-
tensive use of d3.js - a library for pro-
ducing interactive 2d visualisations and
binding DOM elements to data, and
three.js for 3d, a library based on We-
bGL, a powerful visualisation API which
achieves good performance by using
the client’s GPU for graphics rendering.

Evaluation

Experimental set-up

The final product was tested with 5
users, 3 long-term frequent users of
Alya who are completely unfamiliar
with the interface, and 2 infrequent
users of Alya who are relatively unfa-
miliar with the interface. The test set-up
consisted of nine small tasks, devised
to be a realistic representation of what
the user might want to do in their usual
debugging process. The users’ input
was used to evaluate the experimental
set-up: all tasks were deemed realistic
by Alya users. Tasks were kept short

so that they can be completed in 10
seconds or less by an experienced user
of the interface.
Users were asked to talk aloud while
they are completing the tasks, in order
to record their current doubts and ex-
pectations.

A score of 0 was given when users
were unable to complete the task in
the time frame of about a minute. A
score of 1 reflects that the user was
almost able to complete the task, or
was focused on the right layout element
but needed some guidance to complete
it. A score of 2 was awarded if the user
was able to complete the task in less
than 20 seconds, or had completed it
already on their own during one of the
previous tasks.

The tasks assignment was followed
by an informal interview to find out the
users’ general opinion of the interface
and their suggestions for improvement.

Tests were conducted using an eye-
tracking camera to analyse eye move-
ment, showing where the users ex-
pected to find a certain element on
first, second or third trial, whether they
searched for it across the screen, which
locations were their main focus, and to
compare their verbal testimonials with
the reality of how they completed the
task.

The following tasks were used:

8

1. Find the name of the current prob-
lem and the number of subdo-
mains in it.

2. Pick an event.
3. Find the time it occurred at.
4. Find the subdomain it occurred

in.
5. Find the neighbours of this subdo-

main.
6. Look at the mesh from the top.
7. Zoom in to the event you selected.
8. Find a subdomain which has a

very different number of elements
compared to the one you selected.

9. Approximately how many itera-
tions have been done on this run?

Results and Discussion

Table 1: Experiment results: Task, User
scores (1-5), Aggregate Score, Average
Score

T U1 U2 U3 U4 U5 Agg Avg

1 2 2 2 2 1 9 1.8
2 0 2 0 0 1 3 0.6
3 2 2 2 2 2 10 2
4 1 0 0 0 2 3 0.6
5 0 0 0 2 1 3 0.6
6 2 1 2 2 2 9 1.8
7 2 2 2 2 2 10 2
8 2 1 1 1 0 5 1
9 2 2 2 2 2 10 2

Task 1. Problem information is dif-
ferentiated well from the rest of the
content, and has a suitable location.

Task 2. Points on the mesh repre-
senting events should be noted explic-
itly. Note that all users are new to the
event system (have not used it so far).
Frequent Alya users interpreted points
as the geometrical centre of each subdo-
main mesh, as this is a representation
they use.
Possible solution: Have a legend at
the top of the 3d mesh.

Task 3. Event information is located
suitably. It is labelled well enough for
users to find a piece of information of
interest straight away.

Task 4. Users search for this as ex-
plicit information. From looking at the

mesh it is hard to tell which subdomain
an event belongs to. Note, some confu-
sion may arise from terminology: "rank"
for example could be interpreted as an
MPI_World rank.
Possible solution: Explicitly add rele-
vant subdomain to event information.
Room for improvement: Information
on the neighbours would be very useful
to output as well.

Task 5. Users are prone to inter-
acting with the mesh manually to find
neighbours. They are neither able to
see the "Show neighbours" option, nor
inclined to look for it. Possibly they are
interpreting it as part of the 2d graph
menu.
Possible solution: Include it within 3d
mesh area.

Task 6 and 7. Navigation is intu-
itive. Many of the users had already
started rotating the mesh and zooming
before this task came about.
Room for improvement: It would be
useful to have the option of going back
to original mesh position, and possibly
some standard views (top, front, etc).
Rotation axis could be surprising de-
pending on the specific problem, as
they change depending on information
from the 3d mesh file.

Task 8. Some users were prone to
looking at subdomain information to
find it. A hint towards a different option
led them to selecting a subdomain by
colour.
Room for improvement: - A legend of
the colours would be good for added
understanding.
Colouring by other characteristics
would be useful: specifically rank and
code.

Task 9. Charts are easy to find and
interpret even without a specific men-
tion of using them for iteration infor-
mation. This is also the most familiar
element of the interface, as they have
been modelled after a debugging tool
that is already being used by Alya users.
Room for improvement: Some of the
charts (the first 3) should be drawn dif-

ferently to display outer instead of inner
loop iterations.

Conclusion

The GUI developed over the summer is
a minimal working version of a visual
debugging tool which has been met
with enthusiasm amongst Alya users.
Layout positioning has been shown to
make sense for users.

The application includes all the main
elements of functionality as requested
in initial user story documents and
interviews. It is able to visualise dif-
ferent problems and does not exhibit
prohibitive speeds under user interac-
tion on Linux, Mac and Windows with
recent versions of Firefox, Opera and
Chrome.

As an active project, it will be improved
in the future to better reflect what has
been discovered through various user
tests.

Acknowledgements

I would like to thank members of
the Visualisation team who helped for
this project in various ways - Fer-
nando Cuccietti, Luz Calvo, David Gar-
cia Povedano and Simos Kazantzidis, as
well as members of the Alya team who
provided valuable feedback - Guillaume
Houzeaux, Juan Carlos Cajas, Ane Beat-
riz Eguzkitza.

PRACE SoHPCProject Title
Graphical interface for real time
monitoring, automatic event detection,
and alert triggering in HPC parallel
software

PRACE SoHPCSite
Barcelona Supercomputing Center,
Spain

PRACE SoHPCAuthors
Rumyana Rumenova, University of
Edinburgh, UK

PRACE SoHPCMentor
Fernando Cucchietti, BSC, Spain Rumyana Rumenova

PRACE SoHPCContact
Fernando Cucchietti, BSC
E-mail: fernando.cucchietti@bsc.es

PRACE SoHPCSoftware applied
three.js/WebGL, d3.js

PRACE SoHPCMore Information
The project: www.bsc.es/viz/alyaevents
The Alya System:
www.bsc.es/computer-applications/alya-system

PRACE SoHPCProject ID
1502

9

Optimal deflation in the linear solver for lattice QCD
and measuring Topological Susceptibility

Optimised I/O
and
Topological
Susceptibility
Conor Larkin

The aim is to optimise I/O for eigenvectors
produced by tmLQCD, using modern parallel
I/O frameworks, and to write a measurement
program for the topological susceptibility with
the eigenvectors as input.

d̄u

Lattice Quantum Chromodynam-
ics is a field which has offered
much to physics in recent years.
This is due to both an increase

in computing power and an improve-
ment in the algorithms used. Something
which has hindered it in the past is the
huge expense involved in doing calcu-
lations at physical values of the up and
down quark.

There are various methods to help
decrease the cost of these calculations
which allow us to get closer to these
realistic masses. One which has had a
lot of recent success is Deflation. Dur-
ing these lattice calculations, we are re-
peatedly required to invert huge sparse
matrices. On these types of matrices,
regular inversion is inefficient and we
use methods such as conjugate gradient
instead.

The time it takes for the Conjugate
Gradient to converge to the correct solu-
tion is dependent on the square root of
the ratio of the largest to smallest eigen-
value. The larger the ratio, known as
the matrix condition number, the longer

the algorithm takes. Deflation greatly
speeds up this convergence by calculat-
ing a number of the lowest eigenvalues
and projecting, or essentially removing
them from the system that needs to be
solved.

The central aim of my project is to
improve the saving and reading (I/O) of
these eigenvectors, so that it becomes ef-
ficient to store and reuse them for each
calculation on the same matrix, instead
of recalculating them every time. This
will then be used in a program which
will determine the topological suscepti-
bility of a lattice configurations[1].

The first step was to implement the
writing and reading functions for these
eigenvectors using using raw binary
files and MPI-IO, to serve as a base-
line for further improvements. In tm-
LQCD[2], the lattice is split into local
lattices which exist on each process. In
this way, each process only has access
to a section of each of the total number
of eigenvectors. The eigenvectors and
eigenvalues were written into one large
binary file in parallel with all of the sep-

arate MPI process given an appropriate
view of the file. This was significantly
faster than the original implementation
which required that each eigenvector
be written in a separate file, with its
own metadata and check sums. How-
ever despite its speed the raw binary
implementation using MPI-IO has sig-
nificant disadvantages, there is no meta-
data available and no check summing
to protect against file corruption. For
this reason, an alternative method was
examined.

HDF5 is a data model, library, and
file format for the managing and stor-
ing of data. Parallel HDF5 is a config-
uration of the HDF5 library allowing
one to read and write to the same file
across MPI processes. A HDF5 file can
be thought of as more of a directory con-
taining sub-directorys, known as groups,
files, known as datasets, which allows
us to store each eigenvector as a dis-
tinct dataset and attributes which are
the metadata. This allows us to store
information about the lattice size, the
number of eigenvectors and such where

10

it can be very easily accessed. HDF5
provides checks such as check summing
which can help tell us when there is an
issue with the data, such as it being cor-
rupted. The idea behind using HDF5 is
not to gain a performance boost over
MPI-IO, but to add functionality and
checking at a minimum cost. We wish
for our HDF5 implementation to be as
close in performance as is possible to
the MPI-IO implementation.

The writing functionality of these 3
methods were tested a number of times
on the Juqueen supercomputer on a
1024 node configuration, or one rack.
The eigenvectors of a Dirac operator ma-
trix of a 483 ∗ 96 lattice at the physical
point of the pion mass were written to
a file approximately 1 terabyte in size.
The average time taken of each of the
methods times was calculated and is
shown in Figure 1 below.

Original MPI-IO HDF5
0

2,000

4,000

6,000

Ti
m

e
(S

ec
on

ds
)

Figure 1: Average Write Times

As can clearly be seen there is a
large speedup of approximately 2.5 in
the MPI-IO and HDF5 versions over the
original implementation. Also there the
HDF5 write is only slightly slower than
using pure MPI. This is as was hoped.
The average read times were then eval-
uated in the same way and the results
are shown in Figure 2.

The MPI-IO is faster than the orig-
inal by almost a factor of 6 which is
great but we see our first issue with the
HDF5 implementation. We known that
HDF5 should mirror the performance
of MPI-IO so we reason that it must be
caused by something different about the
structure of the files and in fact it is. In
the MPI implementation eigenvectors
and eigenvalues are stored in one large
memory block but in the HDF5 version,
while it is in one file, each of the eigen-
vectors are stored in different datasets.
While storing them in different datasets
makes it easier to read a specific subset
of these eigenvectors in a file, it is still
possible to do this when they are stored
as a block thanks to the dataset slicing
functionality in HDF5.

Original MPI-IO HDF5
0

1,000

2,000

3,000

Ti
m

e
(S

ec
on

ds
)

Figure 2: Average Read Times

This is considered a reasonable
trade-off if it gives us the speed up that
will get us close to the MPI read time.
I implemented the block HDF5 method
and the results for the average read time
are shown below in Figure 3. The write
time for the block and non-block HDF5
methods are virtually identical

MPI-IO HDF5 Block HDF5
0

1,000

2,000

3,000

Ti
m

e
(S

ec
on

ds
)

Figure 3: Improved Average Read Times

We have gained an approximate
2.5x speedup in the write times and a
much larger one in read times. We have
achieved what we set out to do in terms
of the I/O section of the project.

The vacuum of Quantum Chromo-
dynamics has a topologically non-trivial
structure. Certain properties of QCD re-
quire that the ground state be a superpo-
sition of gauge configurations with dif-
ferent topological properties. The topo-
logical susceptibility allows us to mea-
sure the topological fluctuations of the
vacuum.

A lot of people will have heard
of the Higgs Mechanism which gives
mass to certain Standard Model par-
ticles through spontaneous symmetry
breaking. There are in fact other sym-
metry breaking mechanisms which give
different particles mass and topological
susceptibility calculations can give us
insight into these processes. In particu-
lar topological susceptibility has been
shown to have an important effect on
the mass of the η′ meson. The topologi-
cal susceptibility χt is defined as,

χt =
〈Q2

t 〉
V

(1)

where V is the volume,Qt is the topolog-
ical charge and 〈.〉 denotes the average.
The topological charge is mathemati-
cally quite complicated so I will attempt
to give an intuitive introduction to topo-
logical equivalence.

Two field configurations are said to
be topologically equivalent if it is pos-
sible to topologically deform one of
them continuously into the other with-
out passing through forbidden field con-
figurations which are unphysical.

Figure 4: Topological Example

Above is an example of topologically
in-equivalent systems. From the point of
view of the green points, it is impossible
to smoothly transform one system into
the other. Assuming theses curves travel
anti-clockwise these systems can be said
to have a winding number of 2 and 1
from left to right. Topological charge
can be seen as something similar, an in-
teger number, in which systems with the
same topological charge are topological
equivalent and those with distinct ones
are topologically in-equivalent.

I have written a program which
will calculate the topological suscepti-
bility of a gauge configuration using the
eigenvectors provided by the tmLQCD
package and read through the HDF5
Block read function.

References
2 L. Giusti and M. Luscher, JHEP 0903 (2009) 013

[arXiv:0812.3638 [hep-lat]].
1 K. Jansen and C. Urbach, Comput.Phys.Commun. 180,

2717 (2009), arXiv:0905.3331 [hep-lat]

PRACE SoHPCProject Title
Optimal deflation in the linear solver
for lattice QCD

PRACE SoHPCSite
The Cyprus Institute

PRACE SoHPCAuthors
Conor Larkin, [Trinity College Dublin,]
Ireland

PRACE SoHPCMentor
Giannis Koutsou and Constantia
Alexandrou, The Cyprus Institute,
Cyprus

PRACE SoHPCProjectID
1503 Conor Larkin

PRACE SoHPCAcknowledgement
I’d like to thank Giannis Koutsou, Constantia
Alexandrou, Abdou Abdel-Rehim and Jacob Finkenrath
for all their help and guidance.

11

Multi-Threaded Eigenvector Computation
for a linear solver for Lattice QCD

Hybrid High
Performance
Computing
in Lattice
QCD
Simon Pfreundschuh

Lattice quantum chromodynamics computations put extremely high demands on
computing power. To meet them, getting the most out of todays supercomputing
architectures is absolutely necessary.

Qantum chromodynamics
(QCD) is the physical the-
ory describing the behaviour
of quarks and gluons. Those
fundamental particles con-

stitute some of the major building
blocks of the world around us. There
are six different quarks and eight dif-
ferent gluons. Combined in different
ways, quarks and gluons make up all
nuclear matter such as the neutron
and the proton. Together with elec-
trons, those form atoms, which again
combined in uncountably many ways
make up all the matter in the universe.
The force that makes quarks come to-
gether to form new particles is called
the strong force or strong interaction.

The gluons are the mediators of the
strong force. That means that they trans-
mit the strong force between quarks.
This is similar to the photon, which
transmits electromagnetic force be-
tween charged particles. Coming to an
understanding of the wold of subatomic
particles was and is one of the biggest
challenges of modern science. This chal-
lenge is met by experimentalists and
theorists all over the world trying to
advance the frontiers of physics. The un-
derlying theory, however, has become
so complex that some of the worlds
most powerful computers are necessary
to make predictions from it. Lattice
QCD is a computational framework to
predict physical quantities from the

equations of quantum chromodynamics.
Since those equations are too complex
to be solved analytically, one has to
resort to numerical approximations.
In lattice QCD quarks are placed on a
4-dimensional lattice of points in space
and time. The gluons live on the links
between the lattice sites. In order to ob-
tain realistic, physical results, the lattice
has to be made finer and finer. Increas-
ing the size of the lattice, however, also
increases the computational complexity.
While a vector describing a lattice of
size 16 × 16 × 16 × 32 has about 1.5
million elements, a vector describing a
lattice of size 64× 64× 64× 128 already
has about 400 million elements, requir-
ing 6.44 GB of memory to store. Lattice
QCD computations not only involve
thousands of such vectors, but also ma-
trices of this size. The computationally
most demanding task in lattice calcula-
tions is the solutions of linear systems
of the form Dx = b. The matrix D
is a discretized version of the Dirac
operator, a square, sparse matrix of size
12 times the lattice points. In a typical
lattice calculation, thousands of such

12

systems need to be solved. This compu-
tation can be sped up with a technique
called deflation. This technique require
the computation of eigenvectors of the
Dirac operator. Eigenvectors are special
vectors that do not change their direc-
tion when acted upon with the Dirac
operator. Such computations can of
course not be run on ordinary comput-
ers, but require the highly specialised
high performance systems.

Most supercomputers today are built
as commodity clusters. That means that
they are made up of a very large num-
ber of compute nodes built from off the
shelf components. Each compute node
is basically a computer on its own, with
its own multi-core CPU and memory. To
further increase performance, the com-
pute nodes are often equipped with one
or more coprocessors or GPUs. Those
are basically specialised hardware com-
ponents for that speed up certain tasks.
GPUs for example yield performance
benefits for highly parallel tasks. The
compute nodes are connected to each
other over a high speed network. The
general structure of such a hybrid clus-
ter machine is displayed in figure 1.
When running a program on a cluster
machine, each node runs its own inde-
pendent instance of the program. The
independent instances of the program
communicate with each other over the
network. To achieve maximum perfor-
mance on a cluster machine it is nec-
essary to write a program that can
run efficiently on many nodes, but also
makes good use of the computational
resources of each node. This requires
a program that is not only parallel on
node level but also exploits the paral-
lel computing capacities of the nodes.
Such a combination of different pro-
gramming paradigms is generally re-
ferred to as hybrid programming.

The implicitly restarted Arnoldi
method, which is used for the computa-
tion of the eigenvectors, is based on

Figure 1: Modern supercomputers consists of a large number of compute nodes,
each equipped with a multi-core cpu as well as one or more GPUs or coprocessors.

Figure 2: The computations of a Schur decomposition can be parallelised by splitting up
the matrices column-wise over the compute nodes.

the construction of a partial Schur de-
composition of the Dirac operator D,
which takes the form

DV = VH (1)

where H is a k× k upper triangular ma-
trix, V is a n× k hermitian matrixKLK
and k is just the number of eigenvectors
that we want to compute. This is an im-
portant point, because while we cannot
work with D explicitly due to its size,
the matrices V and H are actually of
manageable size. All we need to know
of D is how it acts on a vector x. So
there are two kinds of operations that
need to be performed: The ones involv-
ing the Dirac operator D and the ones
involving only the smaller matrices V
and H. Those operations can be paral-
lelised, by splitting up the matrices D
and V over the compute nodes. Then,
each compute node only has to per-
form the computations corresponding
to a sub-range of the columns of the
matrices as is displayed in Figure 2.
Due to the inherent parallelism of the
application of the Dirac operator D to
a vector x, this operation can be very
efficiently parallelised on a GPU. This
was also already implemented in the
lattice QCD code used in this project.
The operations involving the V and H
matrices, however, were still running
on only one of the CPUs cores. The aim
of the first part of my Summer of HPC
project was

therefore to parallelise also those com-
putations.

To this end, I explored two differ-
ent approaches to parallelise the eigen-
vector computation on the nodes. The
first one was to link ARPACK, which is
the software package implementing the
implicitly restarted Arnoldi method, to
a multi-threaded linear algebra library.
Modern software is written in a highly
modular way in order to increase the
re-usability of code. Frequently used
functionality is provided by software
libraries. This has the advantage that
not every time someone wants to per-
form linear algebra operations he has
to write his own routines for that. Op-
timised and parallel linear algebra li-
braries are readily available in modern
cluster machines programming environ-
ments. Apart from being quick and easy
to realise, this approach has the advan-
tage of minimising the risk of introduc-
ing new errors in the code. The second
approach was to rewrite the ARPACK
code in the hope to achieve greater per-
formance gains. The idea behind this
was that the splitting up of the V ma-
trix can be extended to the multiple
CPU-cores of each compute node. That
means that the column sub-range of
each node is once more split up over
the CPU-cores of the node. The splitting
up of the matrices over each nodes GPU
and CPU cores is illustrated in Figure 3.

To assess the performance of the
the two approaches, several bench-
marks were performed. The first bench-
mark was performed on a develop-
ment machine here at The Cyprus In-
stitute, named Prometheus. Each of
Prometheus nodes has two GPUs and
a 12-core CPU. The benchmark run on
Prometheus was a rather small one with
a matrix D of size n = 90000 and the
number of eigenvectors k = 100. It was
run on only one node. The results are
displayed in Figure 4, which displays
the execution time of the program nor-
malised with the serial execution

13

Figure 3: The matrices involved in the computation of the eigenvectors are split up column-wise over the nodes to parallelise the
computation.

time, i.e. the time the non-parallel
version of the code takes to execute. On
Prometheus the parallelised code actu-
ally performs slightly better than the
code using multi-threaded linear alge-
bra and speed-ups of a factor up to three
using all twelve cores were reached.

Figure 4: Benchmark results on
Prometheus.

The second benchmark was performed
on Piz Daint which is a hybrid super-
computer located at the Swiss Super-
computing Centre in Lugano, Switzer-
land. Each node on Piz Daint has an
8-core CPU and one GPU. The bench-
mark performed on Piz Daint was for
a 48 × 48 × 48 × 96 lattice and run on
64 nodes. The number of eigenvectors
computed was chosen to be 1000. As dis-
played in Figure 5 the results obtained
are not as good as the ones obtained on
Prometheus. Both versions of the code
scale worse on Piz Daint and the paral-
lelised code has no advantage over the
code using linear algebra.

Ideally, the expected gain in perfor-
mance should be proportional to the
number of cores. Even though this could
not be achieved, the performance gain
on each platform was at least 100%.
The results also show that the man-
ually parallelised code performs only
slightly better than the code using multi-
threaded linear algebra. The reason
for this is that computationally most
complex operations of the eigenvec-
tor computation are actually the lin-
ear algebra operations. Their execu-
tion time grows fastest with increas-
ing matrix size and thus determines
the performance of the overall program.

Figure 5: Benchmark results on Piz Daint.

The development process of this project
was of course not as linear as pre-
sented in the report. Writing, compil-
ing and running software on high per-
formance computers are highly com-
plex tasks and require great amounts
of specialised knowledge. Different ar-
chitectures and different available soft-

ware libraries strongly influence the per-
formance of software. Therefore, the
above results can probably be further
improved, but due to time restrictions
we decided to move on to the second
part of my project. The aim of the sec-
ond part is to use the eigenvectors com-
puted in the first part to improve the
accuracy of the approximate inversion
of the Dirac operator. I think that this
project illustrates in a fascinating way
the challenges in lattice QCD. Computa-
tions in lattice QCD not only require a
thorough understanding of the underly-
ing physics and mathematics, but also
highly specialised programming skills
that can get a maximum of performance
out of modern supercomputers.

PRACE SoHPCProject Title
Optimal Deflation in the Linear Solver
for Lattice QCD

PRACE SoHPCSite
The Cyprus Institute, Nicosia, Cyprus

PRACE SoHPCAuthors
Simon Pfreundschuh, Chalmers
University of Technology, Sweden

PRACE SoHPCMentor
Prof. Constantia Alexandrou , The
Cyprus Institute, Cyprus Giannis
Koutsou, The Cyprus Institute, CyprusSimon Pfreundschuh

PRACE SoHPCAcknowledgement
I would like to express my gratitude to Prof.
Alexandrou and everyone in the lattice QCD group for
welcoming me here at CaSToRC. Especially I would like
to thank Giannis Koutsou, Abdou Abdel-Rehim and
Jacob Finkenrath for all their help and knowledge
shared with me. It was a truly inspiring experience. I
would also like to thank everyone involved at PRACE
for making the Summer of HPC program possible.

PRACE SoHPCProject ID
1504

14

3D visualisation Tool for Olfactory Bulb data

Visualisation tool
for Olfactory Bulb
Cem Benar

Contributing to finding out how odour
discrimination is done in olfactory
bulb and investigating functional
properties of olfactory bulb neurons
by providing a 3D visualisation tool.

3Dvisualisation tool is built to help
find out how olfactory bulb neu-

rons contribute to odour recognition
in the human brain. When given the
data of olfactory bulb neurons, the tool
builds a three-dimensional view of the
olfactory bulb neurons: mitral cells and
granule cells. In addition, it enables re-
searchers to analyse the olfactory bulb
data in a visual and interactive way.

