ESPRESO API for ParaView Catalyst to

perform In situ Analysis.

ESPRESO
Solver for

SoHPC

Anthony Bourached

We adapt the code of the ExaScale
PaRallel FETI SOlver (ESPRESO) in
such a way that it is linked with
Paraview Catalyst during simulation
runtime to produce real time, In Situ,
analysis and visualisation of the

simulations. Furthermore, we use
IT4Innovations supercomputer,
Salomon, to produce visualizations of

a fan blade in real time.

his project is based on the

visualisation of the results

from ExaScale PaRallel FETI

SOlver (ESPRESO). The Finite
Element Tearing and Interconnecting
(FETI) method is a practical and ef-
ficient domain decomposition (DD)
algorithm for the solution of numeri-
cal partial differential equations. Do-
main decomposition methods solve
boundary-value-problems' by split-
ting them into smaller boundary value
problems on subdomains and iterating
to coordinate the solution between ad-
jacent subdomains. The problems on
each subdomain are independent, this
means that we can effectively solve
them at the same time. This makes
domain decomposition perfect for par-
allel computing, for a comprehensive
explanation of why this is we must dis-
cuss the theory of high performance
computing.

High Performance Computing

High Performance Computing (HPC)
generally refers to the practise of ag-
gregating computing power in a way
that delivers much higher performance
than one could get out of a typical
desktop computer. A powerful modern
desktop computer typically has eight
cores. The purpose of multible cores
is to maximise efficiency of the com-
puter’s compute power. It allows the
computer to more effectively perform
different tasks at the same time.
Maximum program efficiency
would be achieved if the program’s
tasks were divided in such a way that
they can be executed by independent
cores with, preferably, minimum com-
munication or co-dependency. This

practise is referred to as parallel com-
puting. One of the massive aspects of
HPC is the use of Supercomputers:
massive, highly maintained -clusters
of computing nodes. Simulations in
this project have been produced on
IT4Innovations supercomputer, named
Salomon.

Parallelism in ESPRESO

From figure 1 we can see how the
use of Parallel programming is used
to most effectively solve problems with
ESPRESO. This is a simulation of a steal
block, we shall discuss what ESPRESO
is doing with it but first lets discuss its
appearance. The gaps that divide the
block into many pieces do not physi-
cally exist in the structure but show us
the domain decompostion of the prob-
lem. Each subdomain may be solved in

1A differential equation with a set of constraints called the boundary values. A solution to a boundary value problem is a solution to the differential

equation that also satisfies the boundary.

parallel.

Figure 1: Steal block. Gaps represent the
boundary of different subdomains which
can be solved independently.

The main object attribute visualised
in this project is displacement. We may
consider displacement in this context
as the distance of each given point of
the structure from its original position.
Even a rigid structure such as a steal
block deforms under force, such as
gravity, though this is often far too
slight to be detected by the naked
eye. However, using Paraview we may
warp vectors. This means that we can
emphasize the magnitude of that at-
tribute without changing anything else
about the structure or appearance of
the object. For example, warping dis-
placement or velocity by a factor of
two will make the dsiplacement ap-
pear double of what it actually is or
make velocity twice as fast as it actu-
ally is. For our simulation of this steal
cube we warped displacement by 4'2
(4,000,000,000,000).

Figure 2: Steal Block. This is the exact same
image as in figure 1 (note the colours) ex-
cept that displacement has been warped by
a factor of 4'2.

We can see the steal cube squashed
under gravity.

In Situ Visualisation

The goal of visualisation is often to
find desired/important details within
a large body of information. As well
as getting a general understandning of
the structure and attributes of an object
on data sets that are far too large and
complex for the human brain to com-
prehend without such tools. Paraview
is often used for such visualisations and
is used in this project.

We use Catalyst’> and Paraview to
perform In situ® analysis. It is com-
mon to require that our simulations
discard most of the data created in or-
der to maximise efficiency. Since, in
this case, it is not possible to store
data for many simulations, data analy-
sis and visualisation must be performed
in situ with the simulation to ensure
that it is running smoothly and to fully
understand the results that the simula-
tion produces. This is opposed to the
traditional workflow where simulation
would be ran and data outputed to
disk and then finally analysed and vi-
sualised (using, say, paraview).

There are many advantages to in
situ analysis. First, we can begin the
analysis and visualisation process with-
out needing to do any input/output of
simulation results- this is an especially
important point as simulation power is
advancing at approximately ten times
the rate of input/output efficiency. Sec-
ond is that rather than performing our
visualisation/analysis on another ma-
chine we have the full computational
power of the supercomputer available
to do this processing. Third, we expect
that the the data produced by the anal-
ysis/visualisation will be much smaller
than that produced by the simulation
itself.

For these reasons I believe that co-
processing will have a massive role in
the future of HPC and thus was great
motivation for this project.

Method

My task was create the API (Applica-
tion Programming Interface) for the
ESPRESO that enables it to run with
Catalyst and hence visualise the results
in real time.

