

A long hot summer is time for a break,
right? Not necessarily! PRACE Summer of
HPC 2016 reports by participants are here.

HPC in the
summer?
Leon Kos

There is no such thing as lazy
summer. At least not for the 20
participants and their mentors at 10
PRACE HPC sites.

S ummer of HPC is a PRACE programme that offers
university students the opportunity to spend two
months in the summer at HPC centres across Europe.
The students work using HPC resources on projects

that are related to PRACE work with the goal to produce a
visualisation or a video.

This year, training week was at Juelich and it seems to
have been the best training week yet! From MPI to Go-karting
and good food, the week was a blast! It was a great start to
Summer of HPC and set us up to have an amazing summer!

At the end of the summer videos were created and are
available on Youtube as PRACE Summer of HPC 2016 presen-
tations playlist. Together with the following articles interest-
ing code and results are available. Dozens of blog posts were
created as well. At the end of the activity, every year two
projects out of the 20 participants are selected and awarded
for their outstanding performance. The winners of this year,
Anurag Dogra and Marta Cudova, presented their experience
at the award ceremony in Cineca supercomputing centre,
Italy.

Therefore, I invite you to look at the articles and visit the
web pages for details and experience the fun we had this
year.

Contents

1 Discography Classification 3
2 Computer Vision for SoHPC 6
3 Searching for Nucleon Excited States 9
4 Multigrid: it’s time to speed it up! 12
5 Calculating Nanotubes (precisely) 15
6 Quantum Chemistry in Spark for SoHPC 17
7 InSitu Visualization Tornado effect 20
8 Real Time Exploration of Data 23
9 Python scientific application booster 26
10 Weather visualisation for outreach 29
11 Smartphone Task Farm 32
12 Re-ranking Virtual Screening Results 34
13 Molecular Dynamics of hTK1 37
14 3D Performance Dashboard 40
15 Shallow water equations 43
16 Project 1616 abandoned 46
17 Virtual Reality exploration 47
18 FMM for GPUs 49
19 Phine quarks and cude gluons 52
20 The Lazy guide to CFD 55
21 The Literature-based discovery at scale! 58

PRACE SoHPC2016 Coordinator
Leon Kos, University of Ljubljana
Phone: +386 4771 436 E-mail: leon.kos@lecad.fs.uni-lj.si

PRACE SoHPCMore Information
http://summerofhpc.prace-ri.eu Leon Kos

2

https://www.youtube.com/playlist?list=PLhpKvYInDmFWy66381nifGkCJBLb6iwGf
https://www.youtube.com/playlist?list=PLhpKvYInDmFWy66381nifGkCJBLb6iwGf
https://summerofhpc.prace-ri.eu/blogs-2016/
http://www.prace-ri.eu/summer-of-hpc-2016-awards-ceremony-at-cineca/
mailto:leon.kos@lecad.si
http://summerofhpc.prace-ri.eu

Visualisation of discography analysis and classification using PyCOMPSs/COMPSs

Discography
Classification
Sofia Kypraiou

Several scientific papers and methods have been proposed for classifying music gen-
res. But what happens if we want to know more? Not just about a single genre, but
about an artist? In this project we used some of these methods to group songs of a
single artist and learn more about their career and influences.

Beginning with the discography
of an artist with a long ca-
reer, we analysed some of their
songs - extracting features that

describe them. After some analysis, we
were then able to group songs by simi-
larity. The result is the beautiful image
displayed!

Introduction

The idea which inspired the project was
the enthusiasm to find out more about
an artist and their career. Our goal was
to classify similar songs by an artist into
groups and thus be able to see the vari-
ety of their music. In this way, if some-
one has a specific song they like from
an artist, they can see similar works by
them. Cool, isn’t it?
What makes the project even more inter-
esting is the combination and require-
ment of many scientific fields - from
machine learning techniques, statistics,
data mining methods and of course su-
percomputers.
As input, we used the discography of
various artists - artists with long music

careers (U2), variation in their music
style (Pink Floyd) and with many active
years in both their music career and
style (David Bowie).
Using an audio extraction application,
the music files were then processed to
extract some values which will later be
used for their analysis. Some of the vari-
ables that are extracted and used in-
clude the bandwidth, the frequency and
the pitch.
Not all of this data is needed though.
The data needs to be cleaned, processed,
and analysed to keep only their most
useful features.
After the analysis of data, it is ready
to be categorised and this is most op-
timally done using different clustering
methods. This result was used for the
final visualisation.
Due to the large dataset, parallelism is
of course useful. The Barcelona Super-
computing Center (BSC) has developed
COMPSs, a programming model and
runtime that aims to parallelise sequen-
tially programmed applications written
in languages such as Python. It easily
allows for parallelism to be achieved -
even for those who do not have a strong

programming background.

Methods

As mentioned earlier, processing of mu-
sic files goes through a number of
stages, as described in the following fig-
ure:

Figure 1: The stages until the final result

3

Audio extraction
Audio extraction is used to extract au-
dio feature sets which are later eval-
uated on their ability to differentiate.
The feature sets include low-level signal
properties - which refer to a physical de-
scriptions of a song and mel-frequency
spectral coefficients (MFCC) - which
are commonly used in voice recognition
and is based on human hearing percep-
tions. At the end of the audio extraction
process, each song is described by 72
features.
Data Analysis
Not all of these features are useful to

the final result. Principal Component
Analysis (PCA) is a statistical procedure
used to emphasise variation and bring
out strong patterns in a dataset. This
was the method used to identify use-
ful features - which were mainly those
whose value often changed.
Sometimes we found that just two fea-
tures were useful features - as shown in
Figure 2.

Figure 2: Clustering of David Bowie’s discography using K means (2 features
after the PCA).

Clustering
Clustering analysis follows the cleaning
of data and this combines data mining
and machine learning to group together
similar songs. Songs in the same group
- called a cluster, are more similar to
each other than songs in other clusters.
Different clustering algorithms can be
used for this - with each one producing
different but comparable results.
But we don’t know how many clus-
ters there should be! How do we know
which is the best number of clusters?
Science is here to save the day, thanks

to a metric called "silhouette width"
that indicates how well the clusters are
formed. Silhouette width has a range [-
1,1], and a value close to 1 means that
items within each cluster are alike, and
that the groups are well separated. The
following table shows different clusters
created for Pink Floyd discography us-
ing different clustering algorithms and
silhouette width.

Table 1: Clustering methods for Pink Floyd

Clustering
Method

Number of
clusters

Silhouette
width

Hierarchical 4 0.0927
Spectral 57 0.1975
KMeans 89 0.6208
DBSACN 2 0.4161
Propagation 116 1.0

Visualisation
Despite all this clever mathematics,

clustering methods lack intuition and
human inspection is necessary in the
formation and determination of clusters.
This is needed to gain an understanding
of what the data represents and what
the cluster represents and intends to
achieve.

Data is better understood through
visualising it and our data is brought
to life using HTML, CSS and javascript
library D3 web technologies to produce
dynamic, interactive data visualisations
in web browsers. The visualisation is the
result of the cluster analysis combined

with the user being able to define their
own clusters.
PyCOMPSs
For the purpose of performance, as well
as benefiting from the potential of BSC’s
MareNostrum supercomputer, we used
PyCOMPSs to parallelize the audio ex-
traction stage. During this process songs
are separated in chunks and each one
of them is assigned to a node in the su-
percomputer. Below is the graph of the
execution:

Figure 3: Graph of the execution. The blue
nodes indicate the tasks whilst the red ar-
eas demonstrate where synchronisation was
needed

Results

It is interesting to see which features
were useful. From the PCA data analy-
sis, keeping 99% of the useful variables,
we saw that only the MFCC features
were contributing to the calculations.
Our first attempt with clustering meth-
ods did not turn out as expected. Fig-
ure 2 shows how clusters are merged

4

making it hard to distinguish them.
From Table 1, the silhouette width
scores were low. A value lower than
0.3 means there is no structure in the
data, while a value between 0.3 and 0.5
means there might be some structure.
Another interesting result was that it
was almost impossible to cluster Pink
Floyd’s discography. Graph 4 shows that
although we were able to fairly easily
group U2 songs into 3 categories, for
Pink Floyd the results were very poor.

Figure 4: Best number of clusters for U2
(top) and Pink Floyd (bottom). Values below
0 indicate that the songs are wrongly classified.
Since that method did not work, sam-
ples were taken at 0, 30, 60, 90, 120
seconds of each song. After running hi-
erarchical clustering on this data, all the
introductions were put in one group, an
indication that our clusters worked well.
This is demonstrated in Figure 5 for U2
discography.

Figure 5: U2 discography with 5 samples
per song. With the blue areas
identifying introductions

For the final visualisation, we used the
hierarchical clustering and specifically
the dendrogram that it offers. For better
optical results, we used a polar dendro-
gram as shown in Figure 6 and Figure 7.

Figure 6: David Bowie discography.
Top: default colouring of the clusters
Bottom: user-defined clusters

Figure 7: Pink Floyd discography.
Viewing songs of the ’Wall’ (1979)
The interactive dendrogam, along with
the discographies of U2, David Bowie
and Pink Floyd, can be found here.

Conclusion and further work

All the described methods were used
to discover more about the artist’s mu-
sic career. The fact that we did not get

the expected results from the cluster-
ing means that MFCC features, although
suited for genre classification, are not
suitable for clustering songs of the same
artists in the same genre.
An extension of our work can be the
recommendation of similar songs of the
same artist. This can be used in a vari-
ety of applications, such as recommen-
dation of top-N songs of an artist, or in
virtual DJ programs.

References

1 Jeroen Breebaart, Martin McKinne Fea-
tures for Audio Classification 2003.

2 Lindasalwa Muda, Mumtaj Begam and
I. Elamvazuth Voice Recognition Algo-
rithms using Mel Frequency Cepstral
Coefficient (MFCC) and Dynamic Time
Warping (DTW) Techniques 2010

Acknowledgements

I would like to thank my mentor,
Fernando Cucchietti, for his guidance
throughout the project and for pro-
viding the visualisations along with
Guillermo Martin, the artist and Di-
ana Fernanda Velez García for the the
graphic design. Also Rosa Badia and
Daniele Lezzi for their support with Py-
COMPSs and last but not least, Carlos
Carrasco Jimenez for the project and
knowledge in machine learning, statis-
tics, data analysis and data mining.

PRACE SoHPCProject Title
Visualization data pipeline in
PyCOMPSs/COMPSs

PRACE SoHPCSite
Barcelona Supercomputing Center
(BCS-CNS), Spain

PRACE SoHPCAuthors
Sofia Kypraiou, [National and
Kapodistrian University of Athens,]
Greece

PRACE SoHPCMentor
Fernando Cucchietti, BSC, Spain Sofia Kypraiou

PRACE SoHPCContact
Fernando, Cucchietti, BSC
E-mail: fernando.cucchietti@bsc.es

PRACE SoHPCSoftware applied
Python, COMPSs/PyCOMPSs, D3.js

PRACE SoHPCMore Information
Music project COMPSs/PyCOMPSs, D3 JavaScript
library

PRACE SoHPCProject ID
1601

5

Identifying visual features of castles with
PyCOMPSs, through computer vision and
machine learning.

Computer
Vision for
SoHPC
Marco Forte

This project will leverage the
PyCOMPSs programming model and
the computational power of the
MareNostrum supercomputer to
automatically classify images of
castles and forts.

Example detection of common castle features

The focus of the project is on au-
tomatically extracting and iden-
tifying visual features of castles.
Such features include towers,

parapets and large stone walls. The re-
sult of the project is a geospatial and
chronological map of castle features.

The project harnesses the power of
HPC through the PyCOMPSs program-
ming model in an application which
uses aspects of big data, computer vi-
sion and machine learning. PyCOMPSs
is a programming model which allows
a programmer to annotate their sequen-
tial code. In turn, PyCOMPS parallelises
the code, taking care of the program
flow and data dependencies automati-
cally.

I was given the opportunity to
design and implement the solution
to this project myself. Computer vi-
sion was used to convert high di-
mensional data into a numeric form
so that an algorithm can better
distinguish contents of an image.

This data was later used as
input for machine learning.
Many images had to be pro-
cessed and thankfully this
could be done in parallel -
making it an ideal applica-
tion for using HPC.

Data retrieval

Close to 400 images of cas-
tles were downloaded from the Internet.
These images were then broken down
into image sections - called patches, of
different shapes, sizes and scale. This
resulted in about 100 patches per im-
age.

Approach

From all the resulting patches, those of
high contrast were ignored - as these
were mostly of earth and sky. For the
remaining patches feature vectors were
computed so as to describe the shape
and colour in each patch.

Thankfully the above tasks can be
carried out in parallel and using Py-
COMPSs upon BSC’s MareNostrum su-
percomputer a significant speed up in
computation time was achieved.
Discovering visual features unique to
castles
The K-Means clustering algorithm can
be applied to the remaining patches to
identify clusters of common elements
they share among them. After attempt-
ing this, it was found that the outcome
would create clusters of commonly oc-
curring but visually uninteresting cor-
ners and edges which are not necessar-
ily castle like features.

In an effort to find visual elements
unique to castles, a dataset of 10,00 im-
ages of other buildings which were not
castles was also used considered. The
idea behind this was that castle like fea-

6

The interactive map visualisation

tures will appear more often in the cas-
tle image dataset than in the non-castle
image dataset.

Upon the castle image dataset we
found the most similar patches using
the nearest neighbour classification al-
gorithm. 1000 candidate patches were
then selected by identifying those clos-
est to 20 of their neighbours. In this
way, unique castle like features could
be identified better.

The “discriminative learning” ap-
proach was later used. Both the cas-
tle and non-castle image datasets were
split into 3 parts. For each of the candi-
date patches a Support vector machine
(SVM) classifier was trained using the
castle image dataset nearest neighbours
of the candidate patch as positive sam-
ples and all patches from the non-castle
image dataset as negative samples. This
was applied to the classifier to the cas-
tle image dataset and the top 5 positive
matches were used for the next round.

The idea behind the above is that
this will produce an increasingly accu-
rate detector that is more discrimina-
tive towards castles. This SVM training
step can be done in parallel for each
patch using PyCOMPSs, with more fine
grained parallelism for the application
of the classifier using Python’s MultiPro-
cessing library.