Introduction

The sense of smell results from the stim-
ulation of receptors by molecules in
the air. These chemical molecules reach
the nasal epithelium during inhalation.
These stimulants are transduced into
electrical activity in the olfactory recep-
tor neurons, which then transmits them
to the olfactory bulb and from there
to the rest of the central nervous sys-
tem. Olfactory bulb is responsible for
transmitting olfactory information into
a number of areas in the brain. Its out-
put is not a passive reflection of its in-
put. It transforms odour input to help
the rest of the central nervous system
in discriminating the odour.

Figure 1: Glomeruli (coloured spheres) ac-
tivation patterns1

Glomerulus (plural glomeruli) are
spherical synaptic structures, which are
found in-between olfactory receptor
neurons and mitral cells. As seen in Fig-
ure 1, different inputs create different
intensities on glomeruli. This helps re-
searchers in making odour discrimina-
tion.

Mitral cells are the one of the main
neurons’ types located in olfactory bulb.
They receive odour input from at least
four cell types: olfactory receptor neu-
rons, periglomerular neurons, external
tufted cells, and granule cells. They help
in transmitting olfactory information
into the brain by processing in a way
which is currently unknown. A mitral
cell output is not a passive reflection of
their input from the olfactory receptor
neurons and external tufted cells. The
exact type of processing that mitral cells
perform with their inputs is still a mat-
ter of controversy. A mitral cell consists
of tufts, apic, and soma and lateral den-
drites. The connections between mitral
and granule cells are made through the
lateral dendrites. Tufts are a part of a
mitral cell that takes the electric pulse
from other neurons. The electric pulse
coming from other neurons is transmit-
ted to the apic through tufts. The apic
is single cylindrical structure that con-
nects tufts to the neuron cell body. It
gets the electric pulse from tufts and
transmits it to the cell body, which is
called soma. Soma is the centre of a mi-
tral cell. It transmits the electric pulse to
dendrites. Dendrites are structures that
enables a mitral to convey the informa-
tion to granule cells. The geometry of a
mitral cell is represented in Figure 2.

Figure 2: A single mitral cell with granule
cells

Granule cells are another type of
neuron cells located in the olfactory
bulb and has important functions in
odour discrimination like mitral cells
and glomeruli have.

Mitral cells create a unique pattern
for each type of odour input such as cof-
fee and kiwi, while they process odour
input. Similar smells produce similar
patterns in mitral cells. These patterns
become more unique and more easily
identified as time goes on. With the
help patterns of firing neurons, how
odour recognition works in the olfac-
tory bulb, especially in mitral cells and
granule cells, is attempted to be under-
stood. The motivation of the project
is to develop a 3D visualisation tool
to help researchers in their studies of
odour recognition. If the whole struc-
ture is visualised, it is easier to find the
patterns and classify them in order to
understand which odour input is cur-
rently performed. This work provides
researchers a framework as well as an
application.

The design of the neural network is
made by an open-source neural network
simulator called NEURON. The simula-

15

tor provides us synthetic data such as
the topology of mitral cells and gran-
ules as well as their timing values. The
binary data is capsuled as radius values
and 3D points in the Cartesian coordi-
nate system for the parts of the neu-
ral network which are tufts, apics, so-
mas, dendrites, and granules. The data
of tufts, apics, somas, and dendrites is
more complex than granules’ data. Tufts,
apics, somas, and dendrites consist of
substructures which we call segments.
Each segment is defined in a data for-
mat of [(x1, y1, z1, r1), (x2, y2, z2, r2)],
where x, y, z are axises in the Cartesian
coordinate system and r is the radius.
NEURON simulates the neural network
in 40 seconds and generates the time
values for dendrites and granule cells.
Time values represent at which time
during the simulation these parts have
the electric pulse.

Working Environment

We used Blender 2.75 software as a 3D
visualisation and an animation program.
It is open-source and has many features
including video editing. It is also good
at rendering with a high quality. In addi-
tion to this, Blender allows its users to
make modifications on its user-interface.
Although Blender is generally used for
modelling, with this work, I believe we
have proved the ability of Blender in
making a scientific visualisation with
big data. In addition to the interactive
user interface of Blender, it also offers
programmers an embedded python con-
sole where you can make your work by
using either user interface or writing
python scripts.

Rendering Stage

Firstly, we started to render the parts
of a mitral cell by using two separate
approaches. The first approach is to
draw a circle and extrude it to make
a segment. The extruding approach
is a natural way of rendering things,
especially neurons. The second one is
to define each segment of apic, soma,
tufts, and dendrites as a cone object in
Blender. Instead of creating a circle and
extruding it, we directly created a cone
structure. The reason to use a cone
instead of a cylinder is that dendrites
and tufts are in the shape of a truncated
cone. Their radius values vary from seg-
ment to segment. Both approaches are

implemented as two separate rendered
classes. They are able to work in the
same rendering case. In other words,
each part in the neural network, which
are apic, tufts, soma, dendrites and
granules can be rendered by selecting
either of them.

On average, each mitral cell has 600
segments and the number of granule
cells related to that mitral cell is 1100.
The neural network is made of 635
mitral cells and around 700,000 gran-
ule cells. The structure, in total, has
1,080,000 segments, if each granule cell
is also counted as a segment. First of all,
an object is created for each segment
to render. For this reason, the first issue
that is faced in Blender was the scaling
problem. Creating objects in this huge
number made the rendering process
very slow.

The code was getting slower as
the number of objects in the scene
are increasing. Blender has operators
(bpy.ops) for the users using the graph-
ical user interface. It is not advised to
use these operators in python scripts.
For this reason, we changed our ap-
proach and started using bmesh module.
Bmesh module offers more flexibility
and features to render meshes. It is
designed for those who want to create
meshes by using programming. A mesh
is a collection of vertices, edges, and
faces that describe the shape of a 3D
object. It is also called as object data.
This approach improved the speed of
rendering however; it did not solve
the scaling problem. For example, ren-
dering a hundred of mitral cells in the
supercomputer of CINECA were not
terminating in ten hours.

Then, the reason of the scaling prob-
lem was found out. When adding a
new object with a mesh into the scene,
updating the scene is internally done.
Updating the scene means when a new
mesh is added, Blender checks every
time if each mesh in the scene is modi-
fied or not. As the number of meshes in
the scene is increasing, the number of
objects to be updated is also increasing,
which causes slowness. For this reason,
we decided to decrease the number of
objects in the scene. Segments in each
part of a mitral cell are grouped. In this
way, creating a single object and mesh
for each part of a mitral cell became

possible by adding the geometry of each
segment into the single mesh iteratively.

With this approach, we have 4
groups for tufts, apic, soma, and den-
drites for a mitral cell. It solved the
scaling problem in a very efficient way.
Instead of creating 1,080,000 objects,
2541 objects and meshes which is
635x4 + 1 (one for all granules) are
created for the whole neural network.
Surprisingly, we realised that rendering
the whole neural network doesn’t need
processing power of a supercomputer.
For this reason, we did not feel the need
to make the code parallel at this stage.
Besides, Blender has a feature that au-
tomatically runs the code parallel. Ei-
ther you can simply specify number of
threads to be run or Blender decides it
by itself by analysing to current power
of hardware. Rendering 635 mitral cells
represented in Figure 3 takes a few min-
utes with this approach in the super-
computer of CINECA.

Figure 3: Olfactory bulb mitral cells

Colouring Stage

The second stage of the project was to
colour the neural network in order to
show electric pulses mitral cells have
during the some intervals of the simula-
tion.

We have thirteen different types of
colours for this purpose. Colours rep-
resent strengths of an action potential.
An action potential can be considered
as an electrical signal a neuron carries.
The essential colours are purple, dark
pink, red, orange, yellow and white.
The strength of an action potential is
increasing in this order of colours. For
example, purple segments represent the
segments that have no electric pulse.
White segments show the centre of cur-
rently moving electrical signal.

16

Figure 4: Olfactory Bulb with odour input

The time data is produced by NEU-
RON for every segment of dendrites
and granule cells, and somas but not
for apics and tufts. For this reason, fake
time data for apics and tufts are created.

At this point, the second important
problem was come out. We were not
able to assign a colour for each segment,
since complex objects, including many
of segments, are created. When a colour
is assigned for an object, for example
the dendrites of a mitral cell, all seg-
ments in the dendrites were becoming
the same colour.

For this reason, a type of texturiz-
ing called UV mapping is implemented.
UV mapping is considered as NxN ma-
trix, where N is texture size. It is the
representation of an object in 2D space.
Every element of the matrix is called as
a pixel. The pixels refer RGB values of
the segments. When changing a pixel
colour, the colour of a segment which is
referred by that pixel, is automatically
changing. With this approach, we suc-
ceeded to make colouring for the com-
plex objects as seen in Figure 4.

Animation

We setup the duration of the animation
200 minutes for the simulation lasting
40 seconds to show the electrical propa-
gation segment-by-segment.

During the animation, we faced with
speed problems since there are many
segments that are needed to be changed
their colours in the scene. For this rea-
son, a caching mechanism is imple-
mented to make the animation in a

faster way. The speed of transitions be-
tween frames became fast enough with
the cache.

Adding New Tools into Blender
GUI

The third and the last stage of the
project was implementing tools into
the user interface. We aim to give users
additional information about the ani-
mation of the neural network as well
as to provide them some flexibilities
to make managing the program easier.
For this purpose, a custom panel called
mitral panel is created in Blender that
enables users to select mitral cells they
wish to animate from the scene inter-
actively. Instead of animating all mitral
cells, users can select a small part of the
whole network which they find more
interesting.

Another feature that is added to the
user interface is to setup a curve that
shows the number of active mitral cells
by a frame id. This feature can help
users to select the time interval where
they want to focus without spending
time in other time intervals where no
active mitrals exist, in other words
where any mitral cell doesn’t have elec-
trical signal. In Figure 5, all somas are
rendered at first by default. Users can
select mitrals that they wish to render
by

Mitral Panel and Activity Curve interac-
tively selecting their somas. In addition
to that, if they do not have enough in-
formation about the network, they can

first play the animation and can see that
which mitrals are active in which frame
interval. The activity curve can also help
users in deciding which time interval a
number of mitral cells are more.

The report mainly contains techni-
cal background of the project. It can
be found more visual elements in the
video2 published on the web.

References
1 Migliore M., Cavarretta F., Hines ML., Shepherd GM.

(2014). Distributed organisation of a brain microcir-
cuit analysed by three-dimensional modelling: the ol-
factory bulb. Frontiers in Computational Neuroscience,
2014 Apr 29;8:50.

2 SummerofHPC. (2015, August 27). 1505 Cem Be-
nar, VisTool for olfactory bulb. Retrieved from: https:
//www.youtube.com/watch?v=bQoNSMgKQ-k

PRACE SoHPCVisTool for
olfactory bulb
visualisation tool for olfactory bulb
data

PRACE SoHPCSite
CINECA-Bologna, Italy

PRACE SoHPCAuthors
Cem Benar, [Ozyegin University,]
Turkey

PRACE SoHPCMentor
Michele Migliore, Institute of
Biophysics, CNR, Palermo, Italy Cem Benar

PRACE SoHPCContact
Francesca Delli, Ponti, CINECA-Bologna
Phone: +39 051 6171506
E-mail: f.delliponti@cineca.it

PRACE SoHPCSoftware applied
Python, Blender 2.75

PRACE SoHPCMore Information
www.pa.ibf.cnr.it/personale/migliore/

PRACE SoHPCAcknowledgement
Special thanks to Prof. Michele Migliore, Luigi Calori,
Francesca Delli Ponti, Silvano Imboden and
Massimiliano Guarrasi

PRACE SoHPCProject ID
1505

17

Exploring Mars Surface Using 3D
Visualisation of Post Processed MARSIS
Data

Visualising
Mars Pole
Leon Kocjančič

MARSIS is a radar carried by
spacecraft Mars Express, and
probing the interior of Mars to look for
ice and water. Using radargrams that
represent electromagnetic wave
scattering, the 3D surface and
subsurface layers of Mars’ South
Pole were visualised.

The reconstruction of the Mars
south pole surface and subsur-
face layers using MARSIS data
was divided into multiple con-

secutive steps. All of them are described
below in the correct order. The most
computationally demanding was the in-
terpolation of the missing data points in
a predefined matrix.

Where the data comes from

Mars Express is a spacecraft produced
by the European Space Agency. Its jour-
ney to the Red Planet began on 2 June,
2003 with the launch of a Soyuz-Fregat
Rocket. The satellite consists of many
components for essential working and
seven instruments to study all aspects
of Mars.

One of the instruments is called
MARSIS which is a low frequency, nadir-
looking pulse limited radar sounder and
altimeter. It operates at the altitudes of
up to 800 km above the Martian sur-
face for subsurface sounding and up to
1200 km for ionospheric sounding. The
instrument is working in 1 MHz wide
frequency bands centred at 1.8, 3.0, 4.0

and 5.0 MHz. It is transmitting a lin-
ear frequency modulated chirp signal
with its dipole antenna. The returned
signal is received on both the dipole and
secondary monopole antenna. The sec-
ondary monopole antenna is oriented
towards surface and it is used to reduce
signal clutter from the ground.

Both signals from the monopole and
the dipole antenna are converted to
range offset video signals before they
are processed by analogue into digital
converter. Then the data is formatted
by the on-board digital processor and
passed to telecommunication module
for transmission to Earth. The receiver
electronics has local oscillator, which
generates chirp signal, and dual chan-
nel receiver that down converts the re-
ceived echoes. Each receiver channel
has a bandpass filter, a mixer, an am-
plifier chain, low-pass filtering, and an
analogue to digital converter. The re-
ceiver and digital electronics are housed
together within a spacecraft. The trans-
mitter electronics is housed in a sepa-
rate box within satellite. The main trans-
mitter and receiver antenna is a deploy-
able dipole which consists of two 20 m

elements. The extra gain towards the
Martian surface is achieved through on-
board processing.

Figure 1: Image of Mars Express probing
the Martian terrain.

The second monopole antenna is 7
m long and it is arranged in that way,
so that its gain null is in the direction
of Martial surface. Both antennas are
of novel design and consist of a fold-
ing composite tube with two wires for
signal transmission. The antennas were

18

deployed by pyrotechnic release mecha-
nism.

MARSIS performed subsurface
sounding in the highly eccentric or-
bit selected for Mars Express, which
corresponds to about 26 minutes of
operation. This is equal to about 100
degrees of arc on the Martian surface
for each satellite pass. During the mis-
sion extensive coverage at all latitudes
was possible, because MARSIS supports
dayside and night side operations. Per-
formance of the ground penetrating
radar is best during the night, which
is when solar zenith angle is above 80
degrees. In this case ionosphere plasma
frequency drops significantly and lower
frequency modes of operation can be
used, which can penetrate deeper in
the ground. If lower frequencies are
obstructed by ionosphere, higher fre-
quency modes of operation are used
and an on-board computer is constantly
switching between them.

The primary objective of MARSIS is
to map the distribution of water, both
liquid and solid, in the upper portions
of the crust of Mars. These discoveries
will be very important for hydrological,
geologic, climatic, and possible biologic
research. The experiment has also three
secondary objectives, which are subsur-
face geologic probing, surface charac-
terisations, and ionosphere sounding.

Figure 2: First 50 satellite tracks that were
used for surface reconstruction.

Reading satellite data

Our first step incorporated reading the
data that the radar module on Mars
Express generated during its opera-
tion. Each satellite orbit around Mars
is tracked and overall 38 parameters
describe the various states of MARSIS
module. All the parameters are stored

in a well-organised binary file. Our col-
lection of data consists of around 3000
satellite tracks that were passing over
Mars South Pole.

The parameters that we were inter-
ested in were recordings of reflected
radar pulses, as well as, longitude and
latitude at which recordings were done.
Radar is constantly scanning at two dif-
ferent frequencies and with three dif-
ferent filtered views at certain location.
For our visualisation we have chosen
first frequency, which is also the highest,
in order to minimise distortion effects
of ionosphere to the propagating signal.
Additionally, we have used only the mid-
dle filtered view that contained visually
the best samples of data.

During the importing routine of the
data to our algorithm, we first checked
if the gathered data lies south of the lati-
tude of -75◦. For all the coordinates that
were in our interested field of view we
applied the coordinate system transfor-
mation from spherical to Cartesian coor-
dinate system. In this way we ensured
simpler representation of all the data
in the matrix. Additionally, it turned
out that also interpolation was easier
to implement in comparison to the case
with polar coordinate system. At the
end the gathered data covered a square
surface of 1700 km by 1700 km over
the Mars South Pole. Data was actu-
ally structured from radar echoes along
satellite path, which were combined to
radargram. However, the region closest
to the pole is not covered since satellite
orbits do not pass this area.

Figure 3: Example of a radargram that com-
bines echoes along satellite path.

Right at the beginning we had to
overcome first major technical difficulty.
We predicted that our sequential code
for data reading would run for more
than 30 hours, which was more than
our session allowed. At this stage we
decided to parallelise the code to use
all the available processing power at
one computing node, which consisted
of 20 processing cores. Since all our
code was implemented in Python we
decided to use multiprocessing library

to parallelise reading routine. In this
case we defined a pool of workers and
each of them received only a part of
the data to process. The order of cal-
culation was not important that is why
no synchronisation between processors
was needed. The parallelised reading
routine finished 10 times faster than se-
quential one.

DATA WITH ALL

SATELLITE TRACKS

CPU

#1

CPU

#2

CPU

#n

DATA SUBDOMAINS

FOR EACH PROCESSOR

PARALLEL INSTRUCTIONS

FOR EACH PROCESSOR

Figure 4: Schematics showing initial data
decomposition and parallel instructions for
multiple processors.

Interpolating missing data

Once all the data was imported we
had to take care of all the missing val-
ues that were left in the matrix. The
appropriate interpolation method was
needed at this point. For testing pur-
poses we used only 50 satellite tracks
out of 3000 and immediately found out
that the Scipy’s barycentric interpola-
tion method does not fulfil our needs.

Figure 5: Comparison between barycentric
interpolation method on top and RBF inter-
polation below.

One can see in the figure above that
this interpolation method does not pro-

19

Figure on the left is xy-plane cut of the 3D model, in upper right corner is the result of 3D Gaussian filtering and below is the xz-plane cut
where subsurface layers can be seen.

duce a smooth surface, which is ex-
pected to be seen after the process.
Since the final results were not as ex-
pected we had to find better interpo-
lation method. Fortunately, there ex-
ists more suitable method which is fre-
quently used in topographical applica-
tions and is called radial basis function
interpolation or RBF interpolation.

Using this method the interpolated
result is actually the sum of the ra-
dial basis functions that are real-valued
and depend only on the distance from
the origin point. With the choice of ap-
propriate function we can affect the
smoothness of the end result. That is
why the Gaussian function was used.
During implementation of interpolating
algorithm we found that the Numpy’s
RBF interpolation function was too slow
so we have decided to use the algorithm
in Alglib library.

The results were far better since this
interpolation technique was also acting
like a smoothing filter. With fine tuning
of interpolation parameters that affect
interpolation radius of each function
we were able to achieve good results.
For more time efficient calculation we
used the same parallelisation technique
as in case of data importing. This time
the data was divided among z-planes
and each process was interpolating its
own plane. The interpolation lasted for
3 hours and the final result was 1.5 GB
big matrix with surface data.

Data filtering

At this stage the interpolated data was
not in the final form because the origi-

nal data, gathered by the satellite, was
quite noisy. It is quite an art to apply nu-
merous digital filtering and still obtain
nice realistic pictures of the recorded
terrain. First filter that we implemented
was cancelling negative values, which
resulted at some specific points during
the interpolation. When all values that
are represented reflected power in data
are positive we applied a filter for dis-
carding data points with values below
the value of average noise level. The
filtering was done in the frequency do-
main using fast Fourier transform.

Our data points obtained from the
satellite tracks were not evenly dis-
tributed and not perfectly matched
along z-axis. This is why we had to intro-
duce further filtering in order to smooth
the image and better visualise the char-
acteristics of the terrain. We constructed
a three dimensional Gaussian filtering
algorithm and applied it to the whole
three dimensional data set. The filter
had the range of 12 pixels in x and y
direction and 5 pixels in z dimension.
In this way we were able to produce
good surface smoothing without losing
the details of the subsurface layers in
z-direction.

Final step

With all the data processed and filtered
we could start to import it into Para
View which is used for scientific visu-
alisation. In this environment we were
able to use some additional filters for
cropping our data and removing cen-
tral part of the region, which contained
no real data. Then colouring of all the

echo values contained in a matrix was
done. We tried to select such colour
scale that exposed also subsurface lay-
ers that were responsible for electro-
magnetic wave reflections. Finally fly-by
movies and live cross sections were pro-
duced using ParaView’s animation tools.

Conclusion

At the end all algorithms were success-
fully tuned in order to produce expected
results. The library with used functions
was created and will be used for fur-
ther investigations of data produced by
MARSIS module on Mars Express satel-
lite.
PRACE SoHPCProject Title
Exploring Mars Surface – 3D
Visualization of post processed
MARSIS data

PRACE SoHPCSite
CINECA, Italy

PRACE SoHPCAuthors
Leon Kocjančič, University of
Ljubljana, Slovenia

PRACE SoHPCMentors
Massimiliano Guarrasi, CINECA, Italy
Roberto Orosei, INAF, Italy Leon Kocjančič photo

PRACE SoHPCContact
Massimiliano Guarrasi, CINECA
Phone: +39 051 6171 560
E-mail: m.guarrasi@cineca.it

PRACE SoHPCSoftware applied
Python, ParaView

PRACE SoHPCMore Information
sci.esa.int/mars-express

PRACE SoHPCAcknowledgement
Author would like to thank both mentors and all
supporting staff at CINECA.

PRACE SoHPCProject ID
1506

20

Investigating the parallel performance of the
Fluctuating Finite Element Analysis tool

A closer look
at FFEA
Jana Boltersdorf

FFEA is a tool for simulating proteins
and their environments which is
currently limited to shared-memory
systems. Understanding and
improving its parallel performance will
be crucial for FFEA’s success.

FFEA has a lot of potential for
simulating proteins at a scale
currently not accessible by most
simulation techniques. However,

it is far too slow to be used for realis-
tic, complex simulations even though
an OpenMP parallelisation is already
implemented. This project focused on
gathering data about FFEA’s parallel per-
formance and how it might be improved
in the future.

Introduction

Simulations have become an important
aspect of scientific research, especially
in fields where traditional experiments
and observation are difficult to realise.
But sometimes, even simulations are
limited in scale: Large protein com-
plexes are too computationally expen-
sive for atomistic molecular dynamics
but too small for conventional macro-
scopic simulation techniques to be
applicable. FFEA aims to close this gap
by using a Finite Element algorithm
that has been generalised to include
thermal fluctuations.

FFEA has the potential to open up
new regimes of soft matter physics
and molecular biology to computer
simulation and become a standard
tool in its field - but it needs to over-

come its current technical limitations
first! Right now, the code is limited
to shared-memory systems which al-
lows only small-scale simulations. My
Summer of HPC project is to study
and eventually improve the parallel
performance of FFEA to enable the
simulation of many proteins on a short
timescale. This will require the usage
of distributed-memory systems such as
EPCC’s ARCHER and a MPI parallelisa-
tion in addition to the current OpenMP
approaches.

A simple simulation with many proteins
blobs but few protein segment nodes per
blob visualised by the old viewer.

The initial outline of my project
sounded deceivingly straight-forward.
Understand the basics of FFEA. Look
for opportunities to parallelise. Use that
information to design a simple MPI
parallelisation. Implement that paral-
lelisation. Test it. It was an ambitious
goal even when assuming that every-

thing sticks to the plan. Naturally, things
didn’t things didn’t stick to the plan and
many short delays accumulated. This is
a very common thing in HPC as well
as in science in general. The focus of-
ten shifts as you learn more about your
project and its difficulties. In this way, it
was a very valuable experience.
Nevertheless, my work here at EPCC
helped to understand FFEA and its per-
formance better. The gathered informa-
tion will be used in the future as a part
of a project spanning multiple years to
improve FFEA’s performance.

Methods

The first step when trying to improve
a program written by someone else is
getting familiar with it, trying to un-
derstand how it works and in general
gathering as much information as pos-
sible. It’s simple - you can’t improve
something you don’t understand.