Before 1 started my project,
ESPRESO only enabled post-
processing; It output results to a vtk

file. Visual Tool Kit (vtk) is a file type
which is readable by Paraview. Two im-
portant data types give the structure of
the object: 1) Points: we must have an
array of points which outline the shape
at, for simple cases, uniform intervals.
Each point has three associated values:
its X, v and z coordinates. 2). Cells:
these will be the most fundamental
element of the image.

So far this gives the structure of the
object. Furthermore, ESPRESO records
attributes, such as displacement which
is what we have focused on in our visu-
alisations.

To perform our real time visualisa-
tion all these values had to be passed
from ESPRESO to Paraview Catalyst by
an Adaptor code which constituded the
most significant part of the API.

ESPRESO is written in c++ so we
also used this language to write the
Adaptor code. The structure of the ob-
ject is unchanging so the Adaptor code
could be configured such that we only
need to build the grid points and cells
on the first iteration, hence only re-
quiring for the values of displacement
to be updated at each timestep. This
ensured that communication between
ESPRESO and Catalyst was as fast as
it could be. Already this means that
we save hugely on the amount of data
communication required each timestep
as Catalyst keeps the object structure in
its memory.

When images are rendered in Par-
aview from a vtk file one usually uses
Paraview to show the exact aspect of
the data that is required. For example,
one might like to slice the object to
show a transverse image of its interior.
These tools are infinitely useful and use
of them is one of the main motivations
for visualisation. A python script was
written/exported by Paraview Catalyst
which enables us to render a real time
image with all our specified Paraview
configurations. One of the specification
of this script was to save a png of each
timestep which we later used to make
avi videos.

Results and Discussions

As the main focus of the project was to
create the API for ESPRESO and Cata-
lyst; results are visualisations produced
by the ESPRESO. The images shown in

2Catalyst is a 'light-weight’ version of the ParaView server library that is designed to be directly embedded into parallel simulation codes to perform
in situ analysis at run time. Esentially it enables us to use the same analysis and visualization tools that are already available for post-processing using

Paraview.

3In situ is Latin for ’on site’ or ’in position’. In this context In situ analysis refers visualisation and analysis as the simulation is running. This form of
analysis can also be refered to as co-processing or co-visualization.

Similar to the cube, the gaps that look like cracks in the fan blade do not physically exist but show the domain decomposition. This
decomposition is emphasized by colour coding in the large image. Displacment is warped in the other two images by ten billion
(10,000,000,000). This makes it look like a flag blowing in the wind. These are timesteps 282 and 421 respectively. The first timestep
also illustrates the what the fan looks like in real life (with no warped attributes).

this report were rendered in real time-
while the simulation code was running.
From these visualisations we saved im-
ages for each timestep and later com-
piled them together to make avi (Audio
Video Interleave) videos.

Our main visualisation was a fan
blade as can be seen above. The large
image shows the colour coded decom-
position of the structure.

The title image shows two identical
similar images. The one on top is a fan
blade with a colour scheme that illus-
trates each points displacement from
the idealogical shape of the object. This
displacement is far to slight to see so
the only evidence of it in this image is
the colour. The image immediately be-
low, however, is the exact same image
but with displacement warped by 10*°
(10,000,000,000). This second image
therefore enables us to see what the
colour in the first image is telling us

about the data.

For simulations that produce large
amounts of data, Co-processing is
becoming a necessity. The use of
scripting, python was used in this
project, makes it possible to perform
co-visualisation without any loss of
functionality of Paraview. This means
that we can ’have our cake and eat
it too’ in terms of benefitting from
the speed and convenience of co-
visualisation/co-analysis while still us-
ing all the features of Paraview.

PRACE SoHPCESPRESO

Solver

ESPRESO API for ParaView Catalyst
to perform In situ Analysis. 3
PRACE SoHPCIT4Inovations
IT4Innovations,

PRACE SoHPCAuthors
Anthony Bourached, [association,]
Czech Republic

PRACE SoHPCMentor

Riha Lubomir
lubomir.riha@vsb.cz

Anthony
photo

PRACE SoHPCContact

Leon, Kos, Univerza v Ljubljani
Phone: +12 324 4445 5556

E-mail: leon.kos@lecad.fs.uni-lj.si
PRACE SoHPCSoftware applied
Paraview, Paraview Catalyst

PRACE SoHPCMore Information
www.paraview.org/in-situ/

PRACE SoHPCAcknowledgement

I would like to extend my gratitude to my mentor Riha
Lubomir for many useful meetings and guidelines
throughout the project. [was also like to thank
Alexandros Markopoulos for helping to explain the
structure of ESPRESO.

PRACE SoHPCReferences

! Andrew C. Bauer, Berk Geveci, Will Schroeder Kitware
Inc. February 2015. The Catalyst Users Guide v2.0
ParaView 4.3.1

! Andrew C. Bauer, Berk Geveci, Will Schroeder ...et al
The Paraview Guide, A Parallel Visualisation Applica-
tion Kitware Inc.

http://summerofhpc.prace-ri.eu
mailto:bouracha@tcd.ie
mailto:lubomir.riha@vsb.cz
mailto:leon.kos@lecad.si
http://www.paraview.org/in-situ/