Each resulting detector can then be

tested in parallel on both image datasets
and the most accurate of detectors can
be identified. The dataflow from the pre-
vious step to this one is controlled by
PyCOMPSs, so each detector begins test-
ing as soon as it is ready without wait-
ing for the others to finish.
Results
Through the power of machine learn-

ing, 100 images patches and their as-
sociated detectors were found to best
identify a castle through its visual fea-
tures. Some samples of the results are
shown.

This approach did not work as well
as the original "What Makes Paris Look
Like Paris" paper it was based on. In that
work, they were able to automatically
extract Parisian features from a large
streetview dataset with better visual re-
sults - such as extracting the common
window styles. The Paris paper achieved
better results because features are much
more common in each image, they vary
less from image to image, have simi-
lar lighting, scales and orientations to-
wards the camera.

The parameters of our algorithm
were tweaked many times but due to
lack of time it was decided use semi-
supervised learning.

Multiple features of castles like bat-
tlements and towers were manually out-
lined and from there a fast template

matching algorithm was used on the
dataset to find many more examples.
The template matching was set to a
threshold which would allow for a few
false positives which were later manu-
ally identified as hard negatives.

A SVM was then trained on each
feature patch using feature matches
marked as positive castle features and
on negative non-castle features. The im-
age on the top left show the manually
selected image and the others show the
positive matches automatically found.
Application of results
The final application of this was to a col-
lection of 10,000 castle images which
were sorted by castle name. This al-
lowed for the retrieval of their construc-
tion date and coordinates from the In-
ternet. For each castle we considered,
each of our manually found features
found the most probable match among
the castles photos - with the probability
of it being a match also given.
Visualisation
This information is visualised as an

interactive map of the castle locations
across Europe. The map is available on
the online mapping service CARTO at
https://goo.gl/JXYsWU. For each cas-
tle a mosaic of images is shown with
matches of the various features and the
probability of a match given.
Discussion & Conclusion

7

Automatically extracted patches and those semi-automatically found

Due to time constraints, the project
is still not finished and improvements
could still be made. The data sets that
were used were relatively small com-
pared to larger available datasets. A
dataset of all castles in Europe as listed
on Wikipedia is in the process of being
collected and this will be much larger
than the original.

But to be able to process such a
dataset, code improvements will need
to take place - such as selecting more ap-
propriate libraries for computing HOG
vectors and improving the PyCOMPSs
parallelisation.

The project acts a good example of
how HPC can be used in the context
of machine learning, but also how HPC
can be used in the field of humanities.
HPC with machine learning allows for
some work to automatically be done
with computers rather than requiring

thousands of trained expert hours and
I believe there are many opportunities
for HPC in the humanities such as in the
fields like archaeology, history, art and
architecture which could be exploited.
References
Carl Doersch, Saurabh Singh, Abhinav

Gupta, Josef Sivic, and Alexei A. Efros.
What Makes Paris Look like Paris? ACM
Transactions on Graphics (SIGGRAPH
2012), August 2012, vol. 31, No. 3.
Dalal, Navneet, and Bill Triggs. "His-
tograms of oriented gradients for hu-
man detection." 2005 IEEE Computer
Society Conference on Computer Vision
and Pattern Recognition (CVPR’05). Vol.
1. IEEE, 2005.
Tejedor, Enric, et al. "PyCOMPSs: Paral-
lel computational workflows in Python."
International Journal of High Perfor-
mance Computing Applications (2015):
1094342015594678.

Acknowledgements
I would like to thank my project men-

tors Rosa M Badia and Daniele Lezzi for
their support in my use of PyCOMPSs. I
would also like to thank Fernando Cuc-
chietti and Guillermo Marin for their
assistance with the visualisation aspect
of my project. Finally I would like to
thank Carl Doersch for his inspirational
"What Makes Paris Look Like Paris" pa-
per and for the encouragement he gave
me over email.

PRACE SoHPCProject Title
Development of sample application in
PyCOMPSs/COMPSs

PRACE SoHPCSite
Barcelona Super Computing Center,
Spain

PRACE SoHPCAuthors
Marco Forte, [Trinity College Dublin,]
Ireland

PRACE SoHPCMentor
Rosa Badia, BSC, Spain Marco Forte

8

An Investigation of the Positive and
Negative Parity Excited States of the
Nucleon in Lattice QCD at the Physical
Point.

Searching
for Nucleon
Excited
States
Shaun Lahert

We investigate the low lying excited
states of the nucleon in the positive and
negative parity channels using the
Generalised Eigenvalue Problem
(GEVP). Athens Model Independent
Analysis Scheme (AMIAS) is also
preformed on the correlation function
simulation data and we compare the
results to the GEVP. Although the
ground state of the proton is found, we
highlight the problems of this approach
in determining the exact spectra of the
excited states.

Quantum chromodynamics (QCD)
is the theory of the strong inter-
action from the standard model

of particle physics. It describes parti-
cles which carry the colour charge -
the 6 flavours of quarks and the gluons
which transmit the interaction. In prin-
ciple, any particle composed of these
constituents - such as the proton, can
also be accurately described by the the-
ory.

Using lattice QCD - a reformulated
version of the theory whereby we limit
ourselves to a finite sized and discre-
tised space-time, we can readily simu-
late the existence of such particles and
their excited states. The aim of this
project was to simulate the nucleon’s
excited states which have spin 1

2 and
which represent short lived particles
with the same total isospin as the pro-

ton or neutron but which have higher
energies. Isospin is a number related to
the amount of up and down quarks in a
particle.

Euclidean Correlation Functions

The main property calculated on the
lattice is the euclidean correlation func-
tion 〈, 〉 of nucleon creation N̂ †(x) and
annihilation N̂ (x, t) operators. These
operators have the same total isospin
and spin as the proton and neutron and
hence are composed of either two up
quarks and 1 down quark operators for
the proton or two down and one up for
the neutron in a manner which gives
spin 1

2 .
The physical interpretation of these

correlation functions is that they give
the probability amplitude of creating

a nucleon at one point on the lattice
and destroying it at another. With this
modelling, we can compute the proba-
bility amplitude of a particle with the
correct quantum numbers existing on
the lattice with this amplitude being de-
pendent on all the excited states with
an effect related to their energies.

〈N̂i(x, t)N̂ †j (x, 0)〉±

=
∞∑

n=0

An±i An±j e−E
±
n t (1)

where ± refers to the positive and neg-
ative parity states and i and j represent
index nucleon operators with different
spin combinations of the up and down
quark operators. The correlation func-
tion is computed on the lattice using the
path integral formulation and the goal
is to fit this sum of exponentials so we

9

Fig 1. GEVP energy plateau fits for the positive parity (top) and negative parity (bottom) channels. The proton is easily identifiable at
0.940 GeV in the positive parity channel For the negative parity channel the ground state is undetermined, however the first excited state
at 1.65 GeV seems to be resolved.

can extract the energies En and hence
the mass spectrum.

Simulation Details

The correlation functions were gener-
ated from a periodic lattice with Nf = 2
twisted mass fermions, meaning the up
and down quarks masses are equal. This
results in the proton and the neutron
having the same total mass. The table
below contains the specific simulation
meta-data.

Pion mass (mπ) 130 MeV
Lattice Volume 483 × 96
Lattice Spacing (a) 0.093 fm
No. of Configurations 2153

Table 1: Simulation Details

The pion mass being 135 MeV is special
as this corresponds to its real physical
value - we call this being at the "physical

point. This is new in lattice QCD sim-
ulations as a smaller pion mass means
more computation. The number of con-
figurations (samples) is also very high -
so as to hopefully increase accuracy in
the results. The lattice spacing was de-
termined by the value of the pion decay
constant. Two different nucleon oper-
ators were chosen to generate a 2 × 2
correlation matrix.

N̂1 =
(
ûTCγ5d̂

)
û

N̂2 =
(
ûTCd̂

)
γ5û

Genealised Eigenvalue Problem
(GEVP)

We have a 2× 2 matrix of the form

C±(t) =
∞∑

n=0

An±i An±j e−E
±
n t (2)

The GEVP is then defined as

C(t)~vn = λn(t)C(0)~vn (3)

with

λn(t) = eEnt (4)

We can then extract the energies of the
low lying states from the eigenvalues by
a plateau fit of

log

(
λn(t)

λn(t+ 1)

)
(5)

These plateau fits can be seen above
in Figure 1 for our two eigenvalues for
both the positive and negative parity
channels. The ground state of the pro-
ton is easily seen in the positive parity
channel at 0.940 GeV. The first excited
state is seen at 2.03 GeV which does not
coincide with any known excited state.
Despite this, the data is quite noisy at
this point and it is not obvious where
the plataeu begins.

10

Fig 1. GEVP energy plateau fits for the positive parity (top) and negative parity (bottom) channels. The proton is easily identifiable at
0.940 GeV in the positive parity channel For the negative parity channel the ground state is undetermined, however the first excited state
at 1.65 GeV seems to be resolved.

For the negative parity channel the
ground state is also undetermined, how-
ever the first excited state appears to
coincide with the expected first excited
state of 1.650 GeV.

Athens Model Independent
Analysis Scheme (AMIAS)

AMIAS is an alternative approach to fit-
ting correlation function data, whereby
each set of fit parameters {Ani , En} is

given a weight by the value of e−
χ2

2 fit
function:

∑

ij,t

(
〈C(t)ij〉 −

∑∞
n=0A

n
i A

n
j e
−Ent)2

(
σij(t)/

√
N
)2

(6)

where N is the number of configura-
tions and 〈C(t)ij〉, σij(t) are the mean
and standard deviation of the data.
Using Monte Carlo techniques to sample
this ‘parameter space’ we can generate
probability distributions for each indi-
vidual fit parameter according to the
weight. These distributions will be gaus-
sian for large enough sample sizes and
hence we can extract the best fit param-
eters and the errors from the mean and
standard deviation of the gaussians.

Figure 2 contains the best fit param-
eters for the first four energy levels of
the positive parity channel. Again we
see the proton clearly resolved at 0.950
GeV with the determined excited states
at 2.012, 2.151 and 3.010 GeV. We have a
strong agreement between these values
and the values from GEVP method. We
can also see from our second amplitude
plot that the second nucleon interpolat-
ing field has a very little overlap with
the excited states.

Conclusion

Although the proton clearly showed up
in the data, the other excited states,
specifically the first positive parity ex-
cited state and the negative parity
ground state did not appear. This is dis-
appointing as the simulation was car-
ried out at the physical point with a
large number of configurations. Alterna-
tive simulation approaches must be con-
sidered to properly resolve these miss-
ing single particle excited states. Also,
given that no obvious multi-particle
states appeared in the data, considera-
tion should be given to the use of multi-
particle interpolating fields for the nu-
cleon + pion.

References
1 C. Alexandrou, T. Korzec, G. Koutsou, T. Leontiou

(2014) Nucleon Excited States in Nf=2 lattice QCD
arXiv:1302.4410

2 Blossier, B. Della Morte, M. von Hippel, G. Mendes, T.
Sommer, R. (2009). On the generalized eigenvalue
method for energies and matrix elements in lattice
field theory. DOI 10.1088/1126-6708/2009/04/094.

3 Papanicolas1, C.N. Stiliaris, E. (2012). A novel
method of data analysis for hadronic physics
arXiv:1205.6505

4 K.A. Olive et al. (Particle Data Group) Chin. Phys. C,
38, 090001 (2014) and 2015 update.

PRACE SoHPCProject Title
Searching for Nucleon Excited States
at the Physical Point in Lattice QCD.

PRACE SoHPCSite
The Cyprus Institute, Cyprus

PRACE SoHPCAuthors
Shaun Lahert, [Trinity College Dublin,]
Ireland

PRACE SoHPCMentor
Constantia Alexandrou, The Cyprus
Institute, Cyprus Shaun Lahert

PRACE SoHPCContact
Shaun, Lahert, Trinity College Dublin
Phone: +353851572847
E-mail: laherts@tcd.ie

PRACE SoHPCAcknowledgement
I would like to thank PRACE for giving me the
oppurtunity to work on this project. I would like to
thank my mentors Constantia Alexandrou and Giannis
Koutsou for their time and effort in helping me. Finally
I would like to Jacob Finkenrath for dedicating a
sizeable part of his day making sure we knew what we
were doing.

PRACE SoHPCProject ID
1603

11

Boosting GPUs Multigrid performance in
Lattice QCD problems

Multigrid:
It’s time to
speed it up!
Ambra Abdullahi Hassan

The tiniest particles from Quantum
ChromoDynamic require the greatest
computational resources. We tackle
this problem by speeding up the most
computationally expensive process of
Lattice QCD simulations - the linear
solver. Combining hardware (GPUs)
and software (Multigrid) we will
achieve to go faster.

There is a theory that confines
quarks and gluons into neu-
trons and protons and this ex-
plains how it is possible for all

the mass in our universe to exist. This
fascinating theory discloses the deepest
secrets of physics - from how the sun
burns to the state of the universe imme-
diately after the big bang.

Lattice QCD discloses the secrets of our uni-
verse.

This theory is called Quantum Chro-

modynamics (QCD). Its equivalent
‘computer-friendly’ counterpart, called
Lattice QCD is one of the biggest
challenges a computer scientist work-
ing with High Performance Computing
(HPC) can face. Lattice QCD is capable
of exploiting HPC to its maximum. Sci-
entists working on Lattice QCD develop
new algorithms for massively parallel
systems and a great number of com-
puter architectures have been created
and designed specifically to solve Lat-
tice QCD problems. It is not by chance
that Lattice QCD was in the original
‘Grand Challenges’ and why so many
Summer of HPC projects are related to
Lattice QCD. Indeed, about a quarter of
PRACE allocated resources are for Lat-
tice QCD related projects!
In Lattice QCD simulations, most of
the computational time is spent solv-
ing (or in other words inverting) one or
more linear system of equations. Solv-
ing a linear system of equations is some-

thing that we all usually learn to do at
high school - how many times were you
asked to find the values of the variables
X and Y in the following figure?

Of course, in Lattice QCD linear sys-
tems are huge, comprised of millions
of variables. Solving a linear systems
is crucial and to obtain better perfor-
mance, the time needed for this opera-
tion needs to decrease.

12

GPUs and multigrid

One of two ways can be used to obtain
better performance:

• Use different hardware. For exam-
ple, use a more powerful super-
computer, or increase the number
of processors.