I started by running the test script
provided by the Computational Bio-
physics group of the University of Leeds,
then read into the actual source code.
Especially the classes World.cpp –
representing the whole simulated cel-
lular environment – and Blob.cpp –
representing one protein in this envi-
ronment – were of interest. These tasks

21

Left: Runtimes and speedup of the initial test with two protein blobs, X protein segment nodes each and simulated Van der Waals
interactions. The simulation was far too simplistic for the parallelisation to have a significant effect.

Right: Run times and speedup of the simplified Fibrin test with four protein blobs, 2253 protein segment nodes each and no
simulated Van der Waals interactions. The effect of the parallelisation is now visible but even for a small number of threads still far below
the ideal speedup.

provided me with a basic understanding
how FFEA represents the environment
it simulates and what results can be
expected for very simple simulations.
But since FFEA already had an OpenMP
parallelisation, I was also interested
in its current parallel performance.
There were two different parallelisation
strategies available: within-blob paral-
lelisation and per-blob parallelisation.
Within-blob parallelisation – which uses
all available threads for each instance
of Blob.cpp – is the default paralleli-
sation. It can be switched to per-blob
parallelisation – assigning one thread
to each instance of Blob.cpp to han-
dle multiple instances simultaneously
– using CMake. As there were several
problems with CMake that delayed
my progress, I resorted to editing the
Makefile manually. While this wasn’t
the optimal way of changing the par-

allelisation strategy, it allowed me to
re-compile the code using the per-blob
parallelisation.

To measure the performance with both
parallelisation strategies, I ran many
tests on my local machine and compiled
the measured runtime. At this point,
I noticed that the simple simulations
used had a fundamental drawback:
They were too short for the parallelisa-
tion to have any effect.
A bigger, more complex test was needed
and provided by the Computational Bio-
physics group... Just to have another
problem to emerge: It was far too big
and complex. After three days, the
simulation still hadn’t finished and re-
member... I had to run it several times
to get the required data about the par-
allel performance. The solution was
simple: Edit the input file and decrease

the simulation size. However, it took
some time to find a good balance be-
tween runtime and complexity of the
simulation. The restart option – re-
using data from previous calculations –
proved to be particularly challenging as
Van der Waals interactions could only
be calculated with this feature. On the
other hand, getting reliable runtimes re-
quired the simulations to do the whole
simulation rather than re-using data. To
resolve this dilemma, I decided against
the Van der Waals interactions at this
stage. It made the simulation less realis-
tic but easier to handle compared to the
necessity to manually delete trajectory
data after each successful run. I now
was able to compare the runtimes and
calculate the speedup of both paralleli-
sation strategies.

The next step was supposed to be

22

Runtimes and speedup of the Dynein test with two protein blobs, 1605 protein segment nodes each and no simulated Van der Waals
interactions. The local machine and ARC2 runtimes were measured by the Computational Biophysics group in Leeds. Note that there are
only two values for the per-blob parallelisation strategy as the other runs aborted because of inverted elements.

some more sophisticated profiling than
just comparing the overall effect of the
different parallelisation strategies on
the runtime. This also made the move
from a local machine to ARCHER, the
UK’s national supercomputing service,
necessary. It didn’t happen as smoothly
as I’d have wished but in the end, I
was able to gather more data about
FFEA’s parallel performance using an-
other example and compare it to data
previously collected by me as well as
the Computational Biophysics group.
Problems with running SCALASCA – a
popular profiling tool – on ARCHER
as well as the limited time-frame of
the project prevented me from actually
starting to profile the code though.

Results

The collected data suggests that both
parallelisation strategies currently used
in FFEA only use a fraction of the poten-
tial parallel performance. Due to serial
sections of the code, very few programs
scale perfectly but this only becomes ob-
vious for large numbers of computation
cores. In the case of FFEA, the parallel
performance is especially limited: In
many cases, the maximum speedup is
achieved with just four cores. That’s
what an average computer nowadays
has.
The differences between the paralleli-
sation strategies are small, both show
the same tendencies regarding their
behaviour. This behaviour has also been
observed on all systems used for calcu-
lations (two different local machines,
ARCHER, ARC2) by both the Computa-

tional Biopysics group and the EPCC.

For environments with just one com-
plex simulated protein, the within-blob
parallelisation shows better results. On
the other hand, for almost all systems
with more than one simulated protein,
the per-blob parallelisation strategy
performs better.
In the last plot, you might have noticed
that there are only two values for the
per-blob parallelisation. The other runs
were aborted due to an inverted ele-
ment error. A closer investigation of the
cause showed that they were caused by
random thermal fluctuation and could
have happened to any other run as well.

Discussion

Although the members of the Compu-
tational Biophysics group considered
FFEA’s parallel performance for simu-
lations without Van der Waals interac-
tions okay, there is still a lot of potential
to be unlocked. Right now, the code
doesn’t even come close to the limits of
shared-memory systems. This should be
improved before heading to distributed-
memory systems.
A necessary step will be the profiling
of FFEA with a tool such as SCALSCA
or CrayPAT. Hopefully, this will provide
more insights into the reasons of the
bad parallel performance I observed...
And therefore also hint at parts that
could be improved.

A hybrid OpenMP/MPI parallelisation
will be needed for FFEA to unlock its
full potential in the future.

In the short term, a MPI parallelisa-
tion modelled after the current per-
blob parallelisation seems promising
as it requires only little communica-
tion between the different processes.
A long-term goal will be the parallel
calculation of the Van der Waals inter-
actions. Right now, they cause a severe
slow-down but they won’t be easy to
parallelise. To establish an excellent
parallel performance in the future, this
difficulty has to be overcome though.

Acknowledgements

Albert Solernou, Ben Hanson and Sarah
Harris from the Computational Bio-
physics Group at the University of Leeds
created FFEA and provided me with
many explanations about it as well as
examples to measure the code’s perfor-
mance.

PRACE SoHPCProject Title
Implementing MPI parallelisation in
the Fluctuating Finite Element
Analysis (FFEA) tool

PRACE SoHPCSite
EPCC, UK

PRACE SoHPCAuthors
Jana Boltersdorf, FH Aachen,
Germany

PRACE SoHPCMentors
Neelofer Banglawala, EPCC, UK
Toni Collis, EPCC, UK Jana Boltersdorf

PRACE SoHPCContact
Jana Boltersdorf
Phone: +49 157 88062834
E-mail: j.l.boltersdorf@gmail.com

PRACE SoHPCAcknowledgement
Albert Solernou, Ben Hanson & Sarah Harris,
Computational Biophysics Group, University of Leeds

PRACE SoHPCProject ID
1507

23

Developing the user interface for
the Fluctuating Finite Element Analysis
(FFEA) tool

Visualisation
of proteins
Ondřej Vysocký

Fluctuating Finite Element Analysis is
a method for simulating proteins.
ParaView is a visualisation tool with
which it is easy to observe and
manipulate the results of the
simulation.

Fhe Fluctuating Finite Element
Analysis tool for soft macro-
molecules simulation needs
a fast and reliable visualisation

tool, which allows visualising simula-
tions results from many points of view.

The widely used visualisation tool
ParaView provides scientists with
an easy way to visualise data. It also
allows scientists to interact with data.

Introduction

The Computational Biophysics group
at the University of Leeds would like
to model the dynamics of proteins. Usu-
ally protein simulations, such as fibrin
aggregation, are typically at the atomic
level, making them so detailed that the
computational expense of the calcula-
tions and simulations becomes unfea-
sible. As a solution to this problem,
the Computational Biophysics Group
at Leeds has developed a coarse-grained
model for proteins using finite element
analysis that includes thermal fluctua-
tions. This is known as the FFEA (Fluc-
tuating Finite Element Analysis) tool.

This report explains the work car-
ried out to improve the visualisation in-

terface of FFEA to enable the handling
of the large data sets that are typically
produced by the FFEA simulations.

Methods

The initial idea of the project was to en-
hance the existing visualisation inter-
face, a Python viewer is written in TKin-
ter, which is Python’s de-facto standard
GUI. This viewer could only visualise
basic features (such as protein struc-
ture or surface) and its performance
was poor. It also could not handle vi-
sualising large scientific datasets.

PID USER PRI
27543 v1ovysoc 24
NI VIRT RES
4 6583m 6.1g
SHR S CPU%
3968 R 75.8
MEM% TIME+ Comand
78.7 27:48.24 python

Table 1: htop analyse of previous visualisa-
tion tool

In table 1 (linux utility htop output)
we can see the CPU and memory con-

sumption of the old viewer when visu-
alising simple simulation data. Larger
datasets are almost impossible to visu-
alise with this viewer.

The best idea to solve the problem
of slow visualisation was to replace the
viewer with a widely used visualisa-
tion tool. We chose the well-known Par-
aView, which is an open-source, multi-
platform data analysis and visualisation
application. To visualise the simulation
data on ParaView it needed to be con-
verted to a format recognised by Par-
aView. I wrote a python script to trans-
form the simulation output data to the
VTK (The Visualisation Toolkit) file for-
mat, which is a popular file format sup-
ported by Paraview.

A VTK file contains positions of each
point of the structure, connections
of the points to the cells (there are many
types of cell structures). Also each point
and each cell may represent a specific
value, which can be visualised with dif-
ferent colours. Values might be scalars
and also vectors, which allow us to vi-
sualise not only intensity but also the
direction of the measured variable.

To be able to convert the simula-
tion output data to a VTK file format
it was necessary to understand the con-

24

PDB-VTK mapping in images. Right column figures: top figure shows the atomic structure of the protein from a PDB file, bottom figure
shows the VTK representation of the same protein. In the left picture are PDB and VTK versions of the protein superimposed.

tent of the simulation’s input and output
files as well as the VTK file format. Ap-
plication of advanced visualisation fea-
tures required detailed understanding
of ParaView’s built-in functions.

Results

The main result of this work has been
to make it easier to visualise simulation
output data, especially large data sets,
using a powerful and widely-used visu-
alisation tool.

Result of the simulation is not
only one state of the mesh, but series
of states, each for one time-step. For
scientists it is important to have an op-
portunity to watch the evolution of the
simulation in consequent steps.

Now we are able to view the pro-
tein trajectories as ParaView animations,
which we may manipulate to, for exam-
ple, change the camera position. It is
also possible make a video out of such
animations. ParaView can create a video
directly or produce a sequence of im-
ages, which we can then transform into
video using software such as FFmpeg
(widely used, freely available software).

New visualisation features are now
possible using ParaView’s built-in func-
tions. For example, we may set a thresh-

old for a specific variable and se-
lect points or cells we are interested
in within that threshold.

Proteins we want to simulate are
often known at the atomic level and
stored in Protein Data Bank (PDB)
files. It means that we have three-
dimensional structures of molecules
of protein in one file and also mesh
surface and basic structure in another
file (which is the product of the FFEA
tool). In ParaView we may visualise
both of them and see atomic structure
superimposed to the mesh representa-
tion. With the Python convert script it
is also possible to see atomic structure
superimposed on the mesh FFEA rep-
resentation of the same protein, which
give us very important view at the sim-
ulation results with large amount of in-
formation in one image. This was not
possible in the old viewer.

All features settings are documented
in a detailed tutorial.

Conclusion

By using ParaView, we may now only vi-
sualise all the features that were present
in the old Python visualisation tool, we
can additionally visualise new features
(most of all PDB-VTK mapping), mak-

ing it easier to understand the simula-
tion output data. It is now also possible
to make a video of the protein trajecto-
ries, making it easier to present simula-
tion results to the general public.

PRACE SoHPCProject Title
Developing the user interface for the
Fluctuating Finite Element Analysis
(FFEA) tool

PRACE SoHPCSite
Edinburgh Parallel Computing Centre
at The University of Edinburgh,
Scotland

PRACE SoHPCAuthors
Ondřej Vysocký,
Brno University of Technology,
Czech Republic

Ondřej Vysocký

PRACE SoHPCMentors
Neelofer Banglawala, EPCC, Scotland
Toni Collis, EPCC, Scotland

PRACE SoHPCContact
Catherine Inglis, EPCC
Phone: +44 131 651 3578
E-mail: cafi@epcc.ed.ac.uk

PRACE SoHPCSoftware applied
ParaView, VTK, python, FFmpeg

PRACE SoHPCProjectID
1508

25

An “HPC Cluster Challenge” app for public
outreach

ARCHER
Challenge
Anna Chantzoplaki

The aim of the application is to
promote High Performance
Computing and its importance on
solving computational intensive
problems to the public outreach. The
users will be able to design their own
Supercomputer cluster, by picking
and assembling predetermined
component parts, while working
within a fixed virtual budget.

ARCHER is the name of the UK
National Supercomputing Ser-
vice, housed at the University
of Edinburgh’s Advanced Com-

puting Facility. That inspired the ini-
tial idea of creating an application that
could simulate a supercomputer’s be-
haviour and which could be freely avail-
able to download.

The aim of the application is to
promote High Performance Computing
at the public outreach and its impor-
tance on solving computationally inten-
sive problems. The final product will
be a mobile/web application, specifi-
cally designed to be used at science fairs,
schools, and other outreach events and
it could be also used as part of PRACE
outreach events.

The technologies that were used are
the HTML language, the CSS for the
styling of the page and the Javascript
for the dynamic handling of the events
of the page.

Methods

More specifically concerning the tech-
nologies that were used, the application
is developed based on the Bootstrap
framework, one of the most popular
HTML, CSS and Javascript frameworks
for developing responsive applications.
The term responsive refers to the scaling
of the application on different screen
sizes. The Bootstrap framework scales
the application easily and efficiently.

In addition to that, the Jquery li-
brary was used. JQuery is a javascript
library that allows writing simple code,
to have easy access on the elements of
the page in order to modify them dy-
namically; it supports extensive chain-
ing, and has many more features which
make it powerful.

Moreover, the project focused on the
mobile-first implementation as a default
layer to build on, according to the fun-
damental concepts of modern web de-
signing.

Terminology

In this point it would be useful to de-
scribe some very basic terminology that
is used in High Performance Comput-
ing (HPC) systems, since it is also being
used by the application.

A node is like a simple computer. It
consists of a motherboard, CPUs and
accelerators (GPUs). The nodes of a su-
percomputer are placed into cabinets,
which also contain the networking and
cooling systems. The term job is re-
ferring to HPC programs that are sub-
mitted to nodes and need huge com-
putational power in order to be exe-
cuted. These jobs usually run on huge
data sets in order to solve large prob-
lems in science, engineering, or busi-
ness. Some examples include simulation
of earth’s climate, extreme weather fore-
casting, molecular dynamics simulation
and many more. Finally, performance of
a supercomputer is measured in float-
ing point operations per second or just
FLOPS.

26

Results

The final product is a game for phones,
tablets and desktops. The game has four
levels (Local, City, Regional, National)
each referring to an HPC centre. The
player starts at the Local level and with

a predetermined amount of money. A
genius guy, the Technical Advisor, will
pop up from time to time to give advice
to users on which step to follow next. In
the pursuit of simplicity, there are four
available cabinets and each cabinet fits
up to three nodes. There is also, a stack

with queued HPC jobs. The target is to
run as many jobs as possible. The more
jobs the player runs, the more money
the player earns. An effect of money
coming out of cabinets is displayed on
Figure 2a.

(a) Custom node wizard, with interactive motherboard. (b) On final step the components are placed on top of motherboard.

Figure 1: Node designer wizard.

(a) Left node: failure, need to be fixed.
Middle node: a finished job yeilds profit.

(b) Fix the node by clicking on the but-
ton.

Figure 2: Different aspects of the “ARCHER Challengge” app.

The player will be able to select be-
tween preconfigured nodes, or make
a custom one, as it is shown on Fig-
ures 1a, 1b. In the case of a custom
node, a wizard will guide the player
through the process of picking compo-
nents and assembling a node. There will
be also the option to upgrade a node or
even delete it.

Since node failures on a cluster are
more than common and expected, the
game incorporates it in a higher level
(City level). Smoke will start coming out
of cabinets, Figure 2a, and the Technical
adviser will prompt the player to select
the cabinet and fix it, as shown on Fig-
ure 2b. By fixing an amount of money
will be subtracted from the existing bud-
get. As the player passes on higher lev-
els, the pace of the game becomes faster.
More nodes fail and more jobs run into
the queue. Be careful, though. If the
stack overflows, the game is over.

Discussion & Conclusion

The project aims to give people an in-
sight into the different components that
go into a supercomputer. Also, it is a
simple way for people to get familiar
with high performance computing and
to understand the impact it has on real-
world implementations.

It is worth mentioning that the first
version of the game was already pre-
sented to a school in Edinburgh in order
to get a feedback on how the applica-
tion feels. The reactions were more than
positive and the users showed great
interest in learning more about HPC.
That was the first of the many outreach
events that the supercomputing applica-
tion will be demonstrated and used by
the public. Finally, the ARCHER website
will host the application and people will
be able to play with it on-line or down-
load it. The expectations are that the
“ARCHER Challenge” will become viral.

PRACE SoHPCProject Title
An “HPC Cluster Challenge” app for
public outreach

PRACE SoHPCSite
Edinburgh Parallel Computing Centre,
University of Edinburgh, UK

PRACE SoHPCAuthors
Anna Chantzoplaki,
University of Macedonia, Greece

PRACE SoHPCMentors
Nick Brown, EPCC, UK
Amy Krause, EPCC, UK Anna Chantzoplaki

PRACE SoHPCContact
Catherine, Inglis, EPCC
Phone: +44 (0) 131 651 3578
E-mail: c.inglis@epcc.ed.ac.uk

PRACE SoHPCSoftware applied
HTML, CSS, Javascript

PRACE SoHPCAcknowledgement
I would like to thank my mentors Nick and Amy, and
my colleague Emmanouil Farsarakis for all their help
during this summer.

PRACE SoHPCProject ID
1509

27

Various Weather Regimes during
Continuous Climate Simulations

Climate is
unstable
Ondřej Ticháček

Climate is unstable during a
continuous change of its boundary
conditions. The change of one
parameter can reveal several
possible climate regimes.

Climate and weather systems
are one of the most important
processes to study, however
given their complexity also one

of the most difficult to understand. One
cannot possibly figure out all the rela-
tions and dependencies between all of
the numerous factors involved. There
is no universal formula to tell us what
the weather will be tomorrow. Further-
more, from our perspective, weather is
a stochastic process. In other words, even
if we knew such formula, we could not
be sure about our prediction.

While weather is a stochastic pro-
cess, in a large-scale, long-time aver-
aged sense, climate is primarily a deter-
ministic function of its boundary condi-
tions, and responds to changes in those
boundary conditions in sometimes dra-
matic ways.

The goal of this project was not to
create a better or more advanced cli-
mate model but rather to show inter-
esting dependencies between the model
output, i.e. the global characteristics of
the climate, and certain input parame-
ters all-together defining the boundary
conditions. These parameters include
the planet radius, gravity, rotation rate
and others.

While the changes of these variables
are certainly impractical, they should
serve to show how the climate we have
is only one from a wide spectrum of

possible climate regimes.
The simulation is driven by the dy-

namical core of a general circulation
model (GCM) of the atmosphere, specif-
ically the MITgcm (mitgcm.org). This
is a large open source project being in
constant development for almost two
decades. It allows the user to choose
from various predefined configurations
or implement of their own. For our
project, we used the Held–Suarez config-
uration,1 which is now a classic bench-
mark test for climate models. This setup
ensures that the simulation can be inte-
grated forward many years without the
need to use too extensive resources. In
principle, the use of a more advanced
(and more computationally demanding)
model is just a matter of configuration.

The ultimate goal was to develop a
package for the MITgcm newly imple-
menting the capability to change any
physical configuration parameters con-
tinuously during the simulation, thus
allowing new class of simulations. Addi-
tional work was required in setting up
the model on the supercomputer fionn
at Irish Centre for High-End Computing
(ICHEC.ie) and in implementing means
of visualisation of the model output.

The model

All general circulation models models
attempt to solve representations of New-

ton’s equations of motion (e.g., the
Navier–Stokes equations) everywhere
in a fluid that is varying continuously
in space and time. The continuous fluid
must be discretized in both space and
time, and the differential equations re-
placed with finite-difference algebraic
approximations.

Such approximations inevitably in-
troduce errors (e.g., round-off errors),
but various techniques have been de-
veloped to minimise and control such
errors. The key to minimising the er-
rors is a good choice of the discretisa-
tion. Usually, a general rule applies, that
smaller grid-size requires a smaller time-
step for numerical stability. Therefore,
to ensure numerical stability a fine bal-
ance between high enough resolution
and low enough computational require-
ments must be found. With low resolu-
tion, i.e. if two nearest points are too far
apart (either in time or space domain),
the error of the approximation is likely
to be high, while high resolution may
be too computationally demanding.

It should be noted, that actual res-
olution is very relative. For example,
the distance between two consecutive
time points, commonly called the time
step, in a simulation of the atmosphere
can be as high as couple of minutes,
whereas in an atomistic simulation of
a molecule, the time step is in order of
femtoseconds, that is 10−15 sec.

28

In the field of climate and weather
modelling, the discretisation in the
space domain is the cause of more is-
sues than the time discretisation and is
therefore more interesting to study. The
most intuitive way of dividing a space
domain is, either 2D or 3D, rectangu-
lar grid. This grid has many benefits
originating in the same-size steps be-
tween grid points and in the right angle
between them. However, the rectangu-
lar discretisation is not possible with a
spherical object, such as the Earth.

Of course, a possible solution to this
problem would be to project the Earth
on a rectangular plane – as it is com-
monly done in maps – the so-called
mercator projection, but this has other
more serious problems. For example,
in mercator projection, Greenland and
Africa are approximately the same size,
whereas Africa is in reality 14 times
larger. The real solution is therefore not
to project the Earth on a rectangular
grid, but otherwise, to project a grid
onto the Earth, even if the grid is not
regular nor rectangular.

There are several options for the
sphere discretisation, the MITgcm im-
plements two of them: the spec-
tral model using the regular latitude-
longitude (lat-lon) grid and the more
recent cubed sphere (CS) grid model.
Each of the approaches has it’s benefits
and drawbacks, but in terms of high per-
formance computing, the cubed sphere
model is usually deemed more ad-
vanced. The difference between cubed
sphere and lat-lon grid is illustrated in
the figure 1.

The first disadvantage of the lat-lon
grid is a numerical one. The longitude-
wise spacing between the grid points
at the poles is much smaller than at
the equator, which may cause, as was
discussed earlier, numerical stability is-
sues or extensive computational require-
ments.

The second problem arises in terms
of high performance computing. Some-
times it may be impossible to perform
the simulation on a single computer;
this is typically the case when the re-
quirements for the spatial or time res-
olution are high or when the model is
complicated and contains many depen-
dent equations. The only solution for
this problem is parallelism, i.e. dividing
of the task into smaller sub-tasks, and
solving these sub-tasks on multiple pro-
cessors or computers at the same time.

This is not possible in the time domain
as every single simulation time step is
dependent on the time steps before.

Figure 1: The regular latitude-longitude
grid and the cubed sphere grid. Credit: Paul
Ullrich

In the space domain, on the other
hand, only few neighbouring grid points
are effectively dependent at every single
time iteration1 and therefore, the spa-
tial grid can be divided into parts, each
of them assigned to a different task. Of
course, the grid points at the borders
are still dependent and the task must
communicate with each other, which
is mostly the stumbling-block of each
parallel application. And here, finally,
comes the origin of the second problem
with the spectral model – communica-
tion.

The spectral model represents all
variables with a “spectrum” of waves,
and does all linear operations in wave-
space, since derivatives in wave-space
are exact. However, non-linear opera-
tions are done in grid-space. So spec-
tral models must transform from wave
to grid space and back again every
time-step, and such transforms require
data transposes which invariably in-
volve a so-called all-to-all communica-
tion, which is the most computationally
expensive type of communication. The

cubed-sphere, on the other hand, is a
purely grid-point model, so there is no
need to transform to wave-space, and
so only “nearest-neighbour” MPI com-
munication is needed.

The drawback is that the cubed-
sphere model sacrifices some accuracy
in its derivatives, since it uses grid-point
finite-differencing instead of the exact
differentiation that is possible within
the spectral model.

My work

Setting up the simulation
The MITgcm is a huge software pack-
age. Apart from the core, it includes
several packages implementing differ-
ent I/O capabilities, spatial domain dis-
cretisations, external forcing configura-
tions, and others. My job for was to
get familiar with the model and its ca-
pabilities and select a basic configura-
tion for future simulations. Based on the
reasons discussed above, I selected the
cubed sphere discretisation, 64×64 grid
points per face. The cubed sphere con-
figuration requires so-called grid files,
describing the position and orientation
of each point. These files are not in-
cluded and must be generated using a
provided MATLAB program.