• Use different software. For exam-
ple, using a more efficient method
or algorithm.

In this project we sought to exploit
both of the above. We chose to use
Multigrid Methods - that have proved
to be very efficient, and we wanted to
do this using Graphic Processor Units
(GPUs).

Figure 1: NVIDIA Tesla K80, one of the
GPUs that help us boosting Lattice QCD per-
formances

The hardware: JURECA GPUs
nodes

GPUs were originally created for ma-
nipulating computer graphics and 3D
images. GPUs have an intrinsic paral-
lel structure, with each GPU possess-
ing hundreds of cores that can handle
thousands of threads. GPUs can now be
found everywhere - in laptops, in em-
bedded systems, in video game consoles
and in mobile phones.

It did not take long for HPC scien-
tists to start considering using GPUs par-
allelism for scientific computing as well.
Nowadays, GPUs are used as coproces-
sors (along with normal CPUs) in scien-
tific computations. We too used GPUs
in our project to accelerate our linear
solver.

Most of the results obtained during
the project have been obtained using
the JURECA cluster which has 128 GPU-
accelerated nodes with each node hav-
ing two NVIDIA Tesla K80 GPU - each
with a dual-GPU design. We were able
to run our application using CUDA upon
these nodes. We thus had available up

to 4 GPUs per node and up to 512 GPUs
available to us.

The software: QUDA and multi-
grid

QUDA is an Open Source library for
solving Lattice QCD problems on CUDA.
The project started in the 2008 at the
Boston University and the library now
provides an efficient framework for Lat-
tice QCD on GPUs including mixed-
precision methods, domain decompo-
sition preconditioners and multigrid
solvers.

In multigrid, the linear system is
solved two or more times on grids of
different sizes (also called coarse and
fine grids or levels). After all the levels
have been built, the approximate solu-
tion is projected from a fine to a coarse
grid and viceversa.

Tuning multigrid parameters and
boosting performance

Multigrid methods require users to
choose among a large variety of param-
eters. Consequently, in order to obtain
good performance, tuning of parame-
ters is necessary. Above all, two param-
eters have been shown to speed up the
inversion time - block size and mu shift.
Block size
Block size controls the reduction in size
of the lattice when creating the coarse
grid level. It has a great impact on per-
formance - regardless of the number of
levels and the configuration chosen, a
big block size shortens inversion time.

Table 1: The total solution time decreases
as the block size increases. Results are for a
16x16x16x32 lattice using a 2-level multri-
grid preconditioner

Block size
total time

(sec)
2x2x2x2 161
2x2x2x4 93
4x4x4x4 51

Unfortunately, block size can not be
too big. The final lattice must have at
least a size of 2 in all dimensions. Since
the size of the final lattice depends on
both the block size and the number of
levels coupled with the number of GPUs
we are using, using a big block size can
be impossible when using many GPUs
or many levels.

Figure 2: Global and local lattice size. a)
the global lattice size is 4x4x4 b)2 GPUs are
distributed along the z-axis. Thus, on each
GPU the local lattice size is 4x4x2 c) When
building the second level, we use a block
size of 2x2x1 thus on the second level the
local lattice size is 2x2x2

Mu shift

Block size is a useful parameter to
tune, but it has some severe limitations
- the worst of all being that it affects
scalability! Fortunately there is another
parameter that was introduced at the
University of Cyprus, which has been
shown to greatly improve performance.
This parameter is called mu shift and it
has a magical power - if you apply the
shift to the operator at the coarse levels,
it becomes easier to invert it. Amazing,
isn’t it? This parameter really did the
trick. Considering a physical lattice of
dimension 48x48x48x96 and 24 GPUs
to work with, it was very difficult to
invert it. Every time we tried to apply
the multrigrid, it failed miserably with
one inversion requiring hours of com-
putation. Not giving up, we decided to
apply the shift and the inversion time
decreased considerably. At the end, we

13

Our main result: After tuning our multigrid behaves better than the exact-deflation solver (note how much time we can save running 100
inversions!)

could perform an inversion in less than
20 seconds!

1 Comparisons

Thanks to the tuning on the block size
and on the shift developed in Cyprus,
we achieved a best time of 20 seconds
per inversion. This is a pretty good re-
sult, since our first attempts needed sev-
eral hours to invert the same linear sys-
tem! After showning that the method
scales with the number of GPUs, the
final test for our multigrid method is
the comparison with another very good
method called exact deflation CG. In or-
der to make a fair comparison, we had
to reproduce the standard conditions
in which Lattice QCD simulations are
run. In most Lattice QCD applications,
scientists almost never perform a sin-
gle inversion - usually the same linear
systems is inverted several times, chang-
ing only the right hand side vector (the
rhs vector in short). For this reason, we
wanted to compare the performance of
the two solvers not for just a single in-
version, but for many of them.

It’s time to announce the winner!
Our multigrid method performs better!
As can be seen, it outperforms the exact
deflation CG both when performing a
single inversion (multigrid setup time is
very short) and when performing multi-
ple inversions (even the inversion time
is shorter). You can see that our method

behaves very well in the case of few
inversions (this is because our linear
solver has a much smaller setup time,
compared to exact deflation GC), but it
is very good even in the case of many in-
versions (this is because even the inver-
sion time is slightly better than the stan-
dard solver). In the figure you can see
how much time we can save in terms of
GPU hours, such as the number of hours
multiplied by the number of GPUs.

Figure 3: total time scales well with the
number of GPUs

Acknowledgements
During the two months at the Cyprus

Institute many people have helped me
in successfully completing my project.
Thanks to my project coordinator Gian-
nis for the patience and the help he gave
us during this summer. Thanks to Jacob,
who constantly helped me during these
2 months. Thanks to Christos as well
who wrote the modification of the code
that allowed me to obtain these results
and helped me greatly in understanding
the QUDA multigrid. Thanks to our site
coordinator, Stelios and thanks to all
the people at the Cyprus Institute that
made me feel at home.

PRACE SoHPCProject Title
Multigrid methods for Lattice QCD

PRACE SoHPCSite
Cyprus Institute, Cyprus

PRACE SoHPCAuthors
Ambra Abdullahi Hassan, University of
Rome Tor Vergata, Italy

PRACE SoHPCMentor
Giannis Koutsou, Cyprus Institute,
Cyprus

Ambra Abdullahi Has-
san

PRACE SoHPCSoftware applied
QUDA

PRACE SoHPCMore Information
https://lattice.github.io/quda/

PRACE SoHPCProject ID
1604

14

Fortran, C and MPI perfectly combined to
perform calculations of nanotubes by
utilising the helical symmetry properties

Calculating
Nanotubes
Katerina Galata

Nowadays nanotubes are widely
used both in research and industry,
so their properties are already
calculated - but only through methods
based on 1D translational symmetry
using a huge unit cell. In this project
there is a pseudo 2D approach for
fully ab initio calculations of
nanotubes that explicitly uses the
helical symmetry properties. The
systems considered are huge and so
the code needs to be parallel to be
efficient.

Nowadays nanotubes are not
only used in research, but
there are also attempts to use
them on a large scale in com-

mercial products. Because of this, their
properties need to be examined so the
properties of the final products can
be predicted. Given that experimental
property testing costs more than su-
percomputing calculations, everybody
is trying to achieve this through simu-
lations. Calculations of nanotubes are
usually performed using methods based
on a one-dimensional symmetry and a
huge unit cell. Meanwhile, a pseudo
two-dimensional approach (which is
the approach when the inherent heli-
cal symmetry of general chilarity nan-
otubes is exploited), has been tested
only by utilising the simple approximate
Hamiltonian models.

But this is not enough when high
quality products are required. Given
that nanotubes are used in dental im-
plants, artificial muscles and even when
somebody is trying to get rid of cancer,
the calculations have to be precise. This
is the reason why this code is developed.
Through this code, fully ab-initio calcu-
lations of nanotubes are performed, ex-
plicitly using the helical symmetry prop-
erties. Implementation is based on a for-
mulation in two-dimensional reciprocal
space where one dimension is continu-
ous and the second is discrete.

Theoretical Background

Independent particle quantum chem-
istry methods, such as Hartree-Fock
and/or Density Functional Theory or
simple post Hartree-Fock MP2 are used

to calculate the band structures.

For instance, the Hartree-Fock the-
ory suggests that each individual elec-
tron moves independently of each other,
only taking into consideration the aver-
age electrostatic field due to all other
electrons and the field due to the atoms.
According to this theory, exchanged in-
teractions are forced by forcing the an-
tisymmetricity of the electronic wave-
function. This acts to lower the total
binding energy of atoms by ensuring
that parallel spin electrons stay apart.
The downside to the theory is that it
neglects correlations in the motion be-
tween two electrons with anti parallel
spins.

With regards to DFT, the functional
(functional is a function within a func-
tion) is the electron density which is a
function of space and time. The elec-

15

Results of the simulation that took place during the project. These nanotubes consist of Boron atoms.

tron density is used here as the fun-
damental property unlike the previous
theory (H-F), which significantly speeds
up the calculations (now there are only
three variables -x,y,z- while before there
were 3N variables). But still, the sys-
tems examined consist of thousands of
atoms. So, as anybody can easily under-
stand the calculations require a signifi-
cant amount of time to complete. And
that is why supercomputers and parallel
programming are needed.

Using MPI

What is MPI?
MPI stands for Message Passing Inter-
face. This is the tool used to make com-
puter programs run faster on super-
computers. The main principle is that
the workload is shared out as tasks,
as equally as possible among different
computational nodes. At the end, the
outcomes of these tasks are combined
to make up the final result.
Hands on
The toughest part when somebody is
trying to parallelise a code is writing
the correct commands. Of course not!
What makes things complicated are the
previous coder/coders. Usually in such
projects there is always a group of peo-
ple working on a piece of code. So
throughout the years, everybody is us-

ing a previous edition of the code, de-
veloping it slightly and this keeps go-
ing. Time is required to fully understand
the implementation of previous coders.
Once understood the fun can begin.

What was implemented in this
project, was the parallelisation of rou-
tines that performed certain functions -
such as the diagonalisation of a matrix.
MPI can operate using a Master/Slave
scheme. The master is always aware
of everything that is going on within
the code and the slaves are responsi-
ble of executing some specific tasks as
noted by the user in the code. So how
is this code structured? First of all, a
routine that gives directions of what the
slave needs to do is written. This rou-
tine calls the subroutine that needs to
be parallelised so slaves will be able to
go through the tasks that are assigned
to them. But in order to do that, the
user first has to make sure that all the
variables are initialised and the work-
arrays are allocated to both the master
and the slaves. After that, in this project
the master and the slaves go through
some loops alternately, with the master
always knowing the results of each iter-
ation performed. As a result, there is an
improvement on the performance of the
code, but still a lot have to be done in
the future, since there are a lot of other
routines that need to be parallelised.

References
1 Charlotte Froese Fischer General Hartree-Fock pro-

gram Computer Physics Communications Volume 43,
Issue 3, February–March 1987, Pages 355-365

1 Nathan Argaman, Guy Makov Density Functional The-
ory – an introduction American Journal of Physics 68
(2000), 69-79

PRACE SoHPCProject Title
Calculation of nanotubes by utilizing
the helical symmetry properties

PRACE SoHPCSite
SAS-Slovak Academy of Sciences,
Slovakia

PRACE SoHPCAuthors
Katerina Galata, , NTUA-National
Technical University of Athens,
Department of Chemical Engineering,
Greece

PRACE SoHPCMentor
Prof. Dr. Jozef Noga, SAS, Slovakia Katerina Galata

PRACE SoHPCContact
Leon Kos
Phone: +12 324 4445 5556
E-mail: leon.kos@lecad.fs.uni-lj.si

PRACE SoHPCSoftware applied
Virtuoso

PRACE SoHPCMore Information
www.virtouso.org

PRACE SoHPCAcknowledgement
I would like to first of all, thank PRACE and the SoHPC
organisers for giving me the opportunity to participate
in a program with such great outcomes. Furthermore, I
am grateful to my mentor, Prof. Jozef Noga, who let me
take part in such an important project and gave me the
necessary directions through the process. Last but not
least I would like to express my gratitude to Lukáš
Demovič, who was always there to answer every
question I had (so I learnt a lot of new stuff) and who
made my staying in Bratislava very pleasant with his
hospitality.

PRACE SoHPCProject ID
1605

16

Apache Spark: Bridge between HPC and
Big Data?

Quantum
Chemistry
in Spark for
SoHPC
Oisı́n Benson

The goal of the project was to
implement and test the performance
of simple quantum chemistry
methods, such as the Hartee-Fock
method using Scala and Spark - a
general-purpose engine for
large-scale data processing. After
successfully running a Scala
prototype, a Spark implementation
was prepared which was able to run
for small basis sets. Unfortunately
the code requires more refinement
and still diverges for large basis sets.

The focus of this project was
to implement and test the
performance of the Hartee-
Fock method from quantum

chemistry using Apache Spark - a
general-purpose engine for large-scale
data processing (an alternative to
Hadoop/MapReduce). Initially devel-
oped by Matei Zaharia at UC Berkeley’s
AMPLab in 2009, and open sourced in
2010, Spark has seen a relatively rapid
adoption in the area of big data due to
its speed when compared to Hadoop,

supporting applications in multiple lan-
guages and its relative ease of use.
Spark has even received interest from
NASA for some of their large scale data
processing needs. Spark’s fault toler-
ance with node-aware distributed stor-
age, caching and automated memory
management could compensate for the
loss of performance when compared to
a pure HPC language such as MPI For-
tran.

Spark runs on top of the Java Virtual
Machine (JVM), thus cannot match the

performance of Fortran/C(++) com-
piled programs, but it does have many
desirable features of a distributed par-
allel application such as fault-tolerance,
node-aware distributed storage, caching
and automated memory management.

Spark

The core concept of Spark is that of the
Resilient Distributed Dataset (RDD).1

This distributed memory abstraction
allows programmers to perform in-

17

memory computations on large clusters
in a fault-tolerant manner. RDDs are
motivated by two types of applications
that many computing frameworks han-
dle inefficiently - iterative algorithms
and interactive data mining tools. In
both cases, keeping data in memory can
improve performance by an order of
magnitude.

To achieve fault tolerance efficiently,
RDDs provide an interface based on
coarse-grained transformations, such as
map, filter and join, that apply the same
operation to many data elements. For
example, map is a transformation that
passes each element of a dataset/RDD
through a function and returns a new
RDD representing the results. This al-
lows them to efficiently provide fault tol-
erance by logging the transformations
used to build a dataset rather than the
actual data. The RDD itself contains all
the dependency information needed to
replicate each of its partitions. Thus, if
a partition is lost, the RDD has enough
information about its lineage to recom-
pute it, which can be parallelised to al-
low for faster recovery. This ability to
recover data via lineage also means that
RDDs do not need to incur the overhead
of checkpointing which requires a snap-
shot of the entire program.

Spark code can be written in var-
ious languages including Python and
Java. We decided that the functional
programming language Scala was best
suited to the task. Efficiently written,
Scala heavily utilises many of the coarse
grained transformations (such as map
and reduceByKey) common to Spark
and was thus a natural fit for interfac-
ing with Spark. Another advantage to
writing the code in Scala was its numer-
ical/linear algebra library Breeze which
is also present in Spark through its ma-
chine learning MlLib library. This effi-
cient and clean library uses netlib-java
which loads Fortran/C linear algebra li-
braries via JNI.

Hartree-Fock

Using these tools we attempted to im-
plement the Hartree Fock method from
quantum chemistry, primarily in Scala
and then in Spark. Hartree-Fock theory
is fundamental to much of electronic
structure theory as it provides a method
of approximation for determining the
wave function and the energy of a quan-
tum many-body system in a stationary
state. It is the basis of molecular orbital

(MO) theory, which posits that each
electron’s motion can be described by a
single-particle function (orbital) which
does not depend explicitly on the instan-
taneous motions of the other electrons.
Hartree-Fock theory can only provide an
exact solution in the case of the hydro-
gen atom, where orbitals exact eigen-
functions of the full electronic Hamil-
tonian. However, the Hartree-Fock the-
ory often provides a good starting point
for more elaborate theoretical methods
which are better approximations to the
Schrödinger equation (many-body per-
turbation theory).

The libint C library’s2 Hartree Fock
method was rewritten in Scala to set
up an initial prototype. One electron in-
tegrals are first read into the program
which form a basis set allowing us to
construct the core Hamiltonian.

Hcore
µν = T kineticµν + V potentialµν (1)

The overlap matrix was then or-
thogonalised and used to construct
the initial Fock matrix. Its eigenvectors
and the number of occupied molecular
orbitals((C0)

m
µ) were then used to con-

struct the initial Density matrix Dµν as
follows:

D0
µν = Σoccµν (C0)

m
µ (C0)

m
µ (2)

All of these operations could
be performed with breeze matri-
ces. Computing the new Fock Ma-
trix Fµν for subsequent iterations
required reading the 4-dimensional
two electron integral. Using the in-
tegrals 8-fold symmetry and result-
ing degeneracy the algorithm updated
the (i, j), (k, l), (i, k), (j, l), (i, l)&(j, k)
of the Fµν matrix using the previous
Dµν as below.

F iµν = Hµν +ΣAOλσ D
i−1
µν [2∗µν|λσ−µλ|νσ]

(3)
Once this was done, a new density

matrix was constructed from the up-
dated Fµν matrix and the energy could
be computed as follows:

Eielec = ΣµνDµν(Hµν + Fµν) (4)

The previous three steps were then
repeated until the energy converged.

Spark Prototype

The processing and data transforma-
tions of the two electron integral neces-
sary to create the new F matrix proved
the central challenge of the project.
To load the 4d Integral dataset as an
RDD we first needed to convert large
datasets from Binary→HDFS text file.
This dataset was structured as i j; fol-
lowed by the list of unique k, l values.
Once it was stored in this format, the
spark code could call an integral as RDD
and preform map, split along with other
data transformations to extract the i, j,
k, l index and value. From here, the rest
of the libint update was performed and
the resulting RDD could be added to
Fnewµν . This section of code was finished
with Collect to force the evaluation of
the RDD.

Figure 1: A simple Directed Acyclic Graph
for reading or mapping a binary file to an
RDD

Spark works by creating operator
graphs called Directed Acyclic Graphs
(DAG). The DAG scheduler divides op-
erators into stages of tasks. A stage is
comprised of tasks based on partitions
of the input data. Storing a job in a DAG
allows for lazy computation of RDDs
and allows Spark’s optimisation engine
to schedule the operations in ways that
can significantly improve performance.
The DAG is not evaluated until the user
runs collect or another action, at which
point the DAG is submitted to a DAG
Scheduler. The DAG scheduler pipelines
operators together e.g. many map oper-
ators can be scheduled in a single stage.
The final result of a DAG scheduler is
a set of stages. These stages are then
passed on to the Task Scheduler which
allocates workers via a cluster manager
such as Yarn. The scheduler can allo-
cate workers based on the data location
to help improve performance. Workers

18

then preform the tasks on the Slave. In
this way, each worker is only aware of
the code that is was assigned. The DAG
below was generated from our Fock ma-
trix update.

Figure 2: Directed Acyclic Graph for read-
ing the 4d integral & using this with Dµν to
build the Fnewµν matrix

Results and Future Improve-
ments

The Spark Prototype both worked for
small basis sets such as H2O′s STO-3G
minimal basis set. However issues still
remain for configurations with over 100
basis functions with integral files over
80 Mb, as the energy calculations di-
verge for these. The remaining prob-
lems still need to be tacked. Our con-
version of the 4d integral binary file→
HDFS txt splits a file into multiple parti-
tions which we suspect the code is not
handling correctly. There is also an is-
sue with the calculations which involve

higher angular momentum functions.
These are incorrect when compared
with standard libraries and causes the
energy calculations to diverge. There
may be other obstacles but these seem
to be the main culprits.

To obtain a fully scalable Hartree-
Fock implementation we need to check
partition structure to ensure the inte-
gral is still being stored in the correct
format in HDFS and create a union of
multiple RDDs before preforming the F
update step. Another way of improving
the code might be to read the binary
files to Parquet files5 instead of HDFS
which store data as columns of doubles
rather than strings. This would make
the reads on the datasets easier and po-
tentially faster as Spark is optimised for
this format. The energy divergence sug-
gests that the Libint style calculation of
Fnew also needs to be reviewed and de-
bugged. Once these issues are fixed we
can start to fully exploit Sparks ability
to deal with large distributed datasets
and measure it’s performance and fault
tolerance in comparison to previous im-
plementations in C and Fortran.

Conclusion

Over the course of the project the
Hartree-Fock method from the quan-
tum chemistry libint C libray was imple-
mented in Scala before being adapted
to Spark. The core component of the
program was performed in a func-
tional rather than object-oriented man-
ner. Though the prototype worked for
small basis sets we have been unable to
resolve the remaining issues in time to
allow the code to run at full scale with
Gb integral files. The areas that need to
be adjusted have been identified, unfor-
tunately due to earlier delays we did not
have time to implement them. Despite
the set backs we still think that Spark
is a useful tool for large-scale data pro-
cessing.

References

1 Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauley, Michael J.
Franklin, Scott Shenker, Ion Stoica. (2012).

Resilient Distributed Datasets: A Fault-Tolerant Ab-
straction for In-Memory Cluster Computing Presented
as part of the 9th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 12),

2 Libint2, E. F. Valeev "A library for the evaluation
of molecular integrals of many-body operators over
Gaussian functions", http://libint.valeyev.net/

3 Apache Spark "A general engine for large-scale data
processing." https://spark.apache.org/

4 Scala: cross-paradigm programming language, sup-
porting both function & object-oriented methods
http://www.scala-lang.org/

5 Apache Parquet "A Columnar storage format avail-
able to any project in the Hadoop ecosystem"
https://parquet.apache.org/

PRACE SoHPCProject Title
Apache Spark: Bridge between HPC
and Big Data?

PRACE SoHPCSite
Slovak Academy of Sciences,
Slovakia

PRACE SoHPCAuthors
Oisı́n Benson, Ireland

PRACE SoHPCMentor
Doc. Mgr. Michal Pitonak, PhD.,
Computing Centre of the Slovak
Academy of Sciences Oisín Benson

PRACE SoHPCContact
Name, Surname, Institution
Phone: +12 324 4445 5556
E-mail: leon.kos@lecad.fs.uni-lj.si

PRACE SoHPCSoftware applied
Spark, Scala, Breeze

PRACE SoHPCMore Information
www.spark.apache.org

PRACE SoHPCAcknowledgement
I’d like to thank my supervisor Michal Pitoňák for all
his help and advice throughout the project. I’d also like
to thank master sys admin Lukáš Demovič for helping
to set up the various tools I needed for the project.

PRACE SoHPCProject ID
1606

19

In Situ or Batch visualisation
of Biogeochemical State
of the Mediterranean Sea

Real Time
Exploration
of Data
Petr Valenta

In situ visualisation technique allows
scientists to explore data while a
simulation is running. Furthermore,
they can adjust its parameters and
observe the immediate impact on the
studied phenomena. This
accelerates computation and
provides much better insight than
traditional approaches.

Traditionally, the process of per-
forming numerical simulations
consists of three separate steps.
First, the input parameters

(such as initial or boundary conditions)
are specified, then the simulation is ex-
ecuted and finally the generated data
are explored to determine the result.
Throughout the years, advances in par-
allel computing methods coupled with
the increasing power of supercomputers
have allowed scientists to perform more
accurate simulations in various fields of
human research.

This increasing demand for simula-
tions though requires for more data to
be transferred and stored. The transfer
of all the generated data for later anal-
ysis though requires too much time, so
in practice data is stored only at several
time-steps or using a lower resolution
than the original data. This "discarding"
of data could potentially mean that in-

formation is lost.

What is in situ visualisation?

In situ visualisation describes tech-
niques where data can be visualised in
real-time as it is generated during a sim-
ulation and without it being stored on a
storage resource. By coupling the visual-
isation and simulation, the data transfer
bottleneck can be overcome. Further-
more, this approach allows scientists
to monitor and interact with a running
simulation, allowing for its parameters
to be modified and allowing to immedi-
ately view the effects of these changes.

How to instrument my code?

Significant development of several in
situ solutions already exist and this
can be embedded in simulation code.
This project considered ParaView,1 a

popular multi-platform scientific data
analysis and visualisation environment
which is distributed under an open
source license. ParaView was mainly
used for post-processing of extremely
large datasets, but now - thanks to the
Catalyst library, ParaView can also be
used as an in situ visualisation tool.

Adaptors and pipelines

Catalyst, a relatively new component of
ParaView, has been designed for fast in-
tegration with numerical codes to allow
for real-time analysis of generated data
by specifying which data needs to be
visualised and analysed in situ. For this
reason, Catalyst uses pipelines that are
executed during the initial phase of the
numerical simulation which allows for
the post-processing capabilities of Par-
aView to be utilised. In other words, the
data which the simulation will produce

20

Example of simulation connected to Catalyst (image on the left). In the top-left window you can see the Catalyst sources and the datasets
that are extracted to the server. Real-time results are then visualised in the main window. A user can observe the data as it is being
generated using visualisation nodes of supercomputer (top-right image).

are selected, then filters are applied and
finally the data that should be dumped
for deeper investigation are chosen. In
this way, the output data can be signif-
icantly reduced because the processed
elements, which carry all the interesting
information are much smaller than the
full datasets (Fig. 1).

Since ParaView is built on the stan-
dard visualisation toolkit VTK, the sim-
ulation internal data structures have to
be transferred into the VTK data struc-
tures. This is achieved using simula-
tion interfaces called adaptors - which
should be separated from the code
to simplify the build process. Three
functions of the adaptor need to be
called from code. The first one is
called only once per simulation run
and it initialises Catalyst and loads pre-
configured pipelines. The second one
creates VTK grids, appends the com-
puted attributes on it and dumps se-
lected elements with the frequency spec-
ified by the user. The last function is
called at the end of the simulation to
release all Catalyst resources.

Time to run a simulation

Once the above function calls are spec-
ified and the code is coupled with Cat-
alyst, it is time to run the simulation.
pvserver - a component representing the

server on which ParaView is running to
process all the data, should first be initi-
ated. Using a ParaView client, one can
connect to this server to control the visu-
alisation remotely from a local machine
or using visualisation nodes of a super-
computer. The main advantage of using
this is that pvserver can be executed
in parallel, so with enough resources
even extremely large datasets can be ex-
plored smoothly. Using ParaView client
a connection to Catalyst can be created
and then pvserver waits for the simu-
lation data. The last step is to execute
the simulation. Notice that the order is
not important, there is no problem of
connecting to already running jobs.

While a simulation is running, a
user can see the size of the datasets
that a simulation produces. But none
of this data is physically stored on a
storage system. The computationally ex-
pensive operations are carried out using
ParaView’s graphical interface. So, the
user can select data structures and anal-
yse them in the same way as in post-
processing - which requires the saving
of datasets onto a file system. But there
is one difference, the simulation is in
progress so a user can observe the data
as it is being generated. With Catalyst, it
is also possible to pause the simulation
or specify a break-point at a selected
time step. This can be helpful if a user

expects some interesting behaviour of
investigated phenomena or for identify-
ing regions where numerical instability
arises.

Real world example

Researchers at OGS (National Insti-
tute of Oceanography and Experimental
Geophysics) use a 3D numerical state-
of-the-art model called OGSTM–BFM
to study the nutrient and carbon cy-
cles and their sensitivity to climatic
changes in the Mediterranean.4,5 The
model computes biogeochemical fluxes
which transform organic and inorganic
components and can be used to pre-
dict the environmental health state of
the Mediterranean. The OGSTM-BFM
model is currently used to produce fore-
casts of the biogeochemical state of the
Mediterranean for the European Coper-
nicus Marine Environment Monitoring
Service3 (CMEMS). A recent require-
ment to increase the spatial and tem-
poral scales of the simulations encoun-
tered aforementioned problems leading
to longer computation times and diffi-
culty to analyse produced data.

21

Figure 1: A user can dump elements such
as slices or streamlines in order to speed-up
simulation and save storage resources.

During the two months of my project
stay at CINECA supercomputing centre,
the OGSTM-BFM model has been cou-
pled with ParaView Catalyst to enable
real time analysis. Scientists now have
a 3D in situ visualisation tool available
to them, which can be used to check
and analyse the OGSTM–BFM model be-
haviour by consistently evaluating how
the biogeochemical processes are influ-
enced by the nutrient and carbon cycles,
specifically related to the three main
boundary conditions of the Atlantic in-
flow at Gibraltar Strait, the terrestrial
inputs at rivers and the atmospheric de-
position. The tool is also beneficial to
control the correctness of the compu-
tations during the simulation runtime.
Furthermore, the implementation has
been designed in such a way that allows
portability to other coupled modelling
systems used at OGS for many different
purposes.