The MITgcm employs both MPI
and OpenMP mapping processes and
threads to so-called tiles. Given that our
goal was to run the MITgcm on a single
fionn node, I configured spatial domain
decomposition to tiles of a size 32×32,
4 tiles per face, 6 faces in cube result-
ing in 24 MPI processes matching the
24 physical cores of a fionn node. The
non-default 64×64 CS configuration re-
quired to tweak domain decomposition
overlap, time-stepping and other numer-
ical parameters to ensure numerical sta-
bility.

Since the atmosphere is relatively
well “stratified”, however (i.e., hydro-
static balance means it is much more
difficult to displace air vertically than
horizontally), much higher resolution
is needed in the horizontal directions
than in the vertical. For the horizontal
resolution, 20 equidistant levels were
selected.

The mnc package
Appart from the standard fortran file
I/O, the MITgcm can use the NetCDF
file format, a self-describing file for-

1Through the whole simulation time span, all grid points are essentially dependent.

29

mat commonly used for multidimen-
sional array oriented scientific data.
This functionality is provided by a pack-
age named mnc. The outputs of the
model, e.g. the fields of temperature,
wind velocity, etc., are saved into a com-
mon file, while other statistics such as
time-averaged fields, variables describ-
ing the grid, debugging and monitor-
ing outputs and others are each writ-
ten in separate files. There is no prob-
lem with the mnc package, when run-
ning the model on a desktop computer,
however on supercomputers, which are
often using very different file systems,
some issues may arise.

Similarly to the yet mentioned prob-
lem with communication between dif-
ferent sub-processes of an application,
the problem with the file system on su-
percomputer is file I/O. In principle, the
computational node, i.e. the “proces-
sor” of a supercomputer may be very
far away from the storage, i.e. the “hard
disk”. The link between them may be
very fast for long sequential transfers
of large files, but randomly accessing
files may be slowed significantly by the
latency. Therefore, the computational
nodes usually have a fast small storage
placed physically at the node’s location
and the applications are required to use
this so-called scratch storage during the
computation, and copy the results to the
main storage after the whole computa-
tion finishes.

An application can sometimes ben-
efit even more from using the shared
memory (/dev/shm) storage, which
is basically a storage inside RAM. The
speed of accessing RAM is of course or-
ders of magnitude faster than conven-
tional hard drive, however, their sizes
are also orders of magnitude apart. On
the fionn supercomputer, RAM of each
computational node is 64 GB. This is
not enough for storing a long high res-
olution simulation of MITgcm, but still
can be a beneficial.

As a part of my project, I imple-
mented two methods of dealing with
this problem. The first solution was to
divide the simulation into sequential
parts, each storing the results in the
shared memory and copying them to
the main storage between the parts. The
second solution required a modification
to the mnc package – to allow each file
either to be temporarily stored in the
shared memory and copied after the
end of the simulation or to be continu-
ously updated directly at the main stor-
age though the whole simulation. An

evaluation of write frequencies and file
sizes of all output files was required and
based on this properties, the only the
file with snapshots of physical fields and
the file with time averaged fields are
updated directly at the main storage.
With my configuration, these files ac-
counted for more than 90 % of storage
while their update frequency was sig-
nificantly lower than the other files’. As
it is strongly dependent of the simula-
tion configuration, the save location for
each of the files can be modified in the
newly implemented feature of the mnc
package.

Slow evolution of parameters
The MITgcm program can be sum-
marised by following pseudocode.

load_params()
params_dependencies()
for t = 1 to endtime do

evaluate(t)
write_output(t)

endfor

Once parameters are set, they can
not be played with. As a part of my
project, I wrote a MITgcm package
called slowevo which enables evolu-
tion of parameters during the simula-
tion by ensuring, that all the dependent
parameters and variables are still con-
sistent. Currently, only few changeable
parameters are implemented at the in-
terface of the package, however in the
core, all of the model parameters are
tracked for changes and their depen-
dencies updated. Other parameters can
be added to the interface very simply if
needed. The implemented physical pa-
rameters include the rotation rate of the
planet, the gravity and the planet radius
as these are the parameters in the Held–
Suarez configuration. To illustrate the
package utilisation in more real-life ap-
plication, we can imagine a simulation
of the Earth’s climate with a externally
changing concentration of carbon diox-
ide as a parameter.

The package respects the MITgcm
conventions for enabling (including in
compilation), loading (run-time selec-
tion of package usage), package inter-
nal parameters input, run-time monitor-
ing and error reporting.

Post-processing
My other task during the project was
to write a program for post-processing
and visualisation of the results. MIT-
gcm provides some scripts for plotting
the results in MATLAB, however most

were not compatible with my modified
24-tile-cubed-sphere configuration used
concurrently with the NetCDF package,
so in the end I wrote almost all plot-
ting and post-processing scripts from
scratch. The most important part of
the post-processing is projection of the
cubed sphere data onto a regular lat-
lon grid. This is required for visualisa-
tion and also zonal (along longitude)
averaging of the data. This enables ex-
ploration of phenomenas such as tem-
perature waves, jet streams, easterlies
and westerlies winds, cells of vertical
atmospheric circulation and others.

Unlike the lat-lon grid, the cubed
sphere grid causes some problems with
its unevenly distributed grid points and
requires scattered data interpolation for
further post-processing. This is a com-
putationally challenging task, and even
more so when the interpolation must be
performed on every single snapshot and
every single variable. Fortunately, only
2D interpolation is required as each ver-
tical level can be processed separately –
sequentially or in parallel.

As a part of my project I produced a
MATLAB application that uses the Par-
allel Computing Toolbox to postprocess
and plot all of the simulation results in
parallel. I modified the code to be com-
patible also with Octave and its Parallel
package. The scattered data interpola-
tion is however significantly slower in
Octave. I used the MATLAB Compiler to
produce a standalone application that
can run even on clusters like fionn.

Results

The major driving force of atmospheric
circulation is solar heating. On aver-
age, this is largest near the equator and
smallest at the poles. The atmospheric
circulation transports energy polewards,
reducing the equator-to-pole tempera-
ture gradient.

In our simulations, we used the so-
called Held–Suarez configuration. This
configuration represents an idealised
atmospheric circulation, where land-
ocean contrasts have been removed, as
have all the mountains and all other
zonally-varying boundary conditions
and forcing. In other words, the planet
is perfectly symmetric. The figure 2
shows the forcing power at different ver-
tical levels as a function of the latitude.
The northern and southern hemispheres
are identical, meaning that the forcing

30

Figure 2: Forcing mimicking sun’s radiation:
power as a function of latitude. Each line
specifies one pressure level ranging from
1000 millibars (ground level) to 150 mil-
libars (topmost level). Generally, the forc-
ing is highest at the equator and lowest at
the poles with northern and southern hemi-
sphere being identical. For higher levels, the
difference between the equatorial and po-
lar forcing weakens, with the topmost level
having a constant forcing.

actually mimics the sun shining at per-
petual equinox (e.g., March 22).

The driving force (the sun’s radi-
ation) sets up a strong north-south
temperature gradient. The atmospheric
circulation attempts to reduce this by
transporting energy polewards. Initially,
the transport is using purely mean-
meridional circulations, but as the flow
strengthens, eventually it becomes un-
stable, and breaks down into the turbu-
lent wave-like pattern of cyclones and
anti-cyclones that we are used to seeing
on weather maps or satellite images.

So while the forcing and boundary
conditions are zonally symmetric, the
final flow is highly asymmetric, and
fully 3-dimensional. Over long time-
averages, however, these instabilities
become somewhat organised into pat-
terns that maintain “jets”, and latitudi-
nal bands of surface westerlies or east-
erlies. Such organisation is controlled
by external parameters such as rotation
rate and planetary radius, and our over-
all goal was to identify how such control
operates.

In the following section, several fig-
ures showing an example output of the
model are shown. As an output of our
project, several movies have been gen-
erated showing the fields evolving in
time. These movies can be accessed on
YouTube.

The displayed output variables of

the model in the Held–Suarez configura-
tion include the potential temperature
and three components of wind velocity.
These components are

• zonal velocity, with a plus sign
eastwards, commonly denoted U ,

• meriodinal velocity, with a plus
sign northwards and commonly
denoted V ,

• vertical velocity, with a plus sign
downwards and commonly de-
noted ω = dp

dt .

The variables are visualised in follow-
ing projections, each revealing different
attributes and phenomena.

The spherical projection, used in
the movies and also in the title picture,
shows a scalar variable field (such as
the potential temperature or a single ve-
locity component) at defined level. The
variable value is represented by colour.
Its advantage is that it depicts the planet
"as in real life situation", however the
perspective hides some areas from the
viewer. Another advantage is, that the
the projection shows the cubed sphere
discretitsation and therefore does not
require any postprocessing, such as in-
terpolations etc.

The latitude-longitude mercator
projection, plots also a scalar variable
field at a specified vertical level with its
value represented by colour. Compared
to the spherical plot, it does not hide
any data, however it does not preserve
scale, with the effective size of the polar

Figure 3: Atmospheric circulation. Highly idealised atmospheric circulation somewhat
similar to the Held–Suarez configuration. For reference to the figures of simulation output
see the Hadley cell, the mid-latitude (or Ferrel) cell and the polar cell and corresponding
trade winds, westerlies and easterlies. The jets, though not depicted on this figure, are
located at about 60 degrees (polar jets) and 30 degrees (subtropical jets). Again, their
location also corresponds to the location of the cells. Public domain image by NASA.

regions being larger than the equato-
rial regions. In this projection, we also
plot the zonal and meridional velocity
as arrows with the value specified by
the arrow size.

The latitude-pressure projection,
enables us to see the pressure depen-
dency of the depicted variables. In
our plots, the data in this projection
are always longitude averaged. This is
very convenient together with the Held–
Suarez configuration, as its forcing and
all boundary conditions are zonally sym-
metric. The value of the plotted scalar
field is again visualised by its colour.

Time averages can be added to all
of the mentioned projections. In gen-
eral, the time-averaging enables us to
see more the long-term nature of the cli-
mate rather than the short term weather.
The key is to select the right averaging
time-span. With the zonally symmetric
Held–Suarez configuration, that is quite
easily achieved by selecting the short-
est time, when all the zonally varying
features of the field disappear.

The first group of images (compos-
ing the figures 6 and 4) shows the
model output in standard Earth-like
configuration. These figures presents
the capabilities of the model and also
provide some reference for the next set
of figures. The second group of images,
composing the figure 5 presents the
capabilities of the developed slowevo
package as the model was evaluated
with a continuous change of selected
parameters.

31

Figure 4: Reference simulation

Various projections, time-averaged over 10
days, after 6 months of simulation. Simu-
lation parameters representing Earth-like
planet: rotation period = 86400 sec, ra-
dius = 6370 km, gravity = 9.81 m/s2.

The first figure depicts the zonally averaged
potential temperature in latitude-pressure
projection. The temperature profile is flat-
tening in the upper levels. The highest
temperature gradient at lower levels corre-
sponds to the latitude of jets’ position – see
next figure.

The second figure depicts the zonally av-
eraged zonal velocity in latitude-pressure
projection. Two strong jets (high altitude,
high velocity eastwards wind streams) can
be seen at 60 degrees latitude. This with
good agreement with prediction, the Earth
also has two similarly positioned jets called
polar jets. The weaker subtropical jets at
about 30 degrees latitude can also be seen
in the picture, although not as clearly as the
polar jets. A hint of another jet can be ob-
served above the equator, forming so-called
equatorial super-rotation. Equatorial super-
rotation is a valid climatological regime,
which, however, does not form on Earth.

The third figure depicts the zonally averaged
meridional velocity in latitude-pressure
projection. Two strong cells of near-surface
level winds can be seen around the equa-
tor. These are called trade winds and their
direction is towards the equator – result-
ing in opposite sign depicted in the figure –
and westwards. The westwards component
of their velocity may be seen on the pre-
vious figure as two slightly negative cells
at the same position. On both sides further
from the equator, westerlies winds are rep-
resented by cells of winds in pole-direction.
Their location corresponds to the location
of winds fairly strong east winds, which can
be seen just below the jets on the previous
figure. Another set of winds, so-called east-
erlies should be present at polar regions,
however, in this picture, these winds can
not be seen.

The fourth figure depicts the zonally aver-
aged vertical velocity in latitude-pressure
projection. The positive sign means velocity
towards the surface. We can observe the so-
called Hadley cells – upwards wind motion
above the equator and downwards motion
at about 30 degrees. Another cells, the so-
called Ferrel cells can be seen between 30
and 60 degrees. The polar cells, located at
the polar regions, can not be seen very well,
but at least the sign of the wind at the polar
region is as it was predicted – positive.

32

Figure 5: Slow evolution of rotation rate

Various projections, time-averaged over 30
days, after 60 (left-side pictures) and 360
days (right-side pictures) of simulation. Sim-
ulation parameters representing a planet
with Earth-like radius = 6370 km and grav-
ity = 9.81 m/s2. The rotation period was
continuously decreasing from double the
Earth’s (172 800 sec) to half the Earth’s
(43 200 sec) between the day 60 and 300.

The first row depicts the zonally averaged
potential temperature in latitude-pressure
projection. Two major responses to the in-
creasing rotation rate may be observed.
First, the high temperature “valley” becomes
more narrow, resulting in colder climate fur-
ther from the equator. Second, the tempera-
ture profile shows a local maxima, i.e. “hills”
above the equator. This is connected to the
newly formed equatorial jet, the so-called
equatorial super rotation (see next figure).

The second row depicts the zonally averaged
zonal velocity in latitude-pressure projec-
tion. Two strong jets can be seen on the left
picture (low rotation rate) while multiple
jets can be observed on the right picture
(high rotation rate). During the simulation,
the equatorial jet is becoming stronger, be-
ing the fastest of the jets at the simulation
end. A tendency for the other jets to become
thinner and move closer to the equator can
be seen as well.

The third row depicts the zonally averaged
meridional velocity in latitude-pressure
projection. As a response to the increasing
rotation rate, the winds present in the case
of Earth-like simulation (trade winds, west-
erlies, easterlies) becomes weaker or almost
non-existent. Notice also the lower absolute
value.

The fourth row depicts the zonally averaged
vertical velocity in latitude-pressure projec-
tion. The main response to the increasing
rotation rate lies within the formation of
new cells of air circulation. Consequently,
the cells becomes also smaller. Again, the
absolute value is lower resulting in weaker
circulation.

The last row depicts the latitude-longitude
projection of surface temperature. This time,
the pictures are snapshots, not time aver-
ages. The response to the increasing rotation
rate is mainly the number of temperature
waves and their pole-wise reach. The slower
rotation rate results in fewer waves – just 2
or 3 can be distinguished in the left picture,
while the number of temperature waves in
the right picture is clearly much higher. The
pole-wise reach of the waves gets smaller
with increasing rotation rate.

33

Figure 6: Reference simulation

Potential temperature in latitude-longitude
projection, snapshot (not time-averaged)
after 6 months of simulation. Simulation
parameters representing Earth-like planet:
rotation period = 86400 sec, radius =
6370 km, gravity = 9.81 m/s2.

The first figure shows the temperature at the
surface level (p = 1000 hPa). Approximately
6 temperature waves can be seen, which is
in good correspondence with prediction.

The second figure shows the temperature at
the topmost level (p = 100 hPa). It can be
observed, that the temperature is higher at
the poles than at equator.

Similar images may be easily produced for
every other pressure level, other variables
are available for plotting as well.

During our experiments, multiple
simulations with different configuration
of evolving parameters were produced,
such as a simulation of almost station-
ary planet evolving into very fast rotat-
ing planet, a small Moon-sized planet
into a huge Jupiter-sized planet and
other. This document should, however,
just present our work and illustrate the
model capabilities. There are wide op-
portunities for extensive research of pa-
rameters dependency with more com-
plicated models.

Conclusion

All three stages of my work, the MIT-
gcm model setup, customised post-
processing and creation of the slow evo-
lution package were successfully fin-
ished.

The created methods were imple-
mented in a way, that enables usage
of these methods with more advanced
(and therefore more physically interest-
ing) models.

The methods were tested thoroughly
on a simple configuration – the Held–

Suarez configuration – and all results
were in a good agreement with predic-
tions.

To summarise the physical response
of the model to the continual change of
parameters, the rotation rate, the radius
and the gravity, the greatest effect came
from changing of the rotation rate. The
low rotation rate resulted in more re-
laxed atmospheric flow, and made the
energy transport from the equator to
poles easier, while high rotation rate
resulted in more constrained flow. The
planet radius affected mainly the num-
ber of cells of horizontal circulation.
The gravity did not seem to have a great
effect with the current configuration.
The interval of gravity values, within
which study was performed, was how-
ever narrow, and more extreme values
may result in more dramatic response
of the model.

References

1 Held, Isaac M. and Suarez, Max J. (1994) A proposal
for the intercomparison of the dynamical cores of at-
mospheric general circulation models Bull. Amer. Me-
teor. Soc. 75:1825–1830

PRACE SoHPCProject Title
Interactive Manipulation of Weather
Regimes during Continuous
Climate Simulations

PRACE SoHPCSite
ICHEC, Ireland

PRACE SoHPCAuthors
Ondřej Ticháček, [FNSPE CTU
Prague,] Czech Republic

PRACE SoHPCMentor
Enda O’Brien, ICHEC, Ireland Ondřej Ticháček photo

PRACE SoHPCContact
Ondřej, Ticháček, FNSPE CTU
E-mail: ondrejtichacek@gmail.com

PRACE SoHPCSoftware applied
MITgcm, netCDF, ncview, nco, MATLAB, Octave, grads

PRACE SoHPCMore Information
mitgcm.org, ucar.edu/netcdf, mathworks.com,
iges.org/grads

PRACE SoHPCAcknowledgement
I would like to thank my supervisor, Enda O’Brien for
all advice and guidance he gave me. I would also like
to thank Adam Ralph and Marco Grossi for their kind
help whenever I needed it and Simon Wong for
coordinating my stay in ICHEC. I would also like to
thank Leon Kos and everyone from PRACE for making
the Summer of HPC possible.

PRACE SoHPCProject ID
1510

34

Enabling Real-Time Visualisations of
Molecular Dynamics Properties in
DL POLY 4 (Proof of Concept)

Real-Time
View in
DL POLY 4
Paolo Grossi

DL POLY 4 is a general purpose
classical molecular dynamics
simulation software; this project has
the goal of extending package to
enable 2D/3D visualisations of
molecular simulations in real-time,
representing a significant advance.

As part of the simulation of
molecular interactions you can
take advantage of the incred-
ible power of modern super-

computers, to study better and faster
how these interactions take place.
Thanks to the availability of ICHEC
(Irish Centre for High-End Computing)
and the access to the supercomputer
Fionn indeed I have the unique oppor-
tunity of being able to develop a frame-
work for 2D/3D visualisations of molec-
ular simulations in real-time.

To do that I must first develop a
client-side tool for scientific visualisa-
tion; for this purpose together with my
coordinator I selected ZeroMQ to make
the connections between languages and
R for software implementation. These
software have been selected as mul-
tiplatform and easily available since
open source, in view of possible fu-
ture improvements. After all that, I
can approach with the source code of
DL_POLY_4.

Project Description

ZeroMQ: Code Connected
One of the first tools that I began to

study was ZeroMQ which, citing the
guide, aims to be a connector between
different languages in order to con-
vey information within ad-hoc prepared
socket. This is quite convenient as it
is open-source, it is widespread among
many languages (and is easily extensi-
ble also to those for which there are no
implementations) and through a series
of compromises accurately described it
allows to realise many communication
patterns that don’t overlap code made,
but just placed nearby, keeping the read-
ing clear and intuitive.

ZeroMQ can take advantage of a
strong network of online enthusiasts
and developers created with the pas-
sage of time and is now at version 4.1.2,
which was released in June. Next to the
main there are many branched projects
from secondary branches, to try to cover
as many languages as possible: to date
we can count supports considerable for

C, PHP, Python, Lua, C++, C#, CL, Del-
phi, Erlang, F#, Felix, Haskell, Java,
Objective-C, Ruby, Ada, Basic, Clojure,
Go, Haxe, Node.js, and many others.
R for Statistical Computing
R it’s a free software environment for

statistical computing and graphics sup-
ported by a very energetic and active
community; but why is this particular
tool the one I picked? Initially my co-
ordinator, Adam and I were oriented
toward a different choice; but since R
fits well with the project which uses Ze-
roMQ and since it allows, with some
open-source libraries that are well de-
veloped, getting the results via the more
or less complex graphics statistical anal-
ysis easily, I didn’t think too much prior
to in moving forward with our plan B
for my SoHPC.
R package for ZeroMQ

Thanks to the open-source project
called rzmq I can in fact use a ready-to-
use package in order to join the graphics
capabilities of the R programming lan-
guage with the ease of use of socket-like
connections made available by ZeroMQ.

35

DL_POLY_4
DL_POLY is a general purpose classi-

cal molecular dynamics simulation soft-

ware developed at Daresbury Labora-
tory. DL_POLY_4 general design pro-
vides scalable performance from a sin-
gle processor workstation to a high per-
formance parallel computer. It is sup-
plied in source form under licence and
can be compiled as a serial application
code, using only a Fortran90 compiler.

Initially the installation of DL_POLY
on Fionn was completed following the
procedures set up for default by soft-
ware developers but in the last days
we have decided to change into a
mode called, precisely, Fionn ICHEC
to achieve better results. However, this
was due to problems that we couldn’t re-
solve within the deadline of the project.
Fortran90 binding for ZeroMQ
Because the source code of DL_POLY

is written in Fortran90, I had to look
around to find a way to be able to ex-
ploit the potential of ZeroMQ within
this format: it doesn’t exist, neither
through the official support nor using
open-source projects, a direct connec-
tion between the two environments. So
I created an official support for ZeroMQ
written in Fortran90, based on open-
source project found online f77_zmq,
which I renamed as f90_zmq_wip dur-
ing the project time.
Final Product
I realised for the project described:

a client written in R for receiving
information in real-time while per-
forming the executable of DL_POLY;

the server side has been imple-
mented within the source code written

Figure 1: Visualisation of Gramicidin A inside DL_POLY

in Fortran90 of
DL_POLY, par-
ticularly within
a subroutine
that deals with
the calculation
of statistics and
transmitting
them to an out-
put file. Along-
side of the main
project, and for
its implementa-
tion, it was nec-
essary to also
write, as amply
described, an
extension of the
functionality in
Fortran90 of
ZeroMQ, using
what the net-
work has pro-
vided but also
implementing

additional functionality. In particular,
few minor changes were required in the
management of Publisher-Subscriber
pattern used, thanks to the original
developer, to fix some bugs.
Discussion & Conclusion
What I produced during the project?

It all started trying to analyse the best
possible solutions to exploit the project.

The requirements analysis was sim-
ple at first glance, but in reality has ne-
cessitated some stepwise refinement: it
was initially selected VTK (The Visual-
ization Toolkit), a very powerful tool
but too complex to be fully understood
by a neophyte in so little time. It was de-
cided to tack to a different instrument,
such as R, as known from my coordina-
tor and with a scale learning less than
its predecessor.

As mentioned earlier, some prob-
lems have arisen regarding the visualisa-
tion of the final product: in fact, chang-
ing some parameters, we are no longer
able to see as we could before. Currently
we couldn’t understand what could be
the problem, although it is certainly lim-
ited in a particular area of our knowl-
edge, consisting of a few lines of code.

I am satisfied of the work product
that I think can be useful in the future
for any updates and improvements; def-
initely solve the problem of the visual-
isation is more urgent to correct, but I
think it is a feasible work in a few days.
DL_POLY allows a display mode inter-

nally, but it isn’t very useful as rather
slow and with few options to work with
(see Figure 1).
Acknowledgements

The opportunity to live and work
abroad for more than two months in
a cutting-edge facility was unique and
amazing: I am eternally grateful to
SoHPC for this.

Inside ICHEC I also found some
wonderful people as well as valuable
colleagues: a big thank you to Simon,
Adam and particularly to my brother
Marco, who became for a few weeks
also a great workmate.