Are there any drawbacks?

During the work, several performance
tests were performed. It turned out, that
there is a constant memory overhead
(around 2.5 GB) caused by linking Par-
aView Catalyst libraries. Nevertheless,
the required amount of memory is easily
manageable using available supercom-
puters. However, each data array of the
quantities chosen to be explored in situ
have to be converted into the VTK field
and the memory for these fields has to
be allocated even if they are not actu-
ally observed or dumped. In this case,
the additional memory resources may
be significantly higher and the simula-
tion code developer should be aware of
this.

For instance, the OGSTM-BFM
model computes up to 50 biogeochem-
ical concentrations. The difference be-
tween the initial and instrumented code
which exports all of the concentrations

was in the case of simulation with a do-
main size 400 × 400 × 43 more than 25
GB (growth from 20 GB to 45 GB). For
comparison, the current domain size of
the Mediterranean simulations in pro-
duction phase is 1085 × 480 × 130 (al-
most 10 times more grid points) and is
expected to be further increased in the
near future.

Significant amount of the memory
could be saved, if each concentration
is assigned to a single grid. This ap-
proach however was not convenient in
our case because if the user decides to
observe the data structure in a ParaView
client, all the data has to be transferred.
This operation could be computation-
ally expensive and very long. Moreover,
if the ParaView client is not executed
in parallel, the memory of the visuali-
sation node might not be sufficient and
the ParaView client will likely crash.
The elegant solution could be a dynami-
cal grouping of quantities onto several
grids specified by the user’s demand via
ParaView GUI. This issue is currently
considered and will be figured out soon.

The next question which should be
taken into account is whether it is worth
performing a live visualisation. Some-
times even a single computational time
step may be very long, thus the scientist
cannot register any significant change.
In this case, it is better to configure
pipelines to render images and a user
can create an animation afterwards dur-
ing post-processing - however the nice
feature of real-time insight and steering
of the simulation is not available.

With regards to the computational
expense of an in situ visualisation, there
is no significant drawback. Simulation
can be slowed down during the initial-
isation phase, when all the grids have
to be created but beyond that there is
not much difference. Several cycles are
obviously spent on a visualisation, how-
ever these would have been spent for
the output operations anyway.

Conclusion

In summary, ParaView Catalyst is easy
to integrate with already existing sim-
ulation code and offers a really deep
insight into the large amount of data
corresponding to simulated phenomena.
If code spends too much time dumping
generated data or if there are insuffi-

cient storage resources, ParaView Cata-
lyst could be an elegant solution.

In situ visualisation creates an op-
portunity to explore and analyse much
more data than is possible with tradi-
tional techniques and is expected to en-
able a wide range of new interactive
applications in the future. In addition,
as high performance computing moves
towards the exascale era, the in situ ap-
proach is widely predicted to become
more and more important as an efficient
tool for speed-up of large scale simula-
tions.2

References
1 Utkarsh, A. (2015) The ParaView Guide: A Parallel

visualisation Application Kitware

2 Bethel, E. W., Childs, H., Hansen, C. (2012) High Per-
formance visualisation: Enabling Extreme-Scale Scien-
tific Insight Chapman & Hall/CRC

3 Copernicus Marine Service http://marine.
copernicus.eu/services-portfolio/
access-to-products/?option=com_
csw&view=details&product_id=MEDSEA_
ANALYSIS_FORECAST_BIO_006_006

4 Lazzari, P., Teruzzi, A., Salon, S., Campagna, S.,
Calonaci, C., Colella, S., Tonani, M., Crise, A. (2010)
Pre-operational short-term forecasts for the Mediter-
ranean Sea biogeochemistry Ocean Sciences, 6, 25-39.
doi:10.5194/os-6-25-2010

5 Lazzari, P., Mattia, G., Solidoro, C., Salon, S., Crise,
A., Zavatarelli, M., Oddo, P., Vichi, M. (2014) The im-
pacts of climate change and environmental manage-
ment policies on the trophic regimes in the Mediter-
ranean Sea: Scenario analyses Journal of Marine Sys-
tems, 135: 137-149.

PRACE SoHPCProject Title
In Situ or Batch visualisation of
Biogeochemical State of the
Mediterranean Sea

PRACE SoHPCSite
CINECA, Italy

PRACE SoHPCAuthors
Petr Valenta, Czech Republic

PRACE SoHPCMentor
Paolo Lazzari, OGS, Italy
Stefano Salon, OGS, Italy Petr Valenta

PRACE SoHPCContact
Petr Valenta
Phone: +420 606 489 018
E-mail: valenpe7@email.cz

PRACE SoHPCSoftware applied
OGSTM-BFM, ParaView, Blender

PRACE SoHPCMore Information
summerofhpc.prace-ri.eu

PRACE SoHPCAcknowledgement
I wish express my gratitude to my supervisors Paolo
Lazzari and Stefano Salon, to the site-coordinators
Luigi Calori and Massimiliano Guarrasi, and also to Eric
Pascolo, Silvano Imboden and Daniele de Luca for
constant support and guidance, as well as for providing
invaluable advice and direction during my stay at
CINECA.

PRACE SoHPCProject ID
1607

22

InSitu Visualisation of Navier-Stokes
Tornado Effect

InSitu visu-
alisation
Tornado
effect
Anurag Dogra

InSitu refers to real time
visualisations and in this project we
looked into the real time visualisation
of the velocity fields and enstrophy of
a tornado using the given blow up NS
code and its generated data.
ParaView was used for live
visualisation.

This project is a numerical study
for the solution of the Navier-
Stokes equations upon smooth
initial data. These mathemati-

cal models have a wide range of appli-
cations and in this project we looked
at tornadoes. A tornado is usually a ro-
tating column of air which is in contact
with the ground and a cloud base. We
simulated the evolution of a 3 dimen-
sional vector field in real space R3 and
found the suitable input data for the
simulation which produced the velocity
fields and enstrophy values which could
be visualised using ParaView Catalyst.
The best part about using Catalyst is its
live visualisation capability, thus there
is not need to store data for post pro-
cessing - thus saving on storage space.

Figure 1: Program structure for ParaView
Catalyst

Catalyst Program structure

To work with Catalyst we had to write
adaptor functions for the simulation
code. The overall structure of the code
is the main Fortran simulation code
with a FORTRAN adaptor code which
diverts velocity parameters to a C++
adaptor function (responsible for creat-
ing the grid like box structures) while
simultaneously checking whether Par-
aView catalyst data requests are re-
quired by the visualisation node.The
Python pipeline works as communica-
tor which selects data from a simulation
and contains the address and port of the
visualisation client where ParaView is
running.

23

Figure 2: Energy vs time(iterations) and Velocity magnitude fields at 150 iteration

Assumptions for simulations

Our simulation is related to the complex
solutions of the Navier-Stokes equa-
tion:2

∂u
∂t

+
3∑

j=1

uj
∂

∂xj
u = ∆u−∇p (1)

where

• u is the velocity field

• p is the pressure

• t is the time

A solution for a finite time blow up
problem was proven in3 and can thus
be reformulated into a convolution
integral equation by introducing the
modified Fourier transform v and u.

For the simulation we consider the
non-zero infinite system and the finite
region A as our domain.This means that
we assume:

v(i) = 0 i = (x, y, z) (2)

where i does not belong to domain A,
which implies that our simulation is
comparable to real phenomena if dur-
ing simulation time the value of the true
vector field outisde domain A is approx-
imately equal to 0.
Also considering the velocity increment
along the z direction our main simula-
tion code was formulated on the basis of
these energy and enstrophy equations:1

E(z, t) =
1

2

∫

RxR

|v(z, t)|2dxdy (3)

S(z, t) =

∫

RxR

|z|2|v(z, t)|2dxdy (4)

• E(z,t) is energy along z axis

• S(z,t) is enstrophy along z axis

with similar equations applying for the
x and y axis. Figure 2 depicts a graph
of the enstrophy vs time with domain
size 121 X 121 X 548. An increase in the
energy values between 100 to 150 de-
picting an increase in the velocity fields
at that time range is also shown.

Domain Distribution

The x,y,z box domain has to be divided
into the number of available cores us-
ing a 2D x-pencil decomposition FFT
library. For our simulation, y-axis and z-
axis points were divided across 8 cores
and x-axis were available on all cores as
shown in Table 1.

Discussion on Results

After the perfect domain size, simula-
tions were run on the iteration range
100-150 where an increase in energy
was noted. Connecting to the catalyst at
iteration 105 we noticed the initial ve-
locity field resembling a donut as shown
in Figure 4 because at this iteration en-
ergy increases very slowly. The best fea-
ture of ParaView catalyst is that one can
connect to it at any time while simula-
tion is running and there is no need for
the simulation to finish to see a visuali-
sation.

Table 1: Domain Distribution

Axis Domain Size Divide in cores

x 121 1
y 121 8
z 548 8

Figure 3: Magnitude of velocity field

Connecting to catalyst between 140-
150 iterations, the final observed enstro-
phy looks like increasing donuts along
the z axis, which means there is an in-
crease in velocity fields as well as in
enstrophy along the z axis towards the
other end of the box.

We have defined our Gaussian cen-
ter at (0,0,20), 20 along the z axis
which is why we can see donuts gen-
erated after every 20 steps. This means
that at a particular place we have veloc-
ity equal to zero as shown in the Figure
3.

When these donuts reach the bound-
ary of the domain along the z axis, val-
ues of enstrophy at the boundary is dif-

24

Figure 4: Enstrophy at 150th iteration

ferent from zero and presumably also
outside the domain.This means our as-
sumption at this time step is not correct
any more which implies that we have to
look only before that time step.

Conclusions

We have concluded from the visualisa-
tions of this simulation that for every
finite region we can only reach near the
explosion time.

Figure 5: Increasing Velocity magnitude in
between the simulation

Figure 6: Stream tracer of velocity magni-
tude in near the initial part of domain along
z axis

References

1 IMA Journal of Applied Mathematics(2005). Complex
singular solutions of 3-d Navier-Stokes Equations: and
related real solutions. doi: 10.1093/imamat/hxh000

2 LERAY,J.(1934) Sur le mouvement d’un liquide
visquex emplissant l’éspace. Acta Math,63,193-248

3 LI,D,’|&’SINAI,YA.G.(2008) Blowups of complex solu-
tions of 3D Navier-Stokes system and renormalization
group method. J. Eur. Math. Soc.10,267-313.

PRACE SoHPCProject Title
InSitu visualisation of Navier- Stokes
Tornado Effect

PRACE SoHPCSite
CINECA supercomputing center, Italy

PRACE SoHPCAuthors
Anurag Dogra, [TU Bergakademie
Freiberg] Germany

PRACE SoHPCMentor
Sandro Frigio,Università di Camerino,
Italy Anurag Dogra

PRACE SoHPCContact
Anurag, Dogra, CINECA
Phone: +4917680823911
E-mail: anuragdogra.2192@gmail.com

PRACE SoHPCSoftware applied
ParaView 5.1,Blender-2.77a,GIMP Image Editor version
2.8.10-0ubuntu1.1 and Audacity Version
2.0.5-1ubuntu3.2

PRACE SoHPCMore Information
www.paraview.org www.blender.org www.gimp.org
www.audacityteam.org

PRACE SoHPCAcknowledgement
Thanks to Sandro Frigio,Luigi Calori,Massimiliano
Guarrasi,Daniele De Luca and Silvano Imboden for
their support.

PRACE SoHPCProject ID
1608

25

Bored with slow applications and eager for
the results? Check this out!

Python
scientific
application
booster
Marta Cudova

Python is a modern programming
language bridging the gap between
scientists and IT specialists. Python
enables rapid prototyping of realistic
simulations and brings the power of
supercomputers closer to everyday
science. Research impossible in the
past now turns into reality.

Computer simulations have be-
come an essential part of mod-
ern science. Most of the cur-
rent research would not be pos-

sible without running extensive simu-
lations for various reasons, such as fi-
nancial expenses (car crash tests), envi-
ronment impact (nuclear tests), ethical
issues (medical research), or simply its
practicability (collisions of galaxies).

However, to satisfy the computa-
tional requirements of such simula-
tions, our ordinary computers are not
fast enough. We need a supercomputer.
Such machines harnesses the power of
thousands of tightly connected high-
end servers to deliver enough power to
our software. One of such machines is
Archer located in Edinburgh. Archer is
the UK’s leading supercomputer ranking
among fifty of the fastest supercomput-
ers in the world this year.

Nevertheless, creating a realistic

simulations is not an easy job. The sim-
ulations have to be partitioned into
smaller tasks, implemented in low-level
languages, optimized for the target ma-
chine, thoroughly tested, experimen-
tally validated and executed in parallel
using special libraries called MPI. This
process is usually very time consuming
and requires deep experience in high
performance computing (HPC).

Naturally, not every scientist can
also be an excellent HPC developer.
We need a solution to overcome this
gap - a modern high level language
which would make the development
much easier. One such a language is
Python. Python is considered to be a
suitable connection between scientists
and HPC programmers. It excels in
rapid prototyping with a very fast learn-
ing curve. Python also offers a lot of spe-
cialised packages for scientific comput-
ing (e.g., numpy, scipy), high perfor-

mance computing (e.g. mpi4py) and
visualisation (e.g. matplotlib).

In this report, I would like to show
you how to solve computationally inten-
sive problems in Python and get you in
touch with HPC. I selected two toy appli-
cations, image reconstruction and com-
putation fluid dynamics. In both cases,
I will start from a serial version run-
ning on a single processor core. This ver-
sion will be implemented in Python and
some other low-level language. Next, I
will accelerate the application by dis-
tributing the work over a thousand pro-
cessor cores communicating between
them using the message passing inter-
face (MPI) library. Finally, I will com-
pare all developed codes. You will be
impressed by how fast my applications
can run, but also understand their lim-
its.