I mentioned just a few names, but
everything about the ICHEC to me is
worthy of a warm greeting and a gen-
uine thank you: I was welcomed by a
family willing to work well, giving great
importance to the relationship between
people.
Award Statements
Why should I win the HPC Ambassador

Award? And what about to win the Best
Visualisation Award?

For the constant activity of sharing
perpetrated either by social media or
by writing blog posts, trying to explain
with enthusiasm tone what my SoHPC
was all around me: so much passion and
so much work, but also a lot of fun!

I encountered many difficulties
along the way, but thanks to a collabo-
rative and friendly work environment
we were able to solve even the most dif-
ficult problems: SoHPC for me it was an
opportunity to improve in every way I
look, and that’s why I think I can aspire
these awards.
PRACE SoHPCProject Title
Enabling Real-Time Visualisations of
Molecular Dynamics Properties in
DL POLY 4 (Proof of Concept)

PRACE SoHPCSite
Irish Centre for High-End Computing,
Dublin, Ireland

PRACE SoHPCAuthors
Paolo Grossi, University of Parma,
Computer Science Department, Italy

PRACE SoHPCMentor
Emma Hogan, ICHEC, Ireland Paolo Grossi

PRACE SoHPCContact
Adam Ralph, ICHEC
Phone: +353 1 5241608 (ext 31)
E-mail: adam.ralph@ichec.ie

PRACE SoHPCSoftware applied
ZeroMQ, R, rzmq, f77_zmq, DL_POLY_4

PRACE SoHPCMore Information
See: zeromq.org, r-project.org, rzmq GitHub, f77_zmq
GitHub, scd.stfc.ac.uk

PRACE SoHPCAcknowledgement
I would like to thank PRACE, ICHEC and Summer of
HPC for the opportunity to use their precious resources.

PRACE SoHPCProject ID
1511

36

Development of a workflow for parallel
modelling of the Wi-Fi signal propagation in
buildings using the boundary element
method

BEM for
Wi-Fi
Sergio Afonso

The boundary element method (BEM)
is a numerical computational method
for solving partial differential
equations. The BEM4I software has
been used to apply this method on
the simulation of the Wi-Fi signal
propagation inside buildings. This
project will go through all stages of
numerical modelling and the
development of a workflow for parallel
modelling of the Wi-Fi signal
propagation.

T he use of the boundary ele-
ment method makes it possi-
ble to reduce a problem to just
the boundary of the computa-

tional domain; in this case the walls of
the buildings. This avoids the need to
process volume meshes and provides
the possibility of working with exterior
problems, not only closed spaces. Also,
the number of elements to deal with is
much smaller when only the boundary
is processed. That, the fact that BEM4I
is parallelized with OpenMP and MPI,
and that its code is explicitly vectorised,
make this tool very efficient. The library
is extensible and contains other mod-
ules for solution of different kind of
problems.

This project consists in the creation of
tools that complement the BEM4I work-
flow to make its usage and visualisation

of the results easier. One of the tools is
responsible for creating the 3D meshes
that BEM4I needs as input from a 2D
specification of the corners of the build-
ing, the height of the walls and the res-
olution of the mesh. The other tool is
a video game in which players have to
find the place with the best connectivity
in a building, given the position of the
router, and find the optimum place to
locate the router so that the maximum
area is covered. This game will serve as
a showcase of BEM4I and as a way to
bring HPC to the general public.

Flat Mesher

The first half of this project consists of
the Flat Mesher utility. This is a tool that
turns a set of points on the plane into a
three-dimensional triangular mesh of a

flat, or building with only one floor. This
tool is composed of two parts: A C++
library and a Graphical User Interface
(GUI) application. This architecture was
selected over a single monolithic ap-
plication to allow for the creation of
many other different tools in the future
that rely on the library to make trans-
formations between 2D points and 3D
meshes.
Both programs were developed in ac-
cordance to the C++11 standard, so
they are both multi-platform. The only
restriction is that the platform has to be
supported by the Qt library in order for
the GUI to work.
The library
The C++ library is composed of a set
of classes for representing and manipu-
lating basic geometric entities, such as
points, lines, triangles and rectangles,

37

blueprints of flats (the set of 2D points)
and 3D meshes formed of triangles. It
is able to read the input information
(2D points, height of the walls and size
of each triangle) from text files with a
specific format and it is able to output
the 3D meshes in both VTU and BEM-
GEN formats. The design of the library
allows the easy addition of new mesh
formatter classes, to export meshes into
other different formats.

Some parts of the conversion between
blueprints and 3D meshes have been im-
plemented in parallel by using OpenMP.
OpenMP is an Application Programming
Interface (API) for C/C++ and Fortran
that allows the programmer to paral-
lelise native code by using high-level
directives. This means that the program
can calculate multiple different parts of
the solution at the same time and most
of the code needed to make this possi-
ble is provided by the API, so it’s much
faster and easier to develop.

The part of the conversion that is exe-
cuted in parallel is the creation of each
wall and the ceiling, which is also the
part that turns out to be the bottleneck
of this computation. The creation of the
floor sub-mesh is done by copying the
ceiling mesh, so it is a fast operation.
Each wall corresponds to a segment in
the input blueprint.

Once all the walls, ceiling and floor
sub-meshes have been created, they are
all merged together in a single mesh
which is the solution. There is a prob-
lem, though. Meshes are represented
as a list of 3D points and a list of trios
of indexes that refer to positions in the
list of points. Each one of these trios is
a triangle in the mesh. The problem is
that points must not be repeated in the
mesh, so the merging has to avoid these
repetitions in an efficient way. In this
case the solution was to leave out in the
creation of each wall the last column’s
points, which are actually being created
in the next wall. When merging, the few
triangles connecting each pair of walls
are created.

To avoid having to search for the equiva-
lent point index of each point that is on
top of a wall when creating the ceiling
sub-mesh, and to also avoid the need
to finish the creation of the walls be-
fore starting the creation of the ceiling,
points in the walls were ordered in such
a way that their indexes could be deter-
mined in advance, hence removing the
need for any kind of search altogether.

The GUI
Even though a command-line tool was
created to take advantage of the pos-
sibilities the library offers, a GUI was
thought to be very handy in order to cre-
ate more easily the flats blueprints than
directly working with text files. Since
the library to which we had to link was
a C++ library, the easiest choice of pro-
gramming language to develop the GUI
was C++, so that’s what we chose. We
opted for using Qt, a multi-platform ap-
plication framework to build the GUI.
The application lets the user to load
and save .flat files (the ones where the
blueprints are specified), export them
as meshes, inspect them for errors and
modify them in different ways. Each
loaded flat is displayed and can be in-
teractively edited by dragging, adding
or removing points, splitting segments,
etc. The viewport can also be changed
by using the hand tool or by zooming.
The appearance of the GUI with one of
the levels loaded and a slice of the gen-
erated 3D mesh for the same level can
be seen in the following figures.

The mesh has been rendered with
ParaView, a data visualisation software

widely used in the High Performance
Computing (HPC) field.

Wi-Fi Planner

Wi-Fi Planner represents the second half
of this project. In short, it is a web
browser video-game designed mainly
for desktop or laptop computers, but
with support for mobile devices, made
of several levels in which you have to
first guess, from the available devices
and a router location, which is the de-
vice that is receiving the strongest sig-
nal and then you have to guess, from a
set of routers in the same level, which
router gives the best overall Wi-Fi cov-
erage inside the flat.
Every time the player selects one of
the choices, an animation showing sig-
nal propagation through the building is
played, so they can have a better under-
standing of the way Wi-Fi waves behave.
Right after that they are presented with
a game screen that lets them know how
good their decision was compared to

the best possible choice, by displaying a
rating that ranges between zero and five
stars. They can also see the propagation
pattern in different slices corresponding
to different heights and evaluate the sig-
nal strength on each device.
When all nine levels are finished, the
player is prompted to enter their name
in order to register his or her achieved
score in the highest score list, which is
saved locally in the client browser. This
leads to a more entertaining game.
All the images (slices or animations) are
extracted from the results of executing
the BEM4I software using the mesh of
each level and the router positions as in-
puts. The computation was carried out

38

using 48 nodes of the Salomon cluster
at IT4Innovations National Supercom-
puting Center, making a total of 1152
cores and 6144 GB of RAM. ParaView is
used to render the resulting meshes and
export them as images. After obtaining
all the images, they are normalised by
cropping the borders and making the
background transparent before includ-
ing them in the video-game.
The scores are calculated in the follow-
ing way:

• The minimum score minscore you
can get after each guess is 100,
and the maximum maxscore is
1000. This can be modified.

• The minimum minsignal and max-
imum maxsignal signal strengths
that you can get from the current
possible choices are calculated.

• The signal strength corresponding
to your choice is also calculated.

• An exponential function
going through the points
(minsignal,minscore) and
(maxsignal,maxscore) is created.

• The score you get is correspond-
ing to the signal strength associ-
ated to the device or router you
chose according to the described
function.

This application was entirely developed
in Javascript and HTML5, using the
rendering library Pixi.js v3, which pro-
vides good performance by using hard-
ware rendering when possible and then
falling back to HTML Canvas when it
is not available. This makes it posible
to target a wide range of web browsers
and get the most performance possible.

Conclusions

I have presented two different ap-
plications with very different goals:
FlatMesher, which integrates into the
development workflow of the BEM4I
software and greatly reduces the time
and effort needed in order to create in-
put meshes for its simulations, and Wi-
Fi Planner, a video-game that presents
the results of the simulations in an en-
tertaining way to the general public and
is expected to attract their attention.
FlatMesher delivers every functionality
needed and it does it in a user-friendly
way. Every use case was considered dur-
ing the design and implementation of
this application, so that it lets you not
only interactively create, save, load and
modify your flats in many ways, but
it also lets you analyse many proper-
ties of the created flats in search for
errors, it eases common tasks like se-
lecting all points, inverting the points
order or changing the viewport to fit the
screen. It also has a command-line in-
terface to make the conversion between
flat files and meshes non-interactively.
Because of its extensibility in terms of
output formats and possible different
applications, this tool could also be used
outside this specific project, in any other
application that needs to create meshes
from 2D points or as a fast way of creat-
ing meshes.
Wi-Fi Planner is a great way to show-
case HPC to the general public, since
they can see the possibilities of super-
computing applied to their every day
life in a way that everyone can under-
stand. Wi-Fi signal strength is a problem

almost everyone can refer to. The scor-
ing system is also designed in a way that
competing for the best score is really
hard, which will hopefully make people
want to try it if they see someone else
play. It is also sufficiently configurable
to change the set of levels, the colour
scheme or the fonts to improve its look.
PRACE SoHPCProject Title
Modelling of Wi-Fi signal propagation
using the boundary element method

PRACE SoHPCSite
IT4Innovations VŠB – Technical
University of Ostrava, Czech Republic

PRACE SoHPCAuthors
Sergio Afonso, University of La
Laguna, Spain

PRACE SoHPCMentor
Michal Merta, IT4Innovations / Dept.
of Applied Mathematics
VŠB-Technical University of Ostrava,
Czech Republic Sergio Afonso

PRACE SoHPCContact
Michal Merta, IT4Innovations National
Supercomputing Center /
Dept. of Applied Mathematics
VŠB-Technical University of Ostrava
Phone: +420 596 999 613
E-mail: michal.merta@vsb.cz

PRACE SoHPCSoftware applied
BEM4I, Qt, Pixi.js, ParaView

PRACE SoHPCMore Information
http://industry.it4i.cz/en/products/bem4i/

PRACE SoHPCAcknowledgement
I would like to thank Michal Merta and Jan Zapletal for
their help and constructive criticism throughout the
execution of this project and all the IT4Innovations
staff for their kindness.
BEM4I was supported by the IT4Innovations Centre of
Excellence project (CZ.1.05/1.1.00/02.0070), funded
by the European Regional Development Fund and the
national budget of the Czech Republic via the Research
and Development for Innovations Operational
Programme, as well as Czech Ministry of Education,
Youth and Sports via the project Large Research,
Development and Innovations Infrastructures
(LM2011033).

PRACE SoHPCProject ID
1512

39

ESPRESO API for ParaView Catalyst to
perform In situ Analysis.

ESPRESO
Solver for
SoHPC
Anthony Bourached

We adapt the code of the ExaScale
PaRallel FETI SOlver (ESPRESO) in
such a way that it is linked with
Paraview Catalyst during simulation
run-time to produce real time, In Situ,
analysis and visualisation of the
simulations. Furthermore, we use
IT4Innovations supercomputer,
Salomon, to produce visualisations of
a fan blade in real time.

This project is based on the vi-
sualisation of the results from
ExaScale PaRallel FETI SOlver
(ESPRESO). The Finite El-

ement Tearing and Interconnecting
(FETI) method is a practical and effi-
cient domain decomposition (DD) al-
gorithm for the solution of numeri-
cal partial differential equations. Do-
main decomposition methods solve
boundary-value-problems1 by splitting
them into smaller boundary value
problems on sub-domains and iterating
to coordinate the solution between ad-
jacent sub-domains. The problems on
each sub-domain are independent, this
means that we can effectively solve
them at the same time. This makes do-
main decomposition perfect for parallel
computing, for a comprehensive expla-
nation of why this is we must discuss

the theory of high performance com-
puting.

High Performance Computing

High Performance Computing (HPC)
generally refers to the practise of ag-
gregating computing power in a way
that delivers much higher performance
than one could get out of a typical
desktop computer. A powerful modern
desktop computer typically has eight
cores. The purpose of multiple cores
is to maximise efficiency of the com-
puter’s compute power. It allows the
computer to more effectively perform
different tasks at the same time.

Maximum program efficiency
would be achieved if the program’s
tasks were divided in such a way that
they can be executed by independent

cores with, preferably, minimum com-
munication or co-dependency. This
practise is referred to as parallel com-
puting. One of the massive aspects of
HPC is the use of Supercomputers:
massive, highly maintained clusters
of computing nodes. Simulations in
this project have been produced on
IT4Innovations supercomputer, named
Salomon.

Parallelism in ESPRESO

From figure 1 we can see how the
use of Parallel programming is used
to most effectively solve problems with
ESPRESO. This is a simulation of a steal
block, we shall discuss what ESPRESO
is doing with it but first lets discuss its
appearance. The gaps that divide the
block into many pieces do not physi-

1A differential equation with a set of constraints called the boundary values. A solution to a boundary value problem is a solution to the differential
equation that also satisfies the boundary.

40

cally exist in the structure but show us
the domain decomposition of the prob-
lem. Each sub-domain may be solved in
parallel.

Figure 1: Steal block. Gaps represent the
boundary of different subdomains which
can be solved independently.

The main object attribute visualised
in this project is displacement. We may
consider displacement in this context
as the distance of each given point of
the structure from its original posi-
tion. Even a rigid structure such as a
steal block deforms under force, such
as gravity, though this is often far too
slight to be detected by the naked eye.
However, using Paraview we may warp
vectors. This means that we can em-
phasise the magnitude of that attribute
without changing anything else about
the structure or appearance of the ob-
ject. For example, warping displace-
ment or velocity by a factor of two will
make the displacement appear double
of what it actually is or make velocity
twice as fast as it actually is. For our
simulation of this steal, as in figure 1
and 2, cube we warped displacement
by 412 (4,000,000,000,000).

In Situ Visualisation

The goal of visualisation is often to
find desired/important details within a
large body of information. As well as
getting a general understanding of the
structure and attributes of an object on
data sets that are far too large and com-
plex for the human brain to compre-
hend without such tools. Paraview is
often used for such visualisations and
is used in this project.

Figure 2: Steal Block. This is the exact same
image as in figure 1 (note the colours) ex-
cept that displacement has been warped by
a factor of 412.

We can see the steal cube squashed
under gravity.

We use Catalyst2 and Paraview to
perform In situ3 analysis. It is com-
mon to require that our simulations
discard most of the data created in or-
der to maximise efficiency. Since, in
this case, it is not possible to store
data for many simulations, data analy-
sis and visualisation must be performed
in situ with the simulation to ensure
that it is running smoothly and to fully
understand the results that the simula-
tion produces. This is opposed to the
traditional workflow where simulation
would be ran and data output to a
disk and then finally analysed and vi-
sualised (using, say, paraview).

There are many advantages to in
situ analysis. First, we can begin the
analysis and visualisation process with-
out needing to do any input/output of
simulation results- this is an especially
important point as simulation power is
advancing at approximately ten times
the rate of input/output efficiency. Sec-
ond is that rather than performing our
visualisation/analysis on another ma-
chine we have the full computational
power of the supercomputer available
to do this processing. Third, we expect
that the the data produced by the anal-
ysis/visualisation will be much smaller
than that produced by the simulation
itself.

For these reasons I believe that co-
processing will have a massive role in
the future of HPC and thus was great
motivation for this project.

Method

My task was create the API (Applica-
tion Programming Interface) for the
ESPRESO that enables it to run with
Catalyst and hence visualise the results
in real time.

Before I started my project,
ESPRESO only enabled post-
processing; It output results to a vtk
file. Visual Tool Kit (vtk) is a file type
which is readable by Paraview. Two im-
portant data types give the structure of
the object: 1) Points: we must have an
array of points which outline the shape
at, for simple cases, uniform intervals.
Each point has three associated values:
its x, y and z coordinates. 2). Cells:
these will be the most fundamental
element of the image.

So far this gives the structure of the
object. Furthermore, ESPRESO records
attributes, such as displacement which
is what we have focused on in our visu-
alisations.

To perform our real time visualisa-
tion all these values had to be passed
from ESPRESO to Paraview Catalyst by
an Adaptor code which constituted the
most significant part of the API.

ESPRESO is written in c++ so we
also used this language to write the
Adaptor code. The structure of the ob-
ject is unchanging so the Adaptor code
could be configured such that we only
need to build the grid points and cells
on the first iteration, hence only re-
quiring for the values of displacement
to be updated at each timestep. This
ensured that communication between
ESPRESO and Catalyst was as fast as
it could be. Already this means that
we save hugely on the amount of data
communication required each timestep
as Catalyst keeps the object structure in
its memory.

When images are rendered in Par-
aview from a vtk file one usually uses
Paraview to show the exact aspect of
the data that is required. For example,
one might like to slice the object to
show a transverse image of its interior.
These tools are infinitely useful and use
of them is one of the main motivations
for visualisation. A python script was
written/exported by Paraview Catalyst
which enables us to render a real time
image with all our specified Paraview

2Catalyst is a ’light-weight’ version of the ParaView server library that is designed to be directly embedded into parallel simulation codes to perform
in situ analysis at run time. Essentially it enables us to use the same analysis and visualisation tools that are already available for post-processing using
Paraview.

3In situ is Latin for ’on site’ or ’in position’. In this context In situ analysis refers visualisation and analysis as the simulation is running. This form of
analysis can also be referred to as co-processing or co-visualisation.

41

Similar to the cube, the gaps that look like cracks in the fan blade do not physically exist but show the domain decomposition. This
decomposition is emphasised by colour coding in the large image. Displacement is warped in the other two images by ten billion
(10,000,000,000). This makes it look like a flag blowing in the wind. These are timesteps 282 and 421 respectively. The first timestep
also illustrates the what the fan looks like in real life (with no warped attributes).

configurations. One of the specification
of this script was to save a PNG of each
timestep which we later used to make
AVI videos.

Results and Discussions

As the main focus of the project was to
create the API for ESPRESO and Cata-
lyst; results are visualisations produced
by the ESPRESO. The images shown in
this report were rendered in real time-
while the simulation code was running.
From these visualisations we saved im-
ages for each timestep and later com-
piled them together to make AVI (Au-
dio Video Interleave) videos.

Our main visualisation was a fan
blade as can be seen above. The large
image shows the colour coded decom-
position of the structure.

The title image shows two identical
similar images. The one on top is a fan
blade with a colour scheme that illus-
trates each points displacement from
the ideological shape of the object. This
displacement is far to slight to see so
the only evidence of it in this image is
the colour. The image immediately be-
low, however, is the exact same image
but with displacement warped by 1010

(10,000,000,000). This second image
therefore enables us to see what the

colour in the first image is telling us
about the data.

For simulations that produce large
amounts of data, Co-processing is be-
coming a necessity. It is quite likely that
in the next 10-20 years all of the largest
simulations will require in Situ analy-
sis in order to not drastically lose effi-
ciency.

When we post-process using Par-
aview we may replay simulations very
easily. This gives us the luxury of being
able to take our time specifying what
part of the data we want to emphasise.
The ’down side’ to the massive amount
of work we avoid by not recording data
with co-processing means that we are
not able to view the simulation again
(at least not with all the details that
were in to original version.) Therefore,
we need a way to specify the exact ren-
der conditions we want textitbefore we
start the simulation. A python script
was used in this project to specify the
render conditions of the co-processor
(Paraview Catalyst). This made it possi-
ble to perform co-visualisation without
any loss of functionality of Paraview.
This means that we can ’have our cake
and eat it too’ in terms of benefiting
from the speed and convenience of co-
visualisation/co-analysis while still us-
ing all the features of Paraview.

References

1 Andrew C. Bauer, Berk Geveci, Will Schroeder Kitware
Inc. February 2015. The Catalyst Users Guide v2.0
ParaView 4.3.1

1 Andrew C. Bauer, Berk Geveci, Will Schroeder ...et al
The Paraview Guide, A Parallel Visualisation Applica-
tion Kitware Inc.

PRACE SoHPCESPRESO
Solver
ESPRESO API for ParaView Catalyst
to perform In situ Analysis.

PRACE SoHPCIT4Inovations
IT4Innovations,

PRACE SoHPCAuthors
Anthony Bourached, [association,]
Czech Republic

PRACE SoHPCMentor
Riha Lubomir
lubomir.riha@vsb.cz Anthony Bourached

PRACE SoHPCContact
Leon, Kos, Univerza v Ljubljani
Phone: +12 324 4445 5556
E-mail: leon.kos@lecad.fs.uni-lj.si

PRACE SoHPCSoftware applied
MPI - MPICH 3.1, ESPRESO, Paraview Catalyst

PRACE SoHPCMore Information
www.paraview.org/in-situ/

PRACE SoHPCAcknowledgement
I would like to extend my gratitude to my mentor Riha
Lubomir for many useful meetings and guidelines
throughout the project. I was also like to thank
Alexandros Markopoulos for helping to explain the
structure of ESPRESO.

PRACE SoHPCProject ID
1513

42

Post-processing and 3D visualisation for
medical images

3D
Visualisation

from CT
Laszlo Kovacs

In this study we demonstrate how to
segment the human liver using the
HPC environment from the CT
images and create a photo-realistic
visualisation to support medical
treatment being a more precise,
faster and with lower risk. Our new
real 3D viewer supports the
hand-gestures control by the Leap
sensor and Virtual Reality by the
Oculus glasses. The results are
planned to be used in the real
medical treatment focused on the
lethal liver cancers.

TThe High Performance Comput-
ing (HPC) systems play more
and more important role in our
society thanks to the increasing

size of processed data, and the higher
computational demands. These aspects
could be identified in many areas of the
daily life such as medicine, weather re-
port, traffic monitoring or industrial en-
vironment. High computational power
together with high efficiency of HPC sys-
tems is effectively solved by the usage
of coprocessors.

The Computed Tomography (CT) is
one of the fields which generates big
amount of data in medicine. The CT
scanning or also so-called X-ray com-

puted tomography (X-ray CT) could be
considered as a non-invasive procedure
since it allows us to see inside the hu-
man body without clinical surgery. The
only limitation of the technology is the
x-ray radiation dose during the process
and its effects on the human body. The
risk that comes from the radiation is
much lower nowadays thanks to the
new types of CT machines. Moreover,
a punctual and more easily understand-
able visualisation of the data can pre-
vent from repeating the scanning inter-
vention.

Figure 1: CT machine and the results of the
scanning

During the scanning process the CT
machine recreates the inner image of
the body in sequential axial slices (Fig-
ure 1). The CT images are stored in a
special Digital Imaging and Communica-
tions in Medicine (DICOM) format. This

43

is a well-known and widely adopted
standard by hospitals and medical de-
vice industries for handling, storing,
and transmitting all the necessary in-
formation in medical imaging. In the
viewpoint of the medical treatments the
precise and realistic image processing
and visualisation are important since
they can obviate the repeated scanning
and directly help doctors with the eval-
uation and decision making process. A
typical application of it is the liver carci-
noma, which is a very common a malig-
nant epithelial tumour. Based on World
Health Organisation (WHO) and other
research studies the human cancer is a
major health problem worldwide. Over
a million deaths per year, which is about
10% of all deaths among the adults, can
be contributed to hepatocellular carci-
noma all over the world. On the picture
below you can see how looks like the
hepatocellular carcinoma 2. Regarding
this cancer one of the most important
information coming from the segmenta-
tion is the exact evaluation of the organ
volume. Based on this information ex-
act liver resection is made. Without the
information the surgery can be lethal.
For the punctual liver segmentation and
visualisation, we exploit the HPC tech-
nology extended with coprocessors to
provide the solution. This process con-
sists of four main steps: pre-processing,
segmentation, post-processing, and 3D
visualisation.,12

Figure 2: Liver Carcioma

Pre-processing

In the pre-processing step, the first task
is to retrieve the data from DICOM stan-
dardised medical image data format.
In our research we try to use detailed
CT images with mutual axial slices of
0.6 mm to support punctual 3D recon-
struction. The next important sub-step
is the noise reduction by applying the
de-noising filters in all the acquired im-

ages. During the scanning process, the
random noise appears in the images.
The noise is tightly connected with the
physical principle of the scanning. We
have to mention that this is just a half
true, because during scanning process
many different kind of noise could dis-
tort the final output. Nonetheless based
on the state of the art studies, the appli-
cation of our model can suppress the
majority of the noise very effectively
(Figure 3). The images with suppressed
level of noise support the segmentation
algorithms to achieve better results. In
the current stage of our research we fo-
cus on the state of the art methods of
Gauss smoothing and BM3D.

Figure 3: Results of the denoising filter

Before the segmentation step there
is a mapping, which is in fact a pixel
intensity transformation from CT to
Hounsfiled Units (HU). During the cal-
culation we apply the following linear
equation, in which the inputs come
from only the DICOM format. This map-
ping is useful, since the different organs
(in human body) have different HU val-
ues . For instance the bones has typically
+700 HU or greater, the liver has +40
to +60 HU, and the air has -1000 HU.
As the last sub step we applied image
data conversion to store all the image
slices in one image vector.

Segmentation

In the case of the segmentation process,
we focus on the state of the art k-means
method. The generalised algorithm can
partition n pixels into k clusters, where
k is an integer value and k<n. In our
case the k-means algorithm classifies
the pixels regarding the similarity fea-
tures. The pictures below show the seg-
mentation results in the case of one im-
age slice regarding the non pre-filtered
and pre-filtered case (Figure 4).

Figure 4: Results of the segmentation with-
out/with denoising

Post-processing

As a post-processing step we proceed
to the reconstruction of the surface
based on the gained individual seg-
ments. These boundary segments are
calculated with the flood algorithm. As
for the 3D reconstruction algorithm we
used the Marching Cubes method. The
following picture show of the result of
the reconstruction(Figure 5).

Figure 5: Results of the 3D reconstruction

3D Visualisation

The final step is the creation of the 3D
object and its visualisation in a suitable
environment based on the segmentation
results. With this results we can provide
the expected measurement such as vol-
ume measurement. During the common
work we concentrate on one part of the
human body which is the liver. It simpli-
fies the final solution but on the other
hand it remains the possibility to eas-
ily extend the solution with new organs
and features in the future. Considering
the high performance and portability
demands, we choose the OpenScene-
Graph (OSG) as a visualisation environ-
ment. The OSG is an open source LGPL
licensed high performance 3D visuali-
sation toolkit. It is widely used as sci-
entific visualisation, virtual reality or
modelling environment. OSG is written
in C++ and supports the wide range of
operating systems like Windows, OSX,
Linux. The cross platform environment
is convenient, since in this way it is pos-
sible to show the segmentation results

44

Figure 6: The pictures show how works the 3D visualisation program.

not only on a computer but also on a
smart-phone or tablet. This can be use-
ful not only for medical treatments but
also during the education of medical
students.

With regards to the visualisation
part we focus also on the newest real
3D visualisation technology and uncon-
ventional LEAP Motion controller for in-
teractive control of the visualised scene.
The Leap Motion Controller tracks your
hands at up to 200 frames per seconds
using two infrared cameras. The field
of view of the sensor is 150 degree.
We integrate the leap sensor into our
viewer to replace the usage of the regu-
lar mouse. We add the following fea-
tures into our program: object grab-
bing with one hand; object rotating
with one and two hands; zooming with
two hands; pointer function with one
and two hands. While the project focus
on real 3D visualisation, we also work
with OCULUS Virtual Reality Glasses.
This glasses are a virtual reality head-
mounted display developed by Oculus
VR. The glasses track your head move-
ment and put the viewer in the middle
of the scene, while the head mounted
display renders the picture to view ev-
erything in real 3D from viewpoint of
the person. We successfully integrate
the Oculus Rift into our viewer. The
program can recognise the connected
devices and renders the scene on the
glasses monitor in a right form. With
the help of the glasses you can move
your head to follow the object move-
ment more easily. We pay a great atten-
tion to create the feeling of the virtual
reality as real as possible. We success-
fully integrate the LEAP sensor and the
OCULUS Rift to work together. It means
you can use both tool at the same time.

While the project focuses also on
the photo realistic post-processing of
the acquired data, we chose the Blender
project as an open source software to
create adequate materials, textures and
scenes. It is a modelling and rendering
program that can create photo realistic
pictures and animations. The 3D model
of the liver is imported into the Blender

and by help of our own texture materi-
als and by using both Blender’s render-
ers a real photo-realistic liver model is
created(Figure 7).

Figure 7: Results of final 3D visualization

Post-processing

This model is exported and used in our
own visualiser. Moreover we ready also
the the 3D model and the 2D texture
for visualisation of the human kidney.

Due to the enormous data process-
ing we used the HPC environment. It
was essential in the case of image seg-
mentation and photo realistic visualisa-
tion. During our work we used the HPC
environment involving the coprocessors
NVIDIA Tesla and Intel Xeon Phi.

Results

Our final solution can use the auto-
matic image segmentation of medical
images to visualise the liver in a precise
and realistic 3D way. The application
uses the latest 3D visualisation technol-
ogy involving the photo realistic post-
processing of the acquired data and it is
enabled for the users to control the visu-
alised scene by an unconventional LEAP
controller interactively even in the vir-
tual reality environment(Figure 6). To
achieve the results, we exploit the latest
HPC environment involving GPU and
CPU coprocessors.

In the future we plan to extend our
solution to visualise the full human
body based on CT image segmentation.
Following this way we have been ready
already with the 2D texturising of the
human kidney(Figure 8).

Figure 8: Texture on the 3D kidney

References
1 Block-matching and 3D filtering (BM3D) algorithm

and its extensions. http://www.cs.tut.fi/
~foi/GCF-BM3D/, 2015.

2 P. Strakos, M. Jaros, T. Karasek, L. Riha, M. Jarosova,
T. Kozubek, P. Vavra and T. Jonszta Parallelization of
the Image Segmentation Algorithm for Intel Xeon Phi
with Application in Medical Imaging. Proceedings Of
The Fourth International Conference On Parallel, Dis-
tributed, Grid And Cloud Computing For Engineering,
doi:10.4203/ccp.107.7, 2015.

PRACE SoHPCProject Title
Medical image segmentation and
visualisation

PRACE SoHPCSite
VSB-Technical University of Ostrava,
IT4Innovations, Czech Republic

PRACE SoHPCAuthors
Laszlo Kovacs, [University of
Debrecen,Faculty of Informatics]
Hungary

PRACE SoHPCMentor
Strakos Petr, VSB-Technical
University of Ostrava, IT4Innovations,
Csech
Lubomir Riha, VSB-Technical
University of Ostrava, IT4Innovations,
Csech Laszlo Kovacs

PRACE SoHPCContact
Lubomir, Riha, VSB âĂŞ Technical University of
Ostrava, IT4Innovations
Phone: +420 59 732 9651 E-mail:
leon.kos@lecad.fs.uni-lj.si

PRACE SoHPCSoftware applied
Matlab, Blender, OpenSceneGraph, Leap Motion,
Oculus Rift

PRACE SoHPCMore Information
www.virtouso.org

PRACE SoHPCAcknowledgement
I would like to say thank you my mentors about
tutoring me and the other colleagues of IT4I at Ostrava
about supporting me during two months.

PRACE SoHPCProject ID
1514

45

Optimisation and paralellisation of an LQCD software package for Xeon Phi

Making Quarks Phli
Further
Sarah Jenkins

Quantum Chromodynamics is the theory
of the strong nuclear force, a
fundamental force describing the
interaction between quarks and gluons.
Simulations of these interactions require
the computation of large, extremely
sparse linear systems which need a
considerable amount of computational
power. Therefore, optimisation of current
software packages is an important step
in improving the accuracy of these
simulations by improving the statistical
precision at fixed costs.

Quantum chromodynamics
(QCD) is the theory of the
strong interaction, one of
the four fundamental forces

of nature. It describes the interac-
tion between quarks and gluons which
make up hadrons such as protons and
neutrons. In normal low tempera-
ture/density conditions quarks and
gluons are permanently confined into
hadrons. This means that a single quark
cannot be isolated by a microscopic
distance. However, QCD can also be
used to calculate the properties of the
quark gluon plasma that may have ex-
isted a couple of milliseconds after the
big bang. During this time, due to the
extreme temperatures, the quarks were
unconfined.

At short distances or high tempera-
tures the effective coupling is small and
the problem can be solved using pertur-
bation theory.

Quarks

Gluons

Figure 1: An Illistration of the lattice ap-
proximation, representing the lattice where
the quarks/gluons are placed

However, as the distance is in-
creased or the temperature decreased
the interactions become too strong and
perturbation theory is no longer an ac-
curate approximation.

To solve larger systems a non-
perturbative technique is necessary. The
technique most often used is Lattice
Quantum Chromodynamics (LQCD),
which regularises QCD by introducing
a space-time lattice with quarks occu-
pying the lattice sites and gluon’s be-
ing the links that join them together as
shown in figure 1.

Dz = b (1)

The computational challenge comes
from repeatedly solving very large,
sparse linear systems such as the one
shown in equation 1. As the matrix (D)
is extremely sparse (the number of non-
zero entries only increases linearly with

46

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e

Array Size (10
5
)

Intrinsics

Not intrinsics

26000.0

28000.0

30000.0

32000.0

34000.0

36000.0

 0 50000 100000 150000 200000 250000 300000

T
im

e

Array Size

Double

Float

25000.0

30000.0

35000.0

40000.0

45000.0

50000.0

55000.0

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

T
im

e

Array Size

Double

Float

Figure 2: The time required to access array elements increases as the array size increases. The first figure shows how the code was
improved by hand optimisation using Intel intrinsic. The second figures show how single/double precision operators effect the access
time.

the matrix dimension(N), rather than
N2) it is most efficiently solved using a
iterative solver. One such solver is the
conjugate gradient (CG) method which
can be used to find an approximate so-
lution for z. However, even using these
methods the simulations still involve
a large amount of computational re-
sources as the lattices can be as large
as 144 · 643 lattice points or a value of
N equal to 452,984,832. The dynam-
ics and interactions of the quark fields
and gauge fields are described using the
equation below:

(D +m)ψ(x) = η(x) (2)

ψ and η represent quark fields and
the gluon’s are represented by the Dirac
operator(D) which is given by:

D =
3∑

µ=0

γµ ⊗ (∂µ +Aµ) (3)

In order to use these equations they
must be discretised. However, this as-
sumes that the lattice spacing is non
zero and therefore the simulations must
be extrapolated to the continuum limit.
For this the simulations must be re-
peated at multiple sufficiently small lat-
tice spacings.

What is the problem in repeatedly
solving large matrices? The problem
comes from the fact that large matrices

use more of the limited memory avail-
able on the computer and as the matrix
size increases the information will no
longer fit in the fast cache memory and
therefore has to be stored in main mem-
ory, which takes longer for the computer
to access. On the Xeon Phi, it takes ap-
proximately 2 cycles to access the L1
cache, more than 20 cycles to access the
L2 cache, and over 300 cycles to access
the data stored in the GDDR memory.
Therefore, ideally, all the data should
be stored in the cache. The first step
of the project was to calculate the size
of the different caches in a typical ar-
chitecture. A simple programme was
written which calculated the time taken
to multiply together two vectors:

a = ca + b (4)

The results are shown in the figure
above (there was too much noise to see
the L1 cache). This gives an L2 cache
of 32KB and an L3 cache size of 480KB,
this is approximately the same as ex-
pected for my laptop.

Now we want to calculate the num-
ber of FLOPS, this is the number of float-
ing point operations per second and can
be calculated using equation 5, where
N is the number of floating point opera-
tions and t is the total time. A Floating
point operation is any mathematical op-
eration which uses floating point num-
bers. Therefore, the number of FLOPS is

an important measure of a programmes
speed and efficiency. For the simple vec-
tor multiplication and vector addition
shown in (4) each element of the result
vector requires two floating point oper-
ations. Therefore, the total number of
floating point operations is two times
the array size.

FLOPS =
N

t
(5)

The parts of the programme that
take the most time are the memory
accesses, therefore, ideally you want
the smallest number of memory ac-
cesses per floating point operation. This
should give a higher number of FLOPS.

The next step of the project is to
attempt to improve the efficiency of
the code. This is done using assem-
bly level language, the so-called intel
intrinsics. Whilst being more complex
for you to programme, this is much
simpler for the compiler to understand,
because it mostly has a 1:1 mapping
to assembler instructions. This means
that you can create a programme which
is optimised for a specific CPU, which
should increase the efficiency of the pro-
gramme. My hand optimised code was
found to greatly increase the bandwidth
by decreasing the time taken to do each
floating point operation. This is shown
in figure 2, for the intrinsics version
the code was much more efficient es-
pecially at small array sizes. At larger

47

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

 0 50 100 150 200 250

F
L
O

P
S

 (
x
1
0

9
)

Threads

V=16, T=64

V=24, T=64

V=32, T=64

V=16, T=128

V=24, T=128

V=32, T=128

V=16, T=256

V=24, T=256

0.0

50.0

100.0

150.0

200.0

250.0

300.0

 0 20 40 60 80 100 120 140 160 180 200

F
L

O
P

S
 (

x
1

0
9
)

Time

double V=24, T=64

double V=24, T=96

double V=24, T=128

double V=24, T=160

single V=24, T=64

single V=24, T=96

single V=24, T=128

 single V=24, T=160

0.0

50.0

100.0

150.0

200.0

250.0

300.0

 0 20 40 60 80 100 120 140 160 180

F
L

O
P

S
 (

x
1

0
9
)

Time

single V=16, T=128

single V=24, T=128

single V=32, T=128

double V=16, T=128

double V=24, T=128

double V=32, T = 128

Figure 3: FLOPS for different LQCD systems as varied in space and time. This reaches a massive 300GFLOPS when run on the Xeon Phi.

array sizes, there is less of a difference
because the floating point operations
make up a smaller amount of the total
time in comparison to the time taken to
retrieve the information from memory.

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

F
L
O

P
S

 (
G

B
/s

e
c
)

Array Size (KB)

Vector Addition

Matrix Multiplication

Complex Matrix Multiplication

Figure 4: The change in FLOPS for different
simple functions, as you can see the simple
vector addition has the highest number of
FLOPS

Next a more complicated function
was used, a matrix multiplication and
a complex matrix multiplication. This
is to replicate the function used in the
LQCD code.

D00 D01 D02

D10 D11 D12

D20 D21 D22

z00
z10
z20

 =

b00
b10
b20

(6)
The FLOPS were calculated as the

array size was increased and compared
for each array size for the three different
functions. As you can see the FLOPS are

constant, until the array will no longer
fit into one of the caches. Therefore ide-
ally, you want to run the LQCD simula-
tions just before the cache misses occur.
Ideally at around 50,000KB, as this is
large enough for the simulation to give
realistic results but not so large that the
memory wont fit in the L2 cache.

To test this, the LQCD package was
run for different system sizes and for
different times. This was done for dif-
ferent numbers of threads to measure
the level of parallelisation. For high
numbers of threads and large system
sizes the programme reached a massive
300GFLop/s. This is because as the sys-
tem size increases, the CPU can do a
better job of prefetching the data, as the
patterns of which data will be accessed
next are more predictable.

This knowledge was then used to
improve the LQCD package, by increas-
ing the parallelisation of parts of the
code using Simultaneous Multithread-
ing (SMT). Here, we used pthreads
rather than the more common openMP,
in order to have maximal control over
the threading.

In conclusion, this time at SoHPC
has been a really useful learning expe-
rience, I have learnt a great deal about
code optimisation and parallelisation
and the best methods of optimising dif-
ferent codes for different CPU’s.

PRACE SoHPCReferences

1 Frommer, A., Kahl, K., Krieg, S., Leder, B., and
Rottmann, M. Adaptive aggregation based domain
decomposition multigrid for the lattice wilson dirac op-
erator. J.Sci.Comput. 36 (2014),

2 Gattringer, C., Lang, C., Quantum Chromodynamics
on the Lattice Springer,

3 DeGrand, T., DeTar, C., Lattice Methods for Quantum
Chromodynamics Springer,

4 Teukolsky, S., Press, W., Vetterling, W., Flannery, B.,
Numerical Recipes in C Cambridge,

PRACE SoHPCProject Title
Making Quarks Phli Further

PRACE SoHPCSite
Forschungszentrum, Juelich,
Germany

PRACE SoHPCAuthors
Sarah Jenkins, [University of York,]
United Kingdom

PRACE SoHPCMentor
Stefan Krieg, Forschungszentrum,
Juelich, Germany Sarah Jenkins

PRACE SoHPCContact
Leon Kos
Phone: +12 324 4445 5556
E-mail: leon.kos@lecad.fs.uni-lj.si

PRACE SoHPCSoftware applied
Virtuoso

PRACE SoHPCMore Information
www.virtouso.org

PRACE SoHPCAcknowledgement
I would like to thank my supervisor Stefan Krieg. I
would also like to thank Eric Gregory for all of his help
and advice, Ivo Kabadshow for co-ordinating the
projectand everyone else here at the JSC. I would also
like to thank Leon Kos and everyone at the BSC for all
their help during the training week.

PRACE SoHPCProject ID
1515

48

Unified at last – 101 guide to GPU/CPU portable code

Parallel FMM on a GPU
a CUDA/C++ love story
Albert Garcia

The simulation of interactions in huge particle ensembles is

a vital issue in current scientific research. The FMM is able

to compute those Coulomb interactions with extraordinary

speed and controlled precision. A key part of this method is

its shifting operators, which usually exhibit O(p4) complexity.

There exist special rotation-based operators with O(p3)
complexity that will be used instead. However, they are still

computationally expensive. In this work, we will parallelise

those operators and deploy the implementation on a GPU

to accelerate the FMM.

THE simulation of dynamical sys-
tems of particles, usually under
the influence of physical prop-
erties, such as gravitational or

electrostatic forces, is a crucial issue in
scientific research. This problem is com-
monly referred to as the N-body prob-
lem. The main obstacle of that prob-
lem is the absence of an analytical solu-
tion when the number of bodies, N , is
greater than three total bodies.

However, those simulations can be
solved using an iterative numerical ap-
proach. Therefore, such methods com-
pute the total force exerted on each par-
ticle and their potentials at discrete time
steps, then compute the resulting ve-
locities and update the positions of the
particles accordingly.

A typical example is the simulation
of a system of particles with electric
point charges qi. The force F ij of a par-
ticle j with charge qj acting on a par-
ticle i with charge qi is defined by the
following expression:

F ij =
qiqj
|rij |3

rij ,

where rij is the vector between par-
ticles i and j.

Given that, the total force F i acting
on each particle i can be expressed as
the following summation:

F i =
N∑

j=1

qiqj
|rij |3

rij (i 6= j) .

As we can observe, calculating the
forces acting on a single particle has
a computational complexity of O(N)
since we have to compute all pairwise
interactions of the current particle with
the rest of the system. Therefore, a
naïve algorithm for computing all forces
F i exhibits O(N2) complexity.

The remainders of the simulation
steps have a complexity of O(N) since
computing the velocities by using the
forces just needs to iterate once over
each particle and the same applies for
the position update step. In this regard,
the quadratic complexity may be negli-
gible for a small number of particles,
but interesting and useful simulations
often involve huge particle ensembles.

Hence, the simulation will be consider-
ably slowed down to a point in which it
is non-viable to apply this kind of sum-
mation method. Fortunately, due to the
increasing importance of N-body simu-
lations for research purposes, fast sum-
mation methods have been developed
throughout the latter years.

Arguably, the most remarkable one
is the Fast Multipole Method (FMM), in-
troduced by Greengard and Rokhlin.3

This method is considered one of
the TOP10 algorithms of the past cen-
tury2 together with other notable ones
as the Monte-Carlo method, the Quick-
sort algorithm or the Fast Fourier trans-
form. The mathematician Barry Cipra
perfectly summarized1 the functioning
of the algorithm:

"This algorithm overcomes one of the
biggest headaches of N-body simulations:
the fact that accurate calculations of the
motions of N particles interacting via
gravitational or electrostatic forces (think
stars in a galaxy, or atoms in a protein)
would seem to require O(N2) computa-
tions. The fast multipole algorithm gets

49

by withO(N) computations. It does so by
using multipole expansions (net charge
or mass, dipole moment, quadrupole, and
so on) to approximate the effects of a dis-
tant group of particles on a local group.
A hierarchical decomposition of space is
used to define ever-larger groups as dis-
tances increase."

Theoretical Background

As we previously mentioned, the FMM
is a fast summation method which is
able to provide an approximate solu-
tion to the calculation of forces, poten-
tials or energies within a given preci-
sion goal, namely ε. The method ex-
hibits linear computational complexity,
mainly thanks to its sophisticated algo-
rithmic structure. In this section we will
describe the core aspects of the method.

Particle Grouping

The main idea behind the FMM can
be informally described as the following
intuitive concept: the effect that parti-
cles, which are close to the observation
point, also named target, have over that
target particle is dominant compared
to the effect produced by remote parti-
cles. It is important to remark that the
contribution of those remote particles
is not zero. Oherwise, we will be resort-
ing to what is known as cut-off scheme.
Those methods present a O(N) com-
plexity too, but lack error control capa-
bilities. That is why they are not used
for accurate simulations.

m

n

(a) m · n inter.

1

n

(b) n interactions

Figure 1: Figure (a) shows the direct inter-
actions of the particles of one cluster with
all particles in the other. Figure (b) shows
the interactions via a target pseudo-particle.

The FMM is based on the idea that
a remote particle from a spatial clus-
ter will have almost the same influence
on the target particle as another one
from the same cluster, given that the
inter-cluster distance is large enough.
This means that all particles in the re-
mote cluster can be grouped together
into a pseudo-particle. By doing this,

the amount of interactions to be com-
puted is reduced (see Figure 1).

Space Subdivision

In order to implement the spatial
grouping idea, it is required to sub-
divide the simulation space to gen-
erate particle groups. The FMM uses
a space decomposition scheme based
on a recursive decomposition in cubic
boxes. Firstly, the spatial simulation do-
main is enclosed in a three-dimensional
box. Then, the cube is subdivided by
planes parallel to its faces which pass
through the box centroid. This decom-
position technique generates eight dif-
ferent child cubes which are recursively
subdivided. This hierarchy of cubes is ar-
ranged in a tree, namely an octree. The
space is subdivided until a predefined
depth d on that tree is reached. Figure
2 shows an example of this recursive
subdivision.

(a) d = 0 (b) d = 2

Figure 2: Space subdivision using an octree,
visualized in a 2D plane.

Interaction Scheme

As we previously mentioned, the
FMM takes advantage of grouped re-
mote particles to reduce the amount of
interactions to be computed. This inter-
action scheme is the main characteristic
of the FMM algorithm. Figure 3 shows
the interaction matrix of a distribution
of 16 particles using the direct summa-
tion method and the FMM.

As we can observe, the direct sum-
mation scheme computes a total of
N(N − 1)/2 interactions. This is due
to the interaction symmetry and the
dropped out self-interactions. On the
other hand, in the FMM scheme the
source and target particles are grouped
as the distance increases thus dropping
the number of interactions significantly.

Multipole Expansions

In order to accurately depict the
charge distribution of the created par-

ticle groups, the FMM resorts to mul-
tipole and local expansions. A group
could be represented by reducing all
the charges to a common point charge
or monopole, but this is not precise
enough to represent the charge distribu-
tion inside that cluster. Instead of doing
that, the group is represented by a series
of increasingly higher-order multipoles.
The series is truncated to a certain order
p, this parameter of the FMM controls
the final accuracy and balances the com-
putational load.