26

Study 1: Image Reconstruction

Introduction
In this case study, we take an image pro-
cessed by an edge detection algorithm
and try to reconstruct the original one.
The reconstruction is done iteratively
by gradually improving the image until
its quality reaches a desired level, see
Fig. 2. At the beginning, the image is
divided into tiles and distributed over
processor cores. All cores calculate their
tiles and exchange necessary informa-
tion to keep the image consistent. Af-
ter completion, the tiles are gathered
to create the reconstructed image. The
communication is orchestrated by the
Message Passing Interface (MPI).

Figure 2: The image reconstruction visual-
isation. (a) Input image processed by edge
detection and (b) reconstructed image.

Methods
Since the image is represented by a
large two-dimensional array of pixels,
we can use geometric decomposition to
divide the work over multiple processor
cores. Fig. 3 illustrates 1D (stripe) and
2D (tile) decompositions.

The reconstruction algorithm is
quite simple. It iteratively processes the
image, calculating the new colour of
each pixel from its neighbourhood and
the original pixel, see Eq. (1).

newi,j =
1

4
(oldi−1,j + oldi+1,j

+oldi,j−1 + oldi,j+1 − origi,j)
(1)

where old and new are pixel colours
at iteration t and t − 1 while orig is
the colour of the processed pixel in the
original image.

To reconstruct the image properly,
the processors have to collaborate and
exchange pixels at the tile edges with
their neighbours. The tiles are thus
made slightly bigger to accommodate
pixels coming from the neighbours.
These pixels are referred to as halo
zones or overlaps. If the communication
fails, the image shows various artifacts
(see blurred stripes in Figure 3).

Figure 3: Different image decompositions.

Implementation
I implemented the image reconstruction
in C and Python, parallelised it using
MPI and investigated several commu-
nication strategies and image decom-
positions. I focused on blocking and
non-blocking communications, virtual
topologies and rank reordering. So far,
I have completed the implementation,
validation, and performance evaluation
of the 1D decomposition. The 2D de-
composition is currently being tested.
The performance was evaluated on an
image of 768 × 768 pixels, see Figure 1.
I measured the performance using vari-
ous number of processor cores ranging
between 1 and 768.

Furthermore, I extended the Fortran

and Python reconstruction algorithm to
support colours. These versions were
used to generate animations illustrating
the progress of reconstruction.

Results & Discussion
Figure 1 shows the dependency of the
execution time, speed-up factors and
parallel efficiency on the number of pro-
cessor cores used. For image reconstruc-
tion, linear scaling is expected. Thus
when the number of processor cores is
doubled, the execution time should be
halved. We can see that this is the case
for up to 64 cores. Beyond this point,
the performance does not improve so
much, the parallel efficiency drops and
the speed-up reaches its plateau.

The first limitation is the commu-
nication overhead. This can be allevi-
ated by the use of non-blocking com-
munication which enables multiple net-
work transfers to be executed simultane-
ously. My experiments showed that non-
blocking communication can decrease
the execution time by 50%. The second
limitation comes into play as soon as the
tiles become too small and the proces-
sors become underutilised. Let me note,
when the image reconstruction runs on
768 cores, a single core only processes
768 pixels!

The experimental results also reveal
Python and C codes were accelerated by
a factor of 64 and 20 respectively. We
can also see C codes being always faster,
usually about 3 times. This is given by
the C language, its compiler and better
optimization for the underlying hard-
ware. On the other hand, the Python
code is much easier to read and extend.

The parallel efficiency shows the
amount of overhead hidden in the exe-
cution time. It is general good practice
to stop adding more processor cores
once the efficiency drops below 50%.
This happens when running the Python
code on 128 cores and the C code on 32

Figure 1: Performance comparison of C and Python codes: (a) execution time, (b) speed-up w.r.t. serial versions, (c) parallel efficiency.

27

Figure 4: Execution times for various simulation domains for (a) Fortran CFD with blocking communication, (b) Python CFD with
blocking communication and (c) Python CFD with non-blocking communication.

cores.

Study 2: Fluid Dynamics

Introduction
Computation Fluid Dynamics (CFD)
studies the mechanics of fluid flow (i.e.,
liquids and gases in motion). It has
a wide range of applications such as
modelling F1 car aerodynamics, blood
flow in coronal vessels, combustion pro-
cesses in a Jumbo Jet engine. As ex-
pected, solving realistic problems re-
quires supercomputers.

Fluid dynamics is a continuous prob-
lem which can be described by partial
differential equations. In this study, I
will use a finite difference approach to
solve the equations and determine the
fluid flow pattern in a square cavity with
a single inlet on the right side and a sin-
gle outlet in the bottom of the cavity.

Methods
The fluid flow can be described by the
stream function ψ defined as follows:

∇2ψ =
δ2ψ

δx2
+
δ2ψ

δy2
= 0 (2)

When discretized using the finite dif-
ference approach, we can calculate the
stream value at every grid point as:

newi,j =
1

4
(ψi−1,j + ψi+1,j

+ψi,j−1 + ψi,j+1 − 4 · ψi,j)
(3)

The computation iterates until the solu-
tion reaches the steady-state. This ap-
proach is called the Jacobi Algorithm.

Doesn’t it remind you of something?
Of course, this is a very similar approach
to that used in image reconstruction.

In order to obtain the flow pattern
of the fluid in the cavity, it is necessary
to compute the velocity field ũ. The x
and y components of ũ are related to

the stream function by:

ux =
δψ

δy
=

1

2
(ψi,j+1 − ψi,j−1)

uy = −δψ
δx

= −1

2
(ψi+1,j − ψi+1,j)

(4)

This means the velocity of the fluid at
each grid point can also be calculated
from the surrounding grid points.

The parallel implementation lies in
the domain decomposition. The grid is
again divided into tiles and processed
in parallel. The halo exchange is orches-
trated by MPI.

Implementation
I implemented the CFD problem in
Fortran and Python, parallelised it us-
ing MPI and investigated several com-
munication strategies and grid decom-
positions. I focused on blocking and
non-blocking communications, virtual
topologies and rank reordering. I suc-
ceeded with the implementation, vali-
dation, and performance evaluation of
the 1D decomposition.

The performance was evaluated on
various grid sizes between 5122 and
163842 grid points and the number of
processor cores between 1 and 1024.
Furthermore, I created an animation
demonstrating the process of the CFD
calculation.

Results and Discussion
Figure 4 demonstrates the strong scal-
ing of parallel Fortran and Python codes
using different MPI communication ap-
proaches. The strong scaling describes
how the execution time is reduced when
the number of cores is increased. It is
evident, that the bigger the problem is
the better the scaling (speed-up, effi-
ciency) the codes reach, which is caused
by more work assigned per processor
core. The best scaling is observed for
the Python non-blocking version. The
curves look pretty narrow with a conve-

nient slope.
On the other hand, the Python block-

ing code shows a very important phe-
nomenon. Once the communication be-
comes the bottleneck, the execution
time not only does not improve any
more, but it actually deteriorates. Con-
sequently, we must be careful when
picking the optimal number of proces-
sor cores to run on.

Final conclusion

Although Python is still falling behind
C and Fortran in terms of performance,
its main advantages manifest when pro-
totyping new HPC codes. Thanks to
Archer supercomputer, I could use 371
kAUs to develop and benchmark my
codes. This corresponds to 1 year 4
months and 25 days on my laptop.
PRACE SoHPCProject Title
Parallelising Scientific Python
Applications

PRACE SoHPCSite
Edinburgh Parallel Computing Centre,
University of Edinburgh, UK

PRACE SoHPCAuthors
Marta Cudova,
Brno University of Technology,
Czech Republic

PRACE SoHPCMentor
Neelofer Banglawala, EPCC, UK Marta Cudova

PRACE SoHPCContact
Catherine, Inglis, EPCC
Phone: +44 131 651 3578
E-mail: c.inglis@epcc.ed.ac.uk

PRACE SoHPCSoftware applied
Python, Anaconda, mpi4py

PRACE SoHPCMore Information
www.python.org,
www.continuum.io/why-anaconda,
pypi.python.org/pypi/mpi4py,
www.archer.ac.uk,
mpi-forum.org

PRACE SoHPCAcknowledgement
I would like to thank my project mentor, Dr. Neelofer
Banglawala, for all advices and guidance she gave me.
Then, I would also like to thank all EPCC staff, PRACE
and coordinators from Juelich.

PRACE SoHPCProject ID
1609

28

Weather forecasting for outreach on Wee
Archie supercomputer

Weather
visualisation
for outreach
Tomislav Subic

In order to bring HPC closer to the general
public we will enable them to run their own
weather forecasting simulations, something
common both in their lives and in HPC.

In the scope of the project an appli-
cation is developed which interacts
with Wee Archie. It will be used
at outreach events and in training

courses. Users will be able to run their
own weather simulations and see how
different parameters affect the weather.
How the cores work together and how
this affects the performance will also be
something that can be altered.

Introduction

The main focus of this project is out-
reach - an important aspect for every
field of science, so the general public fol-
lows the scientific community and the
progress it makes. The benefits of out-
reach are two fold. With more outreach,
people better understand the science
behind weather forecasting and other
research. People may also gain an inter-
est in the field and decide to study it -
thus growing the scientific community
members. Another aspect of outreach is
to share knowledge among the commu-
nity and given that not everyone reads
scientific papers, this can be achieved by
organising outreach events and training
courses.

High Performance Computing (HPC)
is used by scientists from different fields
who use computational models to de-
scribe real systems. As an example, it
is more efficient for a chemist to run a

few simulations before confirming the
results with just one experiment. But
simulations can require a lot of time
on regular computers, so in order to
speed them up, scientist use HPC and
supercomputers. The terms HPC and
supercomputers may seem abstract to
a lot of people and in this project we
aim to change that. The main moti-
vation behind this project is to find
a better way for HPC to engage with
the general public and demonstrate the
advantages of HPC upon thier lives.

A common and very important ap-
plication of HPC is that of weather fore-
casting. EPCC and the UK Met Office
have together developed a new state
of the art weather forecasting model
called MONC which the scientific com-
munity is beginning to use. MONC is a
highly scalable Large Eddy Simulation
(LES) model that has been developed
to simulate clouds and turbulent flows.
MONC can simulate the atmosphere at

a very high resolution with an accuracy
of up to 10s of meters which is some-
thing that no other model is capable of
doing. Due to the way it is written, it
is very scalable and suited for running
on a very large number of cores. That
is pretty impressive on its own, but can
we show it to the general public? Can
we use it to explain weather forecast-
ing and the power of HPC? This project
aimed to provide this answer. A weather
visualisation application is developed to
demonstrate weather forecasting and
HPC. The user can specify simulation
input parameters such as temperature,
pressure and wind power, but also how
many cores will be used and the way the
workload will be divided among these
cores. This resembles the way scientists
run simulations, but also how computer
scientists and HPC experts find different
ways to speed up the computations.

In addition to these simulation pa-
rameters, there is also Wee Archie, a
small supercomputer made out of Rasp-
berry Pi’s which reassembles ARCHER
- the UK’s main supercomputer. Wee
Archie will be used at outreach events,
to provide the general public a better
understanding of supercomputers, how
they are built and how they operate.
Since MONC is so flexible, it has no
problems running on Wee Archie and
while simulations run, a visualisation
will display the results in the form of a

29

moisture field with different levels and
concentrations defining clouds and rain.
To display the load, each Raspberry Pi
has a small LED panel displaying the
load of each core and the network load.

Development

As this project is targeted for outreach,
it makes sense to use Wee Archie as the
supercomputer for all the calculations.
EPCC has been developing a framework
for such demos which helps to execute
jobs on Wee Archie which includes the
transfer of configuration files, executing
a job and getting the generated data
back. This project is the first to use this
framework and apart from developing
the application, I helped to improve the
framework and fix some bugs. A few
tools are needed for Wee Archie demon-
strations - a programming language, a
GUI framework and a visualisation tool.
For the programming language Python3
was chosen. The chosen GUI framework
was WxWidgets - an open source, pop-
ular, lightweight and cross-platform in-
terface. Finally, the Visualization Toolkit
(VTK) - a robust and open source tool
for scientific visualisation, was also cho-
sen.

We now describe the general
pipeline of the application. On the left
hand side panel is where input param-
eters for the simulation can be chosen.
Of course, meteorologists use more in-
put parameters, but for demo purposes

we include the 5 parameters of wind
power, atmospheric pressure, tempera-
ture, time of year and water level. Other
options which do not influence the out-
come of the simulation, but the perfor-
mance of it are also included and these
may be of interest to computer scien-
tists or beginners in HPC. These allow
to select the number of cores per node
the simulation will run on, but also the
way the decomposition will be done.

The simulation uses a 2-D decomposi-
tion technique to split up the workload
amongst the nodes - despite the simu-
lated space being 3-dimensional. Each
core will then be assigned some piece of
the atmosphere to work on, which will
have a custom width and depth, but
will take all of the height, ranging from
the ground to the highest level of atmo-
sphere. The number of processors upon
which the workload will be spit can be
set in both width and depth. To demon-
strate performance, the user can also
select one of two solvers for the Poison
equations which determines pressure.

Once the selections are made, the

configuration is sent to Wee Archie and
it runs MONC. Every 5 steps (model
seconds) a netCDF data file is gener-
ated and sent to the application. The file
describes the moisture values for each
part of the atmosphere (rain, clouds and
vapour) and also provides the time each
core has spent for calculation and com-
munication.

A visualisation is generated each
time Wee Archie generates a data file
and VTK renders clouds using filters
which create a surface around points in
the atmosphere that have enough cloud
mass. Rain is a separate quantity, the
points in space which contain rain mass
(moisture in rain state) are rendered as
blue spheres. Transparency and colour-
ing is applied from light blue to dark
blue, depending on the amount on rain
mass in a particular spot. Lots of rain
is usually within the clouds, but we are
unable to see that until it starts falling.
Since clouds can form without any rain,
clouds and no rain may be rendered.
It is worth mentioning that the visual-
isation is meteorologically accurate as
we can see how the cloud forms and
moves. If we got the input parameters
right, rain will accumulate around the
clouds and start falling.