(a) Direct

(b) FMM

Figure 3: Figure (a) shows the interaction
matrix of 16 particles (orange bullets) us-
ing a direct summation scheme. Figure (b)
depicts the interaction matrix via the FMM
scheme, the dark-grayed cells represent di-
rect neighbors. Each square of a matrix
represents a particle-particle or multipole-
multipole interaction. Crossed out cells rep-
resent interactions from particles with them-
selves, which have to be left out.

The solution for the potential Φ of
a particle P consists of two separate
solutions: a multipole expansion with
moments ωlm for a remote part outside
the sphere, and a Taylor-like expansion

50

with moments µlm for the inside.
The multipole expansion is defined

by the following theorem: suppose that
k particles of charges qj , with j ∈
{1, ..., k} are located at the points aj =
(aj , αj , βj), with j ∈ {1, ..., k} and
|aj | < â inside the sphere. Then for any
P = (r, θ, φ) ∈ R3 with r > â, the po-
tential is given by:

ΦP =

p∑

l=0

l∑

m=−l
ωlm(q, a)Mlm(r) .

The Taylor-like expansion is defined
by the following theorem: suppose that
k particles of charges qj , j = 1, ..., k are
located at the points Rj = (rj , θj , φj),
with j ∈ {1, ..., k} and |rj | > â outside
the sphere. Then for any P = (a, α, β) ∈
R3 with a < â, the potential is given by:

ΦP =

p∑

l=0

l∑

m=−l
µlm(q, r)Olm(a) .

Workflow

Once the core aspects of the FMM
have been reviewed, we can put them
all together to establish the general
workflow of the algorithm. Given a cer-
tain separateness criterion ws, the mul-
tipole order p and the depth of the tree
d, the FMM consists of the following
steps:

• Pass 1: Expand particles into mul-
tipole moments ωlm on the lowest
leve and shift multipole moments
ωlm up the tree.

• Pass 2: Transform multipole mo-
ments ωlm into local moments
µlm

• Pass 3: Shift local moments µlm
down the tree

• Pass 4: Compute far field con-
tributions: potentials ΦFF, forces
F FF, and energy EFF.

• Pass 5: Compute near field con-
tributions: potentials ΦNF, forces
F NF, and energy ENF.

The actual phases of the algo-
rithm are usually named passes. The
first pass corresponds to the Particle-
to-Multipole (P2M) and Multipole-to-
Multipole (M2M) operators, while the
second one is done via the Multipole-
to-Local (M2L) operator and the third

one with the Local-to-Local (L2L) oper-
ator. Those operators are responsible
for shifting the multipole expansions
up and down the tree levels, and also
for converting remote multipole expan-
sions to local ones at each level. This
article focuses on these three operators:
M2M, M2L, and L2L. More precisely, we
will highlight the M2M operator, since
the optimisations performed to it can be
ported to the other ones.

Multipole-to-Multipole Operator

The Multipole-to-Multipole (M2M)
operator is a vertical operator which
shifts the multipole coefficients up to
higher levels of the tree structure. Each
box of the 3D tree has eight child boxes
in the next lower level. The M2M op-
erator sums up all the moments of the
multipole expansions of the child boxes
at the centre of the parent box. This op-
erator is applied to each box on each
level up to the root of the tree. By do-
ing this, each box on every level holds
a multipole expansion. Since this opera-
tor is applied in the first pass, it is also
known as operator A.

a

a+ b

(a) Analytical domain.

y

x

M2M

(b) Tree view.

Figure 4: (a) shows the analytical domain
of the A operator on a 2D tree. The centers
of a sample child box and the parent one are
shown. (b) depicts the functioning of the
M2M operator for a 2D system.

From a mathematical perspective,
each child multipole expansion ωi at the
centre ai of that child box i is shifted up
to the centre a+ b of its parent box (see

Figure 4). The moments ωijk(ai) of each
child multipole expansion are shifted by
the A operator to produce the moments
ωilm(ai + bi) of the parent via:

ωilm(ai+bi) =

l∑

j=0

j∑

k=−j
Almjk (bi)ω

i
jk(ai) .

All the shifted moments of the eight
child boxes are finally added up to con-
form the multipole expansion at the cen-
ter of the parent box via:

ωlm(a+ b) =

8∑

i=1

ωilm(ai + bi) .

The described operator, and M2L
and L2L as well, have a computa-
tional complexity of O(p4). This fact
has a considerable impact when deal-
ing with high-precision simulations in
which the order of the multi-poles is
usually high. Taking into account that
the three passes take a considerable
amount of the total execution time of
a FMM step, it is critical to reduce the
cost of the mathematical operators in
order to achieve faster simulations.

Rotation-based Operators

A set of more efficient operators
with O(p3) computational complexity
scaling were proposed by White and
Head-Gordon9 . The reduced complex-
ity is achieved by rotating the expan-
sions so that the translations or shifts
are performed along the quantisation
axis of the boxes (see Figure 5). This
reduces the 3D problem to a 1D one.

Along the quantisation axis, the an-
gles θ = 0 and φ = 0 so the operators
take an especially simplified form8 . In
order to rotate the multipole or local
expansions, Wigner rotation matrices
are applied. Two successive rotations
are performed: first one about the z-
axis with a rotation angle φ, followed
by another one about the new y-axis
with a rotation angle θ. Those angles
correspond to the polar and azimuthal
angles of the shift vector d, depicted as
R in Figure 5.

The multipole moments of an expan-
sion with respect to a coordinate system
which has been rotated twice, first φ de-
grees about the z-axis and then θ about
the y-axis, can be expressed as a linear
combination of the moments with re-
spect to the original coordinate system
via:

51

box A

box B

R

z

(a) Interaction set

ωlm → ω′lm

z

(b) Rotate ωlm

ω′lm

µ′lm

R

ω′lm → µ′lm

z′

(c) Translate ω′
lm

µ′lm → µlm

z z ′

(d) Rotate back µ′
lm

Figure 5: Application of the rotation operator to align certain multipole expansion with another, step-by-step diagram. Figure reproduced
from reference5 .

cmkl =

√
(l − k)!(l + k)!√

(l −m)!(l +m)!
,

ω′lm =

l∑

k=−l
cmkl dmkl (θ)eikφωlk .

The same applies for the local mo-
ments µ′l,m of an expansion, which are
expressed as a linear combination of the
moments µl,m with respect to the origi-
nal coordinate system, via:

µ′lm =
l∑

k=−l
ckml dmkl (θ)eikφµlk .

Our focus during this work was
placed on these O(p3) operators, and
as we previously said, on the M2M one
since it is the simplest and the optimisa-
tions applied to it can be ported to the
other ones.

Goals

The goals of this project were the fol-
lowing ones:

• Explore the possibilities of using
Graphics Processing Units (GPUs)
and Compute Unified Device Ar-
chitecture (CUDA) to develop a
parallel version of the M2M O(p3)
operator for the FMM.

• Minimize the impact on the cur-
rent project, and try to maintain a
single codebase for both CPU and
GPU operators.

• Make use of C++11 features if it is
possible, and prepare the code for
moving to C++14 eventually.

In order to accomplish those goals,
we divided the project into two main
tasks: set up an application layout based
on abstraction layers to work with the
GPU or the CPU indistinctively, and de-
velop a set of CUDA-accelerated kernel
functions for the rotation, operator, and
rotation backwards steps for the M2M
O(p3) operator.

Abstraction Layers

From the application point of view, the
implementation can be seen as a stack
of abstraction layers, each one on top
of another, having different responsibili-
ties. By using this layered approach, the
internal functionality of a layer can be
changed without having to change the
other ones. This design produces a flex-
ible application, and it is implemented
using C++templates in the different lay-
ers. Figure 6 shows the layered view of
the current implementation.

As we can observe, the program is
composed by five well distinguished lay-
ers: the algorithm layer, the data struc-
tures, the pool allocator, the allocator
and the memory. The top layer contains
the logic for the FMM itself, i.e., the im-
plementations of all the passes. In our
case, we keep the focus on the three
aforementioned operators: M2M, M2L
and L2L.

Furthermore, templates allow us to
choose between the O(p4) or O(p3) op-
erators. It is important to remark that,
thanks to the usage of an inner ab-

memory unified memory GPUCPU

allocator
<{std/cuda}::allocator>

std cuda

pool
allocator

<{std/cuda}::allocator>

data
structures

<float/double>
RRRωωω POD

algorithm <p3/p4> M2LM2M L2LCPU &r GPU *p + #macros

Figure 6: Layout of the application with five abstraction layers and a single codebase.

52

straction layer to convert references to
pointers, and also a set of preproces-
sor macros to determine loop ranges
depending on whether we want to exe-
cute the operator on the GPU or on the
Central Processing Unit (CPU), a single
merged codebase exists for both imple-
mentations.

Those implementations need data
structures to store the information
which is being processed. In this regard,
the algorithm layer resorts to the data
structures one. This layer contains the
data types needed for the algorithm,
e.g., coefficient matrices (ω or µ), ro-
tation matrices (R), or other simple
data structures, together with their in-
ternal logic. Thanks to the templated
design, we are able to choose the preci-
sion of the underlying data types inde-
pendently.

At last, the data structures need to
allocate memory for storing their infor-
mation. The allocator layer is respon-
sible for this action. The data struc-
tures delegate the memory allocation
to an allocator which will perform the
corresponding calls for allocating and
also deallocating memory. Thanks to the
templates, this action can be performed
by any allocator.

Between the data structures and the
actual allocator, an intermediate layer
exists: the pool allocator. This middle
level receives the allocation calls issued
by the data structures and serves parts

of chunks of memory which have been
previously allocated by actual calls to
the allocator layer. This layer increases
the performance of the allocation since
less calls have to be performed, and also
allows us to overcome possible alloca-
tion calls limits when using fine grained
data structures.

Apart from this layout, we devel-
oped a custom allocator for the GPU
which is able to allocate unified mem-
ory thanks to CUDA managed alloca-
tion functions. This custom allocator is
then plugged in as a template param-
eter to our allocator layer. In this way,
we can allocate space in the GPU with-
out adding additional logic to the data
structures or the algorithms.

CUDA Implementation

Once this layout was deployed, we were
able to start running the operators on
the GPU. For that purpose, we imple-
mented three separated CUDA kernels:
rotation, M2M operator, and rotation
backwards. Those kernels are executed
sequentially by a GPU stream so the full
M2M can be executed on a GPU with a
simple function call.

The first step consisted of exposing
enough parallelism for the GPU, i.e.,
launching enough threads with enough
work to keep the graphics processor
busy and get performance out of it by
hiding parallelism overhead and laten-

cies. In order to do that, we analysed
the main data structure handled by the
three aforementioned steps: the coeffi-
cient matrix (see Figure 7).

After doing that, we decided a par-
allelisation schema in which we will as-
sign one block to each column of each
coefficient matrix. Then our grid has
a size of poles × boxes. The grid x di-
mension corresponds to the number of
poles that the multipole requires, i.e.,
l-axis in the coefficient matrix. The grid
y dimension corresponds to the num-
ber of boxes or coefficient matrices that
we have to process. In addition, each
block will have a 32× 4 threads configu-
ration, so each one is composed of four
warps. Those warps will be assigned to
individual elements of a column of the
coefficient matrix depending on their
corresponding block. Figure 7 shows an
example of block and warp work distri-
bution.

Once we have deployed an appro-
priate way to expose parallelism for the
GPU, we implemented the kernels for
the rotation, M2M operator, and rota-
tion backwards. We took advantage of
a set of CUDA basic techniques and ad-
vanced optimisation tricks, including ex-
ternal libraries, and architecture specific
operations. The features that we imple-
mented are:

• Flexible and scalable grid-strided
loops4 so that we can deal with
any problem size in an efficient

m

l

more precision

less precision

alm + iblm

Multipole moment: ωlm

ωlm ∈ C

or local moment: µlm

µlm ∈ C

(a) Coefficient matrix

w0

w1

w2

w3

w0

w1

w2

w3

w0

w1

w2

w3

w0

w1

w2

w3

m

l

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10b11b12b13b14b15

(b) GPU distribution

Figure 7: Figure (a) shows a representation of the coefficient matrix datatype with an arbitrary number of 15 poles. As the coefficient
matrix grows, the precision increases, so a higher number of poles leads to more accurate results. Both axes are in the range [0, p], this
produces a coefficient matrix of (p+ 1)(p+ 2)/2 coefficients if only the upper part is considered. The coefficients, which are represented
as square blocks in the picture, are multipole or local moments depending on the type of the expansion. Each one of them represents a
complex number. Figure (b) shows the block and warp distribution strategy to expose parallelism, also an example of work assigned to
warp zero from block ten is shown.

53

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

10−3

10−2

10−1

100

4.0×

cr
os

so
ve

r
p
=

7

Poles

R
un

ti
m

e
(s

)

CPU (Intel Xeon E5-2650)

GPU (NVIDIA Tesla K40m)

Figure 8: Timing results of the experimentation carried out to determine the performance of the CUDA-accelerated implementation. The
results correspond to a full M2M pass over the lowest level of a tree with d = 4 using double precision.

manner.

• Fully coalesced accesses to the
kernel data structures.

• Fast warp reductions6 using CUDA
Unbound (CUB)7 .

• Launch bounds to help the com-
piler optimize the kernels if we
know the block size in advance.

• Precomputed factors to save
global memory round trips.

Results

Figure 8 shows the results of our exper-
imentation with the CUDA-optimized
M2M operator against a thoroughly op-
timized CPU version. The experimen-
tation consisted of a set of full M2M
passes with varying number of poles.
The experiments were run on the JUHY-
DRA cluster (see Figure 9) whose speci-
fications are the following ones:

• MEGWARE MiriQuid GPU-Server
(2-Socket ES-2600)

• 2× Intel Xeon E5-2600, 8 cores,
2.0 GHz, 20 MiB cache

• 8× 8 GiB DDR3, 1600 MHz, ECC

• 2× 1 TiB SATA HDD, 7200 rpm

• 4× PCI-Express Gen.3.0 ×16 slots
for dual-slot GPUs

• 2× NVIDIA Tesla K20Xm
(K20Xm)

• 2× NVIDIA Tesla K40m (K40m)

Figure 9: Top view of the JUHYDRA cluster.

The GPU version was executed on
a K40m. As we can observe, the se-
quential version is faster when using
up to 6 poles. After 7 poles, the CUDA-
accelerated M2M starts getting faster
than the optimised CPU one. In the
end, for 30 poles, which was the biggest
number of poles tested, an approximate
speedup of 4.0× is achieved, compared
to the single threaded CPU version.

Conclusion

In this work we have shown how to in-
tegrate GPU and CPU code into a single
codebase using a flexible design, based
on a set of abstraction layers to decou-
ple responsibilities. We also have shown
how the M2M operator can be accel-
erated using CUDA features. There is
still room for improvement and the fi-
nal speedup is not too high. However,
all the optimisations can be ported to
the M2L operator which exhibits a sig-
nificantly higher computational load so
a considerable gain is expected by par-
allelising that operator.

References
1 B.A. Cipra. The best of the 20th century: editors name

top 10 algorithms. SIAM news, 33(4):1–2, 2000.

2 J. Dongarra and F. Sullivan. Guest editors introduc-
tion to the top 10 algorithms. Computing in Science
Engineering, 2(1):22–23, Jan 2000.

3 L. Greengard and V. Rokhlin. A fast algorithm for
particle simulations. Journal of computational physics,
73(2):325–348, 1987.

4 M. Harris. Cuda pro tip: Write flexible kernels with
grid-stride loops.

5 I. Kabadshow. Periodic boundary conditions and
the error-controlled fast multipole method, volume 11.
Forschungszentrum Jülich, 2012.

6 J. Luitjens. Faster parallel reductions on kepler.

7 D. Merrill. Cub, 2013. GPU Technology Conference.

8 S. Pfreundschuh. Implementation of a rotation opera-
tor for the fast multipole method, 2014.

9 C.A. White and M. Head-Gordon. Rotating around the
quartic angular momentum barrier in fast multipole
method calculations. The Journal of Chemical Physics,
105(12):5061–5067, 1996.

PRACE SoHPCProject Title
A Fast Multipole toolbox for a GPU
cluster

PRACE SoHPCSite
Juelich Supercomputing Centre,
Germany

PRACE SoHPCAuthors
Albert Garcia, University of Alicante,
Spain

PRACE SoHPCMentor
Andreas Beckmann, JSC, Germany Albert Garcia

PRACE SoHPCContact
Ivo, Kabadshow, JSC
Phone: +49 2461 61-8714
E-mail: i.kabadshow@fz-juelich.de

PRACE SoHPCSoftware applied
C++, CUDA, GCC, Boost, CLANG

PRACE SoHPCAcknowledgement
I would like to thank the Juelich Supercomputing
Center for their hospitality and for letting me use their
resources during my stay. I would also like to express
my gratitude to my mentors, Ivo and Andreas for the
hours of coding, writing and learning. In addition, I
would like to thank Jiri Kraus from NVIDIA for his
support about GPU computing. Honorable mention
awarded to Willi Homberg for keeping JUHYDRA alive
despite our furious efforts to crash it. At last, thanks to
PRACE and the SoHPC organisers for their effort which
made this great opportunity possible.

PRACE SoHPCProject ID
1516

54

Visualization and GPU Performance Analysis of Quantum Espresso

Bringing Hybrid
Architecture’s power for
Atomistic Simulations
Jan Hreha

Computer simulations of atoms and
their electronic structure from first
principles of Quantum Mechanic
provide us unique view into the
nano-scale world. However they
demand high computational
resources for precise results. We are
seeking an answer whether utilising
existing tools on new trendy GPU and
Acceleration cards architectures
brings desired speedup.

Scientific motivation

The microscopic universe of
atoms and molecules differs as
much from our daily macro-
scopic experience as ocean’s

depths from the shore. Laws of Physics
apply to the elementary particles con-
trary to our intuition. It is difficult to
find the right language when describing
microscopic phenomena. Luckily there
is mathematical language of Quantum
Mechanics in which we can formulate
statements and predictions. For many
particle phenomena, like the properties
of material consisting of enormous num-
ber of particles we utilise simplification
models such as DFT (Density Functional
Theory) to be able to calculate anything.
Formulae and calculations are so com-
plicated, that we have to employ com-

puters to solve all but trivial cases.
Recent algorithms and tools provide

remarkable results in fields such as Ma-
terial Science, where we can compose
materials with mechanical and electric
properties tailored for specific use, and
even model biochemical processes in
cells for medicine and pharmaceutical
industry.

Use those big machines

However this is possible only at high
cost of enormous computational re-
sources (supercomputers). Hence adopt-
ing existing proved software tools for
new massively parallel architectures is
promising speedup in both time and
hardware expenses.

Parallel world

Since the year 2000 there was not much
speedup in frequency with which the
processors perform simple numeric op-
erations, but we still follow Moore’s law
of doubling their computational capac-
ity every two years. That progress is
achieved by doing sophisticated oper-
ations and calculating them simultane-
ously.

Hybrid hardware

Modern computers and even smart-
phones utilise heterogeneous process-
ing units - a small number of general
purpose processing (CPU) cores with
specialised chips for accelerating differ-
ent specific kinds of calculations, e.g.
graphics (GPUs).

55

Building High Performance Comput-
ing infrastructure leads into grouping
and interconnecting computing nodes
which themselves contain multiple pro-
cessors, each with many cores. Such
clusters may contain from hundreds up
to millions of cores. In the latter case,
reasonable distribution of work and as-
sociated data is a challenge even for
technology leaders. Independent pro-
gram processes communicate via MPI
messages. OpenMP governs cooperation
between computation threads when
processing data in shared memory.

New programming paradigms

The power of the accelerators lays in
their ability to perform short similar rou-
tines in parallel over bigger chunks of
data divided into smaller pieces.

GPUs run so called kernel programs
written in special language (mainly
CUDA), while Intel Phi cards employ
60 cores able to accelerate standard
computer code Math Kernel Library rou-
tines.

Therefore, to utilise the computing
capacity of hybrid computation environ-
ment one must learn completely new
ways of programming.

The easier way is to decorate your
serial code with Pragma Directives.
These serve as suggestions for the com-
piler how the code parts may run in par-
allel if possible. Then, in runtime, frame-
works such as OpenACC or OPENMP ad-
minister parallelism according to host
architecture. The harder way leading
to better performance is programming
your own parallel functions and han-
dling all the cooperation manually. At
least for standard tasks you can take
advantage of linking many parallel li-
braries already tuned by experts.

Application

We were given an opportunity to try to
build and run accelerated simulations
on different architectures. We have be-
come acquainted with six PRACE part-
ner’s clusters in Hungary and one nVidia
cluster in Italy. Thus we have worked
with both AMD Opteron and Intel Xeon
processors of different generations. In

addition we have tried several type
of accelerators: dual GPU nVidia Tesla
M2070 with Fermi architecture, dual
GPU nVidia Tesla GPU K20x with Kepler
microarchitectre and even the newest
nVidia GPU model K80 (Kepler). More-
over we have also tested Intel Xeon Phi
x100 acceleration cards with 60 x86
cores.

Building PRACE partner’s simulation
software Quantum Espresso1 means
compiling the source code and linking
it with proper libraries. We have got-
ten familiar with the whole process of
setting up right software environment
on given platforms. We got some expe-
rience with GNU and Intel Compilers,
various Open/Intel MPI versions com-
piled with different compilers. We have
even succeeded in installing and setting
up the newest Intel Composer suite.

The most problematic part was link-
ing Quantum Espresso to ScaLAPACK
(ScaLAPACK stands for the whole fam-
ily of parallel algebraic solvers) libraries.
The built-in configuration script was in-
sufficient, vendors documentation poor
and online tutorials may work only on
author’s configuration.

Results

As a benchmark we have used Struc-
tural optimisation for 109 atoms sam-
ple of crystalline silica from PRACE part-
ners benchmark package.2

In the following section we present
results calculated on cluster Debrecen2
(HP SL250s) with two 8-cores Xeon E5-
2650 v2 CPUs per node accompanied
with dual nVidia K20 GPUs.

Figure 1: Speedup comparison: CPUs only
versus one and two GPUs respectively.

As the main result we may present
GPU caused speedup of factor nearly
2.4. When using 2 GPUs in dual mode,
the speedup factor is over 2.6.

Then we focused on scaling the run
over more resources. The time of calcu-
lation on fully loaded accelerated nodes
has saturated at 48 cores and 6 GPUs.

This scale is too small for first class su-
percomputers.

Therefore we have decided to exam-
ine scaling over number of GPUs, while
using only necessary CPU resources
(two MPI tasks for two GPUs per node).
We have observed exponential decay
of speedup i.e. increasing resources 8
times leads into only doubling of perfor-
mance.

Figure 2: Computation time scaling by num-
ber of GPU nodes.

To conclude our work we can say,
that new hybrid architectures bring re-
markable speedup, but the scaling of
the performance is suboptimal. More-
over building the software is often a
complicated process with high time de-
mands.

References
1 Paolo Giannozzi, Stefano Baroni et. al.: QUAN-

TUM ESPRESSO: a modular and open-source soft-
ware project for quantum simulations of materi-
als, Journal of Physics: Condensed Matter (2009),
http://www.quantum-espresso.org

2 Quantum ESPRESSO Benchmark Suite
http://tinyurl.com/QEbenchmark

PRACE SoHPCProject Title
Visualisation and GPU Performance
Analysis of PRACE Material Science
Community Code: Quantum Espresso

PRACE SoHPCSite
National Information Infrastructure
Development Institute (NIIF),
Budapest, Hungary

PRACE SoHPCAuthors
Jan Hreha, Comenius University in
Bratislava, Slovakia

PRACE SoHPCMentors
Gábor Roczei, NIIF, Hungary
Tamas Hornos, NIIF, Hungary Jan Hreha photo

PRACE SoHPCSoftware applied
Quantum Espresso, Intel Composer suite, SLURM, Vesta

PRACE SoHPCMore Information
PRACE Summer of HPC
SoHPC blogs

PRACE SoHPCAcknowledgement
I would like to thank PRACE and NIIF for the provided
HPC resources and to our mentors for friendly and
skilled guidance.

PRACE SoHPCProject ID
1517

56

Visualisation and CPU Performance
Analysis of Siesta and Quantum Espresso

SIESTA,
QE and
HPC
Juraj Mavračić

SIESTA and Quantum Espresso
mean a lot of hard work for a
supercomputer. This packages are
used to simulate matter and
materials, which is one of the most
resource demanding applications for
HPC.