A gamification has also been in-
cluded which simulates the effects of
rainfall on crops. If enough rain falls,
crops will rise out of the land, but too
much rain can destroy the crops. A grid
showing the decomposition is also ren-

30

The graphs shows communication and computation time on each core. The upper simulation uses the iterative solver and the bottom one
uses FFT. We can see how FFT has less computation time and more communication time, but that does not mean that it is slower overall.

dered and this presents how the atmo-
sphere is split up amongst the processes.
The last part of the visualisation shows
the computation time for each core as a
green bar and the communication time
of each core as a red bar. This allows to
easily compare how much of the time is
spent in communication and how much
doing computation. Of course, it is of
interest to tweak the settings so that
we have low communication time and
high computation time. Another perfor-
mance measure appears in the upper
left corner, which shows how many sim-
ulation seconds are computed in one
real time second.

Discussion and Conclusion

During the project I have developed an
outreach application which can be used
to describe simulations, HPC and paral-
lelism. At the beginning of the project
the idea was to develop a weather visu-
alisation demo, but after a few discus-
sions with my mentor we realised that
this has a lot of potential. So apart from

the clouds and rain, I decided to expand
the project and display some other inter-
esting information about performance
and how parallelism is achieved.

Further to an outreach event appli-
cation, it is perfectly suited to be used
as an education tool, which some peo-
ple are already planning to use as such.
It can be used in regular classes or in
training courses for both young meteo-
rologists and other scientists who want
to use HPC and computational meth-
ods to understand the impact in results
and performance that these can impose.
Most scientists who start to use HPC are
not aware of the trade-offs they have
to make and this application can give
them an idea that performance in HPC
depends on a number of various factors.
The decomposition grid is a good way
to show how the data and the workload
is distributed among the cores. With dif-
ferent settings and performance results
we can easily show that running simula-
tions on a large number of cores is not
enough and that we have to find the
best way to distribute the workload.

Since this is the first demo applica-

tion that runs on Wee Archie, it will
also be used as a basis to develop other
demo applications. Because of the way
it is written and the tools it uses, it is
also very easy to improve and change
in the future - with different versions
targeting different audiences. It will be
interesting to see how this application
will be used and what other outreach
applications it can inspire.

PRACE SoHPCProject Title
Weather forecasting for outreach on
Wee Archie supercomputer

PRACE SoHPCSite
EPCC, UK

PRACE SoHPCAuthors
Tomislav Subic, University of Rijeka,
Croatia

PRACE SoHPCMentor
Dr. Nick Brown, EPCC, UK Tomislav Subic

PRACE SoHPCContact
Dr. Nick Brown, EPCC, UK
E-mail: n.brown@epcc.ed.ac.uk

PRACE SoHPCSoftware applied
The Visualization Toolkit(VTK)

PRACE SoHPCMore Information
www.vtk.org

PRACE SoHPCProject ID
1610

31

Smartphone application for Task Farm and
Traffic Model demonstration

Smartphone
Task Farm
Anna Gradou

The project application will be used at
outreach events and science festivals
to demonstrate how a task farm
shares work across many
independent nodes and how MPI
applications distribute tasks across
nodes that share information by
message passing.

High performance computing
clusters are used to solve
problems that are too big for
a single computer to solve ef-

ficiently. A cluster consists of computing
servers which are connected together
over a network and centrally coordi-
nated specialised software. In this way,
each server can contribute to the solu-
tion of a problem.
There are various techniques which can
achieve this distributed environment.
One of the most common ways is task
farming where a problem is divided
into a number of independent tasks. A
master process is responsible for dis-
tributing the tasks among the available
worker processes which send the results
back to the master. The master process
then combines all the results and pro-
duces the final result. In task farming
there is no communication between the
workers and can be only be applied to
problems that can be split into inde-
pendent pieces where every worker can
process their tasks independently with-

out exchanging information with other
workers.

Figure 1: Master Web Page Interface

For some problems, task farming cannot
be used and communication between
workers is necessary. One such exam-
ple is the Traffic Model that is used
to predict traffic flow and to look for
effects such as congestion. Transport
model simulation is important as it can
help better plan, design and operate
transportation systems. In such models,
each worker is responsible for the traf-
fic upon part of the road assigned to
it, but communication with other work-
ers is required for the traffic entering or

leaving from one road to another.
Two applications were selected to

demonstrate these distributed computa-
tion techniques and participants could
take part using their smartphone. The
development of these applications took
place at the Edinburgh Parallel Comput-
ing Center (EPCC).

Task Farm Application

Description
Participants can join a compute “clus-

ter” and act as a compute node in a
distributed task farm demonstration us-
ing their smartphone by loading a web
page. The goal of the application is to
present how tasks are shared across all
the workers in a distributed application
and how the final result is assembled
from the pieces that each worker com-
putes. Participants can see how their
phones contribute small pieces of work
that will be joined together to create the
final result - which is a fractal image, on

32

Figure 1.2: The user interfaces: the Final Result Demonstration Interface, the Worker Interface and the Worker Registration Interface

a large screen.
What is a fractal
"A fractal is a natural phenomenon or

a mathematical set that exhibits a re-
peating pattern that displays at every
scale." as defined in Wikipedia. Fractals
can be found in nature in trees, coast-
lines, clouds, seashells or hurricanes.
The Mandelbrot Set and Julia Set frac-
tals used in this application can be gen-
erated by a computer calculating a sim-
ple equation over and over.
How it works
Every participants smartphone acts as a

worker and there is only one master. At
the beginning of the execution, the mas-
ter chooses the parameters of the ap-
plication. For example, the master can
choose the algorithm that will be used
(Mandelbrot Set or Julia set), the num-
ber of the iterations (how many times
the equation will be calculated) or the
size of every task (in pixels). An option
of default parameters is also available.
After selection of parameters, the im-
age to be generated is split into smaller
pieces called tasks. Each task consists
of the coordinates of a little square of
the picture and a database stores all
available tasks. Every time a user de-
vice loads the web page of the applica-
tion and submits a form with a name,
the device becomes part of the cluster
and computes part of the fractal. A task
is assigned to the worker device and
removed from the list of the available
tasks.
As soon as the worker is done, the cal-
culated image is stored back to the
database. The master collects these re-
sults and glues them together like a jig-

saw puzzle. In this way, the users can
see the image construction step by step
as all the pieces will start gradually ap-
pearing on a large screen.

Traffic Model Application

Description
This application was developed to
demonstrate the case when workers
need to communicate. In this case the
road is divided into a series of cells, ei-
ther occupied or unoccupied. In each
step, cars move forward if the space
ahead of them is empty. Every user can
control a different part of the road so
for the boundary cases the users send
messages to their neighbours to find out
if the cell is occupied or not.

Figure 2: Web Page Interface for the visuali-
sation of the traffic

How it works
At the beginning of the execution the
master user chooses the size of the road
and the number of participants. The
road is split into tasks which are stored
in a database.
Every time a user registers by loading a
web page and submitting a form, a part
of the road is assigned to them. Each
worker has to communicate with the

boundary cases because they are not
aware what is ahead from their point of
view of the road. So they have to com-
municate and work together to solve the
problem. The user can see on his screen
how the cars are moving on the part of
the road that he controls and the mes-
sages that he sends to the neighbours.
On the master user screen, the traffic of
the whole road and all the messages are
demonstrated step by step.
Development Tools
Both of the applications are client-

server models with a RESTful web
server as master that distributes tasks
to clients running a HTML5/Javascript
application. Flask microframework and
Python was also used as well as Mon-
goDB for the storage and the interaction
of the information needed.
PRACE SoHPCProject Title
Smartphone Task Farm

PRACE SoHPCSite
EPCC, University of Edinburgh, UK

PRACE SoHPCAuthors
Anna Gradou, [National and
Kapodistrian University of Athens,]
Greece

PRACE SoHPCMentor
Amy Krause, EPCC, UK Anna Gradou

PRACE SoHPCContact
Catherine Inglis, EPCC
Phone: +44 (0) 131 651 3578
E-mail: c.inglis@epcc.ed.ac.uk

PRACE SoHPCSoftware applied
HTML5,CSS,Javascript,jQuery,Python,RESTful web
services

PRACE SoHPCMore Information
www.w3schools.com

PRACE SoHPCAcknowledgement
Special thanks to Dr Amy Krause for all the help and
guidance.

PRACE SoHPCProject ID
1611

33

Improving pharmaceutical R&D efficiency
through computation

Re-ranking
Virtual
Screening
Results
Juan Eiros Zamora

One of the initial steps in drug
discovery projects is the virtual
screening of small molecules against
a set of targets to predict their affinity.
A Python tool has been added to the
ChemBioServer website to post
process compounds arising from
virtual screening to help enhance
protein selectivity.

Despite technological improve-
ments available to the phar-
maceutical sector, the cost of
commercialising a new drug

doubles every 9 years.1 One such tech-
nology is computational virtual screen-
ing, which aims to predict the structure
of a target-ligand complex and the mag-
nitude of the free energy of binding.

The systematic design of novel or-
ganic compounds is a very difficult prob-
lem, as it has been estimated that there
are around 1060 synthetically-feasible
molecules with drug-like properties.
One of the initial stages in drug develop-
ment is to explore this chemical space
- fittingly coined as the Small Molecule
Universe, using libraries which aim to
capture its vastness with a small sub-
set of very diverse molecules. Initially,
thousands of putative drugs are ‘virtu-

ally screened’ against a desired target
to predict their energy and site of in-
teraction. This initial prediction is very
important as the initial library of com-
pounds is narrowed down to only the
best scoring molecules which will later
be analysed for further screening us-
ing more detailed computational mod-
els and experimental assays. This obvi-
ously allows for time and money to be
saved.

One issue related to drug discovery
is the problem of specificity. The be-
wildering complexity of a cell is still
far beyond the reach of current simu-
lation capabilities and the real targets
of drugs are never isolated. Therefore, a
compound that shows a strong affinity
for a target could also have many off-
target interactions, leading to undesired
secondary effects. This is very common

for protein families which are groups
of evolutionarily related proteins which
share structural similarities.

The objective of this project was
to develop a tool that re-ranks virtual
screening results based on screening
a compound library against different
protein members of the same family
and selecting only those compounds
that selectively score high for the pro-
tein of interest. Python was used as a
programming language due to its ease
of implementation and speed of proto-
typing, as well as for its rich ecosys-
tem data analysis libraries. The program
works as a command line tool, and has
been added to the ChemBioServer,2 a
PHP-based web server that is hosted
by the Biomedical Research Foundation
Academy of Athens. The re-ranking pro-
gram allows for different types of fil-

34

tering, with a default automated proce-
dure that only needs a certain minimum
of desired compounds to function. The
compounds that pass the filtering are
stored in Excel format for the conve-
nience of a general user base.

The reranking program

To start the initial development and
testing of the reranker.py application,
a docking data set of around 25000
molecules against 7 different protein
structures of the kinase family (ALK1,
ALK2, ALK5 and p38) was used. These
virtual screening calculations were per-
formed using Schrödinger’s Glide dock-
ing software. The first step to load the
data into Python was to convert it into
the general readable CSV format us-
ing Maestro. Drug-like molecules often
have multiple stereoisomers and tau-
tomerization states that can contribute
diversely to the overall binding energy
to a particular target. Although the
stereochemistry of a molecule is usu-
ally fixed, tautomerism is a dynamic pro-
cess, meaning that a molecule can ‘co-
exist’ in multiple different states. Dur-
ing virtual screening, we treat these
tautomers as different fixed molecules
because chemical inter conversions are
not considered in the calculation. Since
the different tautomeric states are not
represented through the naming con-
ventions of molecules, it may appear
as if there are several repeated en-
tries for many compounds. To solve
this, an additional post-processing step
is needed. To uniquely identify each
molecule, we have to parse their name
into the SMILES format which accu-
rately describes a chemical species us-
ing an ASCII string. An initial explo-
ration of the kinase docking data set
is shown in Figure 1 and is useful to
understand what to expect out of the
reranker.py algorithm. The predicted
affinity of the drugs for each crystal
structure follows a normal distribution
centred around similar binding ener-
gies of -7 kcal·mol-1. In this analysis,
two different crystal structures of the
same protein (ALK5) against a differ-
ent one (p38) are compared. As can be
observed, there is a higher degree of
correlation between the two ALK5 crys-
tals than there is for the p38 protein.
Compounds ranking differently for dif-
ferent proteins can be exploited to find
selective compounds.

−12 −10 −8 −6 −4 −2 0 2
1PY5-ALK5 score (kcal/mol)

−8 −6 −4 −2 0
1PY5-ALK5 score (kcal/mol)

−8

−6

−4

−2

0

2W
O

U
-A

LK
5

sc
or

e
(k

ca
l/m

ol
) Var Score: 0.20

−8 −6 −4 −2 0
1PY5-ALK5 score (kcal/mol)

−10

−8

−6

−4

−2

0

3E
93

-p
38

 s
co

re
 (k

ca
l/m

ol
) Var Score: 0.11

−8 −6 −4 −2 0
2WOU-ALK5 score (kcal/mol)

−8

−6

−4

−2

0

1P
Y

5-
A

LK
5

sc
or

e
(k

ca
l/m

ol
) Var Score: 0.21

−12 −10 −8 −6 −4 −2 0 2
2WOU-ALK5 score (kcal/mol)

−8 −6 −4 −2 0
2WOU-ALK5 score (kcal/mol)

−10

−8

−6

−4

−2

0

3E
93

-p
38

 s
co

re
 (k

ca
l/m

ol
) Var Score: 0.14

−10 −8 −6 −4 −2 0
3E93-p38 score (kcal/mol)

−8

−6

−4

−2

0

1P
Y

5-
A

LK
5

sc
or

e
(k

ca
l/m

ol
) Var Score: 0.11

−10 −8 −6 −4 −2 0
3E93-p38 score (kcal/mol)

−8

−6

−4

−2

0

2W
O

U
-A

LK
5

sc
or

e
(k

ca
l/m

ol
) Var Score: 0.14

−12 −10 −8 −6 −4 −2 0 2
3E93-p38 score (kcal/mol)

Figure 1: Overview of a virtual screening experiment of 25000 compounds on two crystals
of the ALK5 kinase and one p38 crystal. Every dot on each scatter plot is a compound, with
darker colours indicating a higher density.