Figure 1: 32 water molecules in fluid state, simulated with SIESTA

Programs like Quantum
Espresso2 and SIESTA1 make
it possible to perform ab-initio
calculations of electronic struc-

ture and molecular dynamics. Ab-initio
means that structures are calculated us-
ing first principles of theoretical physics
purely, without any empirical or experi-
mental parameters needed during the
calculation.
The results
of such cal-
culations
are the
most so-
phisticated
and advanced models of matter cur-
rently available, thus enabling us to
calculate various physical and chemical
properties of materials and molecules,
including dynamical properties like
vibration and reaction pathways.
During this project various require-
ments for successfully running of this
applications have been studied in de-
tail. Unlike widely used desktop applica-
tions, which can be run without specific
knowledge on programming and com-

puter architecture, HPC applications are
mostly much more complicated on us-
age. In order to successfully use HPC
applications a lot of preparation steps
need to be taken. The most impor-
tant step is probably the compilation of
the software on chosen HPC machines.
Since performance is the most impor-
tant factor to consider in HPC, a ma-
chine specific software configuration is

the only way to
guarantee best pos-
sible performance.
This step is also one
of the most time
consuming parts

during preparation of calculations.
In this project I focused on various as-
pects of working with supercomputers.
The compilation of Quantum Espresso
and SIESTA is only one of them. A lot of
the time was spent on self-study and get-
ting familiar with most important topics
needed for autonomous work on a su-
percomputer. In addition, various Visu-
alisation techniques have been studied.

Resources and workflow

During the project 4 of the 6 Hungar-
ian supercomputers have been used,
namely Budapest2, Szeged, Budapest
and Debrecen2. For all of the HPC ma-
chines, the SLURM scheduler is used for
submitting jobs. Once parameters for
calculations are set right, the submit-
ting of jobs is quite easy. For most of the
HPC machines we were given reserva-
tions so we could experiment straight
forward without waiting for our calcu-
lations to start.
For Visualisation, three programs have
been used extensively: VESTA, XCrys-
Den and VMD. This are the most com-
mon tools in molecular modeling. They
are capable of reading many different
file formats. However, additional tools
have been used for post-processing
during Visualisation of SIESTA output.
A lot of specific tools can be found
for free on the internet. Since I was
supposed to run jobs with different
supercomputers and different soft-
ware I even tested the trial version
of Deneb by Atelgraphics. This is a

57

Figure 2: Au-Surface standard DEISA benchmark for QE. The results are shown on the lhs, on rhs the corresponding simulation cell is
visualised. The free space in the middle is needed in order to prevent one surface of Au-atoms to interact with the other surface.

software package designed to man-
age this kind of work easily. All of the
used programs run on Linux systems.

Figure 3: Charge density in a Si crystal. Electrons are located mostly between the Si
atoms. Calculated with SIESTA.

Linux is probably the most common op-
erating system for professional scientific
usage. Therefore, I spent a lot of time on

proper configuration of my OpenSUSE
13.2 distribution. I used my laptop
mostly for accessing the supercomput-
ers but also for visualising some of the

output calculated on HPC machines.
The most difficult part was the proper
configuration of Nvidia drivers, which

are still quite buggy for Linux systems.
The configuration of SLI and glx was
very time consuming. In addition to
my local laptop, HPC machines have
also been used for Visualisation, on spe-
cialised Visualisation nodes. To use this
resources VirtualGL and VNCViewer
have been used. Before the start of
the actual calculations with SIESTA
and Quantum Espresso I did some MPI
testing to see if the SLURM scheduler
directives and the supercomputers work
properly and to get accustomed to it.
For that purpose I created a small For-
tran based MPI program containing a
Monte-Carlo algorithm.

In HPC, performance significantly de-
pends on the application which is run,
on the code itself, but also on prob-
lem sizes and data distribution. Usually,
there is a constant battle between cal-
culation and communication. In many
cases it is cheaper to perform calcula-
tions than to transfer data between dif-
ferent processors.

After getting familiar with SLURM and
MPI it was time to learn about the spe-
cific SIESTA and Quantum Espresso in-
put format. The directives are quite sim-
ilar in many of the available ab-initio
codes for materials modeling, but often
there are details which shouldn’t be left
out for the calculations to run as sup-
posed. Sample calculations and exam-
ples are probably your best friend when
starting to work with a new code of
that sort. The compilation of Quantum
Espresso and SIESTA turned out to be

58

the most difficult step in the project. For
a successful build various libraries have
to be linked during the compilation pro-
cess. This becomes quite confusing very
fast, specially if the various configura-
tion options, paths to libraries and hard-
ware specifications are not known or un-

derstood exactly. Mostly due to curiosity
I have installed Quantum Espresso in
both serial and parallel version on my
Lenovo Y500 laptop for comparison. I
performed some testing using different
linear algebra packages, trying out La-
pack, Blas, Atlas and OpenBlas, which

has also an OpenMP version. The differ-
ences were not significant when tested
with SIESTA. It seems that the standard
Blas libraries are already highly opti-
mised on my system.

Ab-initio means that structures are calculated using first principles of theoretical
physics purely, without any empirical or experimental parameters needed during the
calculation. The results of such calculations are the most sophisticated and advanced
models of matter currently available.

Results and Discussion

For CPU performance analysis of Quan-
tum Espresso, a standard QE benchmark
has been introduced and run on the Bu-
dapest supercomputer. The DEISA stan-
dard medium sized benchmark has been
used. The sample input is an Au-surface
(Figure 2). Some minor changes to the
input parameters have been made in
order for the calculation to start success-
fully. The results are shown in Figure 2.

Figure 4: One asymmetrical repetitive unit of a MgCO3 crystal. Molecular dynamics has
been calculated with SIESTA and a video is provided separately.

A few sample calculations have been
performed using SIESTA, for the pur-
pose of trying out functionality. The
charge density within a Si crystal has
been visualised (Figure 3). It gives
information about the positions of
electrons within the structure. As ex-
pected, electrons are located mostly
between neighbouring Si atoms. Each
Si atom is tetrahedrally coordinated.
A molecular dynamics run has been
performed with MgCO3 (Figure 4),
with a thermostat on the basis of the
Nosé–Hoover algorithm and a temper-
ature of 600 K. A short video of the
results is provided separately. Finally,
a set of 32 water molecules (Figure
1) and a carbon-nanoscroll (Figure 5)
have been simulated.
In addition to the SIESTA and QE cal-

culations I did test the scalability of my
Fortran MPI Monte-Carlo program on
the Szeged supercomputer with a maxi-
mum of 96 cores. In that range it scaled
quite well.
I can conclude that most of the diffi-
culties during my project did arise as a
consequence of insufficient documen-
tation on available open source soft-
ware. I hope that this will change in
future, specially after the rise of clever
and elegant documentation tools such

as Sphinx.
The PRACE Summer of HPC was an ex-
cellent opportunity for me to gain ad-
ditional knowledge in the field of high
performance computing. I am looking
forward to using this knowledge in my
future work.

Abstract

The freely available ab-initio codes
SIESTA and Quantum Espresso have
been used for performing sample molec-
ular modelling calculations and simple
performance testing on CPU. As a result,
various molecular Visualisations are pre-
sented including a molecular dynamics
Visualisation of MgCO3.

Figure 5: Carbon nanoscroll, calculated
with SIESTA

References
1 J. M. Soler et al. (2002). The SIESTA method for ab-

initio order-N materials simulation J. Phys.: Condens.
Matt., 14:2745-2779.

2 P. Giannozzi, et al. (2009). QUANTUM ESPRESSO: a
modular and open-source software project for quan-
tum simulations of materials J. Phys.: Condens. Matt.,
21:395502.

PRACE SoHPCProject Title
Visualisation and CPU Performance
Analysis of PRACE Material Science
Community Code: Siesta

PRACE SoHPCSite
NIIF, Hungary

PRACE SoHPCAuthors
Juraj Mavračić, Austria

PRACE SoHPCMentor
Gabor Roczei, NIIF, Hungary
Tamas Hornos, NIIF, Hungary Juraj Mavračić

PRACE SoHPCContact
Leon, Kos
E-mail: leon.kos@lecad.fs.uni-lj.si

PRACE SoHPCSoftware applied
SIESTA, Quantum Espresso, SLURM, OpenSUSE, VMD,
XcrysDen, VESTA, VirtualGL, VNCViewer, OpenMPI,
OpenMP, Deneb, OpenBLAS, Atlas, Texmaker

PRACE SoHPCMore Information
SoHPC blogs
SoHPC

PRACE SoHPCAcknowledgement
I would like to thank the SIESTA1 and QE2 developers
for their work as well as all other developers of any
free open source software used.

PRACE SoHPCProject ID
1518

59

Using open source CFD (OpenFOAM) for
turbulence modelling of different
wall-bounded flow regimes

Turbulence
with Open-
FOAM
Benjamin Chapman
OpenFOAM is open source computational fluid dynamics (CFD) software primarily
used for investigating turbulence phenomena. In this project the simulation of external
dynamic cases for a wind barrier was undertaken and the results have been compared
to previous results using the commercial CFD software ANSYS as well as experimental
data.

Turbulence is an exciting research area for which
there is no concrete mathematical model and analyt-
ical solution. To this end, computational techniques
must be employed. Depending on the software used,

it can take days to run a turbulence simulation on a single
processor. Fortunately, due to the advent of supercomputers,
complex simulations can be run with relative ease by using
multiple processors.

So what is turbulence? Loosely speaking, it is a chaotic flow
of a fluid characterised chaotic changes. It is responsible for
many everyday phenomena, the most prevalent example is
the shaking one sometimes experiences whilst in an aircraft
which caused by the flow of air over the wings. Another
example is plasma turbulence, one of the primary obstacles
to fusion energy. This can enhance the transport of heat and
particles out of plasma and inhibit fusion energy production.

The aim of this project was to test current turbulence models
found in OpenFOAM for high Reynolds number flows. The
Unsteady Reynolds Navier-Stokes (URANS) approach was
used for modelling the turbulent separated flows. The equa-
tion which provides the building blocks for this model is the
Navier-Stokes equation1

∂v

∂t
+ (v · ∇)v = −1

ρ
∇P +

∂σij
∂xj

+ g. (1)

Method
Firstly, it was necessary to run a test case in order to fa-
miliarise myself with the software. The motorbike test case
which is provided with the OpenFOAM installation was cho-

sen as the geometry is similar to that of the case which was
to be run for my project. The case was successfully simulated
using the simpleFoam solver (the first term of equation 1 is
ignored). I was then given the necessary mesh files (basi-
cally a picture of the situation which the computer uses) to
run a simulation of wind flowing through a tunnel over a
barrier placed at an angle of 90 degrees to the horizontal.
Certain files within the motorbike test case were changed
to make them compatible with the barrier geometry, then
the situation was run in simpleFoam. After successful com-
pletion the simulation parameters were modified in order
to calculate the pressure, viscous, and porous forces across
the barrier and also to time average the simulation variables.
The simulation was then run using the pimpleFoam solver.
This is a transient solver (first term in equation 1 is included)
and as such, allows for much more accurate calculations
of the forces. The process outlined above was repeated
for two different barrier configurations in which the angles
the barrier made with the horizontal were 60 and 45 degrees.

As well as the actual simulations, a small python code was
written in order to parse the force file produced by Open-
FOAM and test for convergence, and a small Gnuplot script
was written to plot the forces based on the output of the
python file.

Results
The drag and lift forces for each barrier configuration were
successfully calculated and plotted for comparison with ex-
perimental data and data from ANSYS. BC1, BC2, and BC3
refer to barriers making angles of 90, 60, and 45 degrees to
the horizontal respectively. This plot is shown in figure 1.

It can be seen that the lift forces as predicted by OpenFOAM
are in good agreement with the experimental data, more
so than the corresponding ANSYS results. The drag force
for BC1 calculate using OpenFOAM is ∼ 3.5% higher than
the experimental result. Similarly, the same force for BC2 is
∼ 5% lower than the experimental result. Both results are
reasonably good, however the same cannot be said of the

BC3 configuration. This is ∼ 15% higher than the experimen-
tal value. This may be explained by the relative quality of the
meshes used for each configuration; as the BC3 mesh was
of much lower quality than the BC1 and BC2 meshes and
it is widely accepted that OpenFOAM is significantly more
susceptible to poor mesh quality than ANSYS.

60

Figure 1: Lift and Drag forces for different barrier configurations

Using the 3D visualisation software ParaView, a slice of the
3D geometry in the direction of the wind flow was taken.
This slice was used to produce 2 images, one of wind flow-

ing over the barrier near the beginning of the simulation
(t = 200s), and one at the end of the simulation (t = 2000).
This are shown in figure 2.

Figure 2: Velocity profile of the wind in the tunnel. The left images shows the flow at t = 200s while the right image shows the flow at
t = 2000.

It can be seen that the velocity of the wind slows down just
before the barrier and is at its lowest value at the points
just in front and behind the barrier. The wind velocity then
speeds up again once it has passed the barrier.

Discussion & Conclusion

The results for the forces, particularly the lift forces are en-
couraging. ANSYS is expensive commercial software whilst
OpenFOAM is free. If one can obtain scientific results of
a similar quality using both, the latter seems the obvious
choice for research institutions. The drag force results are
less satisfactory, especially that of BC3. As previously stated,
this is most likely due to poor mesh quality. If one were
to do a similar project in the future, the first place to start
would be to improve the quality of all 3 meshes (the BC1
and BC2 weren’t perfect). Maybe using meshes with less
errors in OpenFOAM will give results in better agreement
with experiment and possibly improve on those obtained via
ANSYS.

References

1 G. J. Pert, Introductory Fluid Mechanics for Physicists and Mathematicians, Depart-
ment of Physics, The University of York UK, Wiley, 2013.

PRACE SoHPCProject Title
Using open source CFD (OpenFOAM) for turbulence
modelling of different wall-bounded flow regimes.

PRACE SoHPCSite
University of Ljubljana, Faculty of Mechanical Engineering,
Slovenia

PRACE SoHPCAuthors
Benjamin Chapman, E-mail: bc661@alumni.york.ac.uk
[The University of Warwick,] UK

PRACE SoHPCMentor
Mario Telenta, University of Ljubljana, Faculty of
Mechanical Engineering, Slovenia

PRACE SoHPCSoftware applied
OpenFOAM, ParaView, Python, Gnuplot, Fortran90

PRACE SoHPCAcknowledgements
The author would like to acknowledge Dr. Mario Telenta
and Dr. Leon Kos for there invaluable guidance.

PRACE SoHPCProject ID
1519 Benjamin Chapman

261

A parallel implementation of the boundary
point method, an algorithm to solve
semi-definite optimization programs

Parallel
boundary
point
method
Mircea Simionica

The boundary point method has turned out to be an efficient algorithm for semi-definite
programs with a large number of constraints. The project consisted of importing a
Matlab code into a C++ parallel version for SPD problems characterised by a block
diagonal structure. The final product will allow problems to be solved which are beyond
reach for state-of-the-art methods.

Semidefinite programming (SDP)
has experienced a big develop-
ment in mathematical optimisa-

tion since the 1990’s. It’s main applica-
tions is combinatorial mathematics and
control theory. Semi-definite optimisa-
tion is concerned with the study of a
symmetric matrix that yields optimal
value of a linear objective function and
that satisfies a given number of linear
equations. In mathematical terms a pri-
mal semi-definite program (PSDP) can
be expressed as follows:

max 〈C,X〉
such that A(X) = b

X � 0

Figure 1: Cone of positive semi-definite
matrices

The boundary point method is a rel-
atively new algorithm that sets it-
self as an alternative to interior point
methods. The algorithm operates on
the dual formulation of the problem
(DSDP):

min bT y
such that AT (y)− C = Z

Z � 0

Lagrange multipliers are applied to the
dual equations, yielding the following
Augmented Lagrangian:

Lσ = bT y +
〈
X,Z + C −AT (y)

〉
+

σ
2

∥∥Z + C −AT (y)
∥∥2

The steps that define the complexity of
the algorithm are solving a large sys-
tem of linear equations and comput-
ing a spectral decomposition of a sym-
metric matrix in each iteration. The
pseudo-code of the algorithm is illus-
trated in Figure 1. The goal of the
project was to deliver a C++ parallel
version of an existing MATLAB code.
The code is specifically prepared for
semi-definite programs characterised
by a block diagonal structure. i.e. in-
volving matrices that can be split into
smaller sub-matrices along the diago-
nal. The matrix below is an example of

a block diagonal matrix.

A =

A11 0 0 0
0 A22 0 0
0 0 A33 0
0 0 0 A44

This type of structure leads to a paral-
lelisation based on the number of di-
agonal blocks. The parallel aspect fo-
cuses on the inner iteration: once the
sparse linear system has been solved,
the remaining steps are repeated ac-
cording to the number of blocks. They
are also independent so they can be
solved concurrently. The serial code
loops through the blocks, whereas the
parallel version solves each block in-
dependently, speeding up the computa-
tions. This will allow to solve larger in-
stances of semi-definite problems, de-
fined by more diagonal blocks and with
a bigger number of constraints, leading
to new challenges for other methods.

The code is written in commented
C++, MPI is used as message-passing
system between processes and a man-
ual is included, servind as documenta-
tion of the code. External linear algebra
libraries are heavily used. Armadillo

62

Figure 2: Parallel boundary point method pseudo-code

is utilised throughout the whole code,
while the linear system is solved with
Eigen’s sparse solver. MATLAB (or Oc-
tave, freely available under the GNU
license) is used for generating the in-
put data. We spent the first week trans-
lating the code from MATLAB to C++.
In the process Armadillo library turned
out to be really helpful. Armadillo is
an open-source, high quality linear al-
gebra library useful for algorithm de-
velopment. Its syntax is similar to MAT-
LAB, so we saved time not implement-
ing specific MATLAB features.

A few challenges

Some time was spent on a parallel im-
plementation of the eigen decomposi-
tion using ScaLAPACK. This was use-
ful since it allowed us to better under-
stand how the block-cyclic distribution
of data among the processes works. Me
and my mentor soon realised that the
sparse linear system was actually slow-
ing the code down, so we decided to
change route. We encountered most of
the difficulties working on this stage of
the project, since we had issues linking
SuperLU, a direct sparse solver, to Ar-
madillo.

First improvements

We experienced some first improve-
ments once SuperLU was correctly
linked, but the code was still under per-
forming with respect to MATLAB. We
knew that Eigen was another good lin-
ear algebra library so we decided to
use one of its sparse linear solvers.
Specifically, we went for Eigen’s Spar-
seCholesky module. This class provides
Cholesky factorisations, which allow
for solving AX = b linear systems.
In particular, the matrix A is factored
as A = LLT , where L is lower trian-
gular. The system LLTx = b is then
solved with forward and back substitu-
tions. This is good in terms of perfor-
mance since the factorisation is com-
puted only once, outside of the main
loop and not in each iteration. Choos-
ing to include Eigen objects in our
code allowed us to deal with multiple
linear algebra libraries, pushing us to
search and find out methods of import-
ing/exporting the data between differ-
ent classes in an efficient manner. In
fact, Eigen objects can be mapped to
those of Armadillo. This avoids copying
a huge amount of data in every itera-
tion.

Parallel implementation

Solving the sparse linear system using
Eigen rather than Armadillo consider-
ably pushed the solve time down. The
C++ serial version was now aligned to
MATLAB’s performance. We decided it
was the right moment to begin the par-
allelisation phase. We focused on the
for loop inside the inner iteration (Fig-
ure 1). Instead of computing several
spectral decompositions in sequential,
the calculations are now split among
the processes and the current solution
is updated locally.

Figure 3: Speed-up ratios

Number Matrix Number of Number of spectral Degree of Time (seconds)
of blocks dimension constraints decompositions convergence MATLAB C++

6 500 378456 32100 0.02558 3980.93 840.70
8 200 82824 42800 0.01662 641.20 106.40
8 400 325592 42800 0.02141 2924.00 505.20
10 100 26080 53500 0.02938 183.14 25.76
10 300 228410 53500 0.01648 2155.16 291.20

Table 1: Time comparison between MATLAB and C++ parallelized version

63

Figure 4: Examples of vertex colouring problems

Even more improvements

The parallel version looked promising.
We performed some initial tests, alter-
nating between increasing the number
of blocks and the size of the matrix
of coefficients. There was evidence of
scalability with the number of blocks
(hence with the number of processes).
Naturally the code did not scale lin-
early because of communication over-
heads. The results were pointing in
the right direction, but there was one
more thing to do. Armadillo integrates
with BLAS and LAPACK libraries. These
are packages providing matrix opera-
tions and numerical linear algebra rou-
tines. Up to now Armadillo was linked
against traditional BLAS and LAPACK
packages. The biggest improvement in
the code came the moment we linked
Armadillo against OpenBLAS. Open-
BLAS is a multi-threaded, high perfor-
mance replacement of BLAS. This al-
lowed the C++ serial code to compete
with MATLAB’s performance and made
possible bigger speedup ratios running
the parallel version. A sample of results
can be observed in Figure 3 and Table 1.

Applications

semi-definite optimisation programs
equipped with a block diagonal struc-
ture are useful to investigate some
problems in combinatorial mathemat-
ics. For example, in graph theory the
chromatic number of a graph G is the
smallest number of colours needed to
colour the vertices of G such that no
two adjacent vertices share the same

colour. The chromatic number of a
graph is usually denoted χ(G) and its
computation is an NP-hard problem.
Usually this quantity is bounded by
other numbers obtained by solving SDP
problems. One of them is Ψ(G), whose
computation requires polynomial time.

Future research

semi-definite programming is in gen-
eral a strong tool to approximately
solve very hard problems from op-
timisation: mixed integer linear and
quadratic programming problems, a
wide range of non-linear program-
ming problems and also to detect
positivity of commutative and non-
commutative polynomials, an inspiring
problem from real algebraic geometry.
The parallel version will allow to tackle
SDP instances that are beyond reach
for the state-of-the-art methods for this
type of problems.

References

1 J.Povh, F. Rendl, A. Wiegele. A boundary point
method to solve semi-definite programs. Computing,
78(3):277-286, November 2006

2 J.Povh, J. Govorcin, N. Gvozdenovic. New heuristics
for the vertex coloring problem based on semi-definite
programming. Central European Journal of Operations
Researh, 21(1):13-25, June 2013

3 C. Sanderson. Armadillo: an open source C++ linear
algebra library for fast prototyping and computation-
ally intensive experiments. Technical Report, NICTA,
2010.

4 Gaël Guennebaud and Benoît Jacob and others. Eigen
v3. Retrieved from http://eigen.tuxfamily.org, 2010.

PRACE SoHPCProject Title
Parallel boundary point method

PRACE SoHPCSite
Faculty of information studies, Novo
Mesto University of Ljubljana

PRACE SoHPCAuthors
Mircea Simionica, Bocconi University,
Italy

PRACE SoHPCMentor
Janez Povh, Faculty of information
studies, Novo Mesto, Slovenia Mircea Simionica

PRACE SoHPCContact
Leon Kos, University of Ljubljana
E-mail: leon.kos@lecad.fs.uni-lj.si

PRACE SoHPCSoftware applied
C++, MPI, Armadillo, Eigen, OpenBLAS, MATLAB

PRACE SoHPCMore Information
HPC Prelog

PRACE SoHPCAcknowledgement
I would like to thank PRACE &. SoHPC for this summer
experience. I acknowledge my mentor Janez Povh &
the SoHPC coordinator Leon Kos for giving me the
opportunity to learn and discover.

PRACE SoHPCProject ID
1520

64

 www.summerofhpc.prace-ri.eu

	GUI for PELE
	GUI for RT monitoring in HPC
	Optimised I/O and Topological Susceptibility
	Optimization of Deflation Codes for GPUs
	Hybrid High Performance Computing in Lattice QCD
	Visualising Mars Pole
	A closer look at FFEA
	Visualisation of proteins
	ARCHER Challenge
	Climate is unstable
	Real-Time View in DL_POLY_4
	BEM for Wi-Fi
	ESPRESO Solver for SoHPC
	3D Visualization from CT
	Making Quarks Phli Further
	Parallel FMM on a GPU
	The power of GPUs for Atomistic Simulations
	SIESTA,QE and HPC
	Turbulence with OpenFOAM
	Parallel Boundary Point Method