Additionally, the results confirm
what was expected that molecules gen-
erally retain their energy of interaction
for a protein regardless of the crystal
structure belonging to the same protein
family they are docked on. The remain-
ing 4 proteins in our data set are not
shown here for simplicity’s sake, but
similar trends were observed, with the
linear regression’s explained variance
scores ranging from 0.10 to 0.30. The
idea behind the re-ranking algorithm
is simple, the selective compounds will
be those that have simultaneously low
energies of binding for all the crystals of
our target protein and high energies for
the rest of the proteins that have been
docked. To identify these compounds,
we provide the user with three ways of
defining a desired level of selectivity -
automatic, manual or based on minimal
desired energetic difference. In all three
methods, the user has to specify the
minimal number of compounds they
want to retrieve from the re-ranking.
The program heavily relies on the pan-
das Python package API, which provides
all sorts of convenient functionality to
work with data. The linchpin of this
library is the Data Frame object, which

..

allows the easy storage of data after
reading it from CSV files. Panda’s data
frame objects support boolean indexing
and have multiple vectorised methods
which are faster than classic Python
for loops. Since we observe that the
distribution of docking energies can be
expected to be normal, the automatic
method starts by defining the cutoffs
as the top 1% best scoring compounds
for the target(s) and the top 1% worst
scoring compounds for the rest of the
proteins. We iteratively update the cut-
offs by 1% steps until the minimum
amount of compounds desired by the
user meet the filter conditions. The
manual method is more direct, as the
user manually specifies the low and
high energy cutoffs and a direct search
is performed. The third method pro-
vides the user with an alternative way
to define specificity. Often, the absolute
values of the cutoffs might not be as
important as the actual energy differ-
ence between the compounds for each
protein. The larger this difference, the
more selective the compounds will be.
Therefore, the user can specify a desired
level of energy difference and the pro-

35

gram will proceed in a similar fashion
to the automatic procedure. It will start
by defining the top 1% lowest scoring
compounds for the target protein and
the second cutoff will be set above the
given score difference. Again, if no com-
pounds match this filter, the low energy
cutoff will be gradually increased by 1%
steps, while the high energy cutoff will
always be at least the desired amount of
kcal·mol-1 above it. These two methods
are not guaranteed to succeed, as there
might be no compounds that meet the
selection criteria defined by the user.
In such a case, the program falls back
to the automatic method. After the fil-
tered compounds are obtained in a data
frame, we chose to output them as an
Excel file which is available for down-
load. This format was chosen to make
it easier for scientists who might not be
versed in programming to interact with
ChemBioServer.

Updating ChemBioServer

The reranker.py program was initially
developed as a command line applica-
tion, with the different methods of func-
tion and inputs being passed as argu-
ments with flags. After local testing, we
included it to the ChemBioServer web
server. ChemBioserver is deployed us-
ing an Apache HTTP server with the
back end written in PHP. For the inte-
gration of the program, the simple in-
terface shown in Figure 2 has been de-
veloped. The user can upload multiple
target files and multiple other docking
results to filter against. One of the three
methods can be chosen and correspond-
ing input boxes appear dynamically us-
ing JavaScript. The input files are stored
in the server and analysed by calling
the Python reranker.py program through
PHP after having parsed the appropri-
ate commands. The results are stored
for 24 hours and a link to download
them is shown. The input CSV docking
results are erased after their analysis to
keep the server disk space as free as pos-
sible. We have successfully added the
re-ranking functionality to the Chem-
BioServer and deployed it for general
use. Based on the exploration of our
docking data set, we have observed an
expected amount of correlation of com-
pound binding energies between the dif-
ferent proteins of the kinase family.

Figure 2: Interface of the docking re-ranking page in ChemBioServer.

Conclusions
After extensive testing on the kinase
data set we have found that the algo-
rithm works best when used in its au-
tomatic settings, as user-defined cutoffs
can usually be too stringent. Addition-
ally, we note that the re-ranking proce-
dure is a highly selective one, reducing
a 25000 compound library to a dozen of
potentially selective compounds. Never-
theless, we expect the degree of selectiv-
ity to be dependent to some extent on
the protein family that is being studied.

References
1 Scannell, J. W. et al. (2012). Diagnosing the decline

in pharmaceutical R&D efficiency. Nat Rev Drug Discov.
11(3):191–200.

2 Athanasiadis, E. et al. (2012). ChemBioServer: a
web-based pipeline for filtering, clustering and
visualization of chemical compounds used in drug
discovery. Bioinformatics. 28(22):3002–3003. .

PRACE SoHPCProject Title
Re-ranking Virtual Screening results
in computer-aided drug design

PRACE SoHPCSite
Biomedical Research Foundation
Academy of Athens (BRFAA), Greece

PRACE SoHPCAuthors
Juan Eiros Zamora, Imperial College
London, United Kingdom

PRACE SoHPCMentor
Dr. Zoe Cournia, BRFAA, Greece Juan Eiros Zamora

PRACE SoHPCContact
Ioannis Liabotis, GRNET
Phone: +30 210 7474248
E-mail: iliaboti@grnet.gr

PRACE SoHPCSoftware applied
Python, PHP, Apache

PRACE SoHPCProject ID
1612

36

Molecular Dynamics simulations of the human
Thymidine Kinase 1 enzyme

Molecular
Dynamics of
hTK1
Samanta Makurat

hTK1 is a crucial enzyme for DNA
metabolism, but the mechanistic details of
its enzymatic reactions are still unknown.
Performing MD simulations is the first step
towards understanding how the protein
works.

The human cytosolic thymidine
kinase 1 (hTK1) is a cru-
cial enzyme for nucleotide
metabolism. In native condi-

tions it catalyzes the reaction of phos-
phate transfer from adenine triphos-
phate (ATP) to deoxythimidine (dT)
nucleoside, forming deoxythymidine
monophosphate (fig.1) which is the
first step for further in vivo synthesis
of DNA. hTK1 is found in nature in its
tetrameric form and upon binding sub-
strates its quaternary structure is sig-

nificantly changed to adopt an open
conformation that allows ATP binding.1

In addition to its physiological role,
hTK1 is also clinically important as it
is required for the activation of nucle-
oside analogs such as radiosensitizing
5-bromodeoxyuridine or antiviral stavu-
dine.

Despite its biological impor-
tance, the mechanistic details of
the hTK1 enzymatic reactions have
not been studied. Mixed Quantum

Figure 1: Phosphorylation reaction catalyzed by hTK1 in
native conditions.

Mechanics and Molecular
Mechanics (QM/MM) simu-
lations have become a pow-
erful tool to study enzy-
matic reactions and can be
used for this purpose. As
a first step to prepare the
QM/MM calculation, a real-
istic 3D structure of the en-
zyme has to be constructed
based on structural biol-
ogy studies. However, cur-
rently available hTK1 struc-
tures are hampered by dif-
ferent issues: (A) There
is no hTK1 structure in
the activated (open form)

complexed with either sub-
strates or products of the re-

action (only ones complexed with de-
oxythymidine triphoshphate, TTP at the
phosphoryl acceptor binding site), (B)
The active site of hTK1 is very flexible
and only one of four monomers (for
only one of 3 available structures2,3,4)
includes the full structure of the active
site.

Aim

The aim of this project was to model
the hTK1 in both its inactive and ac-
tive forms using Molecular Dynamics
(MD) simulations and to observe signif-
icant structural changes upon binding
the inhibitor that occupies both phos-
phoryl acceptor and donor binding
sites, (P1-(5’-adenosyl)P4-(5’-(2’-deoxy-
thymidyl))tetraphosphate, 4TA), as
the literature suggests.4 Transition
from a closed, inactive conformation
to an open, catalytic state is crucial,
providing space for the adenosine moi-
ety. Information gained from these
simulations will also be used in set-
ting up the QM/MM calculation to

37

monitor the phosphorylation of thymi-
dine and other substrates, such as
bromodeoxyuridine and other ana-
logues that are used as radiosensitizers.

Figure 2: Simulated structures. The two control systems were A - dimeric, open form tmTK
of PDB code 2orw with its cocrystallized inhibitor as a ligand, B - closed, tetrameric hTK
with its cocrystallized inhibitor (PDB code 1xbt) and C - hTK (1xbt) but with ligand taken
from tmTK, requiring the structure change upon binding.

Methodology

Model construction
The activated (open) form of the hTK1-
like enzyme containing inhibitor mim-
icking proper substrates (4TA) from
Thermotoga Maritima (tm) TK was
used as a template and a first con-
trol system (system A, fig. 2).4 The
tetrameric hTK1 in its inactive form,
which has been co-crystallized with an
inhibitor (TTP) blocking the open con-
formation , was used as a second con-
trol simulation (system B, fig. 2). Finally,
the active-form ligands (4TA) were im-
ported (either by docking or overlap-
ping structures) in the tetrameric hTK1
closed form in order to monitor changes
upon substrate binding (system C, fig. 2,
further referred to as C1 for overlapped
docked and C2 for docked structures).
For all the systems, the full structure of
the active site was completed by homol-
ogy modeling (from PDB code:1w4r)
in the monomers that lacked it. Other
missing fragments, located at N- and
C-terminal ends have regulatory roles
and are not required for catalytic func-
tion of the enzyme.5 All these steps
were performed with the use of Mae-
stro (Schrodinger) software.
MD simulations
The MD trajectories for all 4 systems

were generated with GROMACS, using
the AMBER99SB*-ILDN all atom force
field and the TIP3 water model, with

Na+ and Cl− ions added to neutralize
systems and mimic physiological condi-
tions (150mM). All proteins were sol-
vated into a cubic box large enough to
..

ensure separation of the protein from
its periodic image. The ligand topology
files were prepared with Acpype (link),
and the charges calculated with Gaus-
sian09 (link) DFT/B3LYP calculations,
6-31++G(d,p) basis set.

Results

Systems Equilibration and Stability
In order to monitor structural variations
and overall indication of the simulation
stability for each system, the RMSD of
the Cα atoms for all four simulations
was calculated (fig. 3). We observe that

for all simulations a plateau is reached
at about 40 ns, and therefore the trajec-

tories that were further considered as
production runs and used for analysis
are 460 ns long (40-500 ns). Visuali-
sation of the trajectories provided us
additional observations. We observed
that during the simulation of the C2
system, one of the ligands leaves its
pocket. That observation, along with
ligand-protein interaction analyses per-
formed for remaining 3 monomers, sug-
gests that the docking methodology was
either inadequate for this system or was
performed incorrectly. Therefore this
system will not be discussed further and
more emphasis will be given on system
C1, which placed the ligand in the pro-
tein by overlapping crystal structures
1xbt and 2orw.

The conformational changes

As mentioned above, binding on the
phosphate-donor site (ATP) requires
a conformational change in the qua-
ternary structure to an open state. In
tmTK we observe that the adenosine
moiety is positioned at the interface
of two monomers and sandwiched be-
tween Tyr13 and Leu29 of different
monomers, which are 11 Å, apart.4

These aminoacids are equivalent to
Phe29 and Ile45 in hTK1, reported to
be only 7.5 Å apart in the closed con-
formation, as reported by the same
study. Indeed, after checking distances
between these two residues in Sys-
tem B (containing TTP, closed form)
and System C1 (where we expect the
opening upon ATP binding), we ob-
served a significant difference. During
the course of simulation, the distance
between these residues oscillates be-
tween 7 Å for the closed conformation,
and 13 Å for the system bound with ATP.

Figure 3: RMSD of the backbone atoms for all the
tested systems. Notice, that system A is a dimer, while
all the others are tetramers and should not be com-
pared with them.

Another region that changes
upon ATP binding, as reported
in the literature, is a flexible
loop of 18 aminoacids (see
Fig. 4, dark blue and yellow),
demonstrating a more rigid
structure than the one with-
out the substrate.1 This region
is changing in our structure
as shown in Fig. 4, although
more calculation time is needed
to assess whether this change
is statistically significant. Re-
gardless, in order to measure
the change, RMSD for this
short part of the protein has
been performed. Analysis of
the results (Fig. 5) allows us
to conclude that in contrast

38

Figure 4: Overlay of system B (green) and C1 (blue). One monomer was chosen from both tetramers for better representation.The flexible
loop (shown as yellow and dark-blue respectively) shows the change of the structure during the simulation. Moreover the hydrophobic
pocket arginine residues from neighbouring monomer are shown (pink) for system C1..

. to the control simulation (tetramer
without ATP), the loop is changing
firmly, especially during the first 150ns
of simulation, later becoming more and
more stable, but it still acquires quite
a different structure compared to the
initial crystal structure. The high RMSD
values observed for the "opening" sys-
tem C1 and not for the stable closed B
suggests that it might be changing to
the desired conformation.

Discussion and Conclusion

MD simulations of hTK1 complexed
with inhibitor both at the phosphoryl
acceptor and donor sites was a chal-

.

Figure 5: RMSD of flexible loop in chosen monomers of B and C1.

-lenging task and
longer simulations
and replicas will
be needed in order
to validate the re-
sults and better un-
derstand the pro-
cesses related to
binding the sub-
strates. Still, com-
paring to other sim-
ulated systems and
available literature
we can conclude
that the goal of the
project was more
than achieved - the
structure shows sig-

nificant changes upon binding the ATP.
Also, the preliminary studies of the bind-
ing pocket (not shown here) shows its
validity. Especially monomer B of C2
structure, where ATP is nicely placed
in the hydrophobic pocket, just as sug-
gested in the literature. I believe, that
the representative structure obtained
from this simulations is enough to per-
form QM/MM calculations. Before that,
further analyses will be needed - espe-
cially protein-ligand interactions stud-
ies (including identification of catalytic
bases), in depth analysis of binding sites
and choosing the representative struc-
ture. .

.

References
1 Segura-Pena, Dario, et al. "Quaternary structure

change as a mechanism for the regulation of thymi-
dine kinase 1-like enzymes." Structure 15.12 (2007):
1555-1566.

2 Welin, Martin, et al. "Structures of thymidine kinase 1
of human and mycoplasmic origin." Proceedings of the
National Academy of Sciences 101.52 (2004): 17970-
17975.

3 Birringer, Markus S., et al. "Structure of a type II thymi-
dine kinase with bound dTTP." FEBS letters 579.6
(2005): 1376-1382.

4 Segura-Pena, Dario, et al. "Binding of ATP to TK1-like
enzymes is associated with a conformational change
in the quaternary structure." Journal of molecular bi-
ology 369.1 (2007): 129-141.

5 Birringer, Markus S., et al. "High-level expression and
purification of human thymidine kinase 1: quaternary
structure, stability, and kinetics." Protein expression
and purification 47.2 (2006): 506-515.

PRACE SoHPCProject Title
Molecular Dynamics Simulations on
Human Thymidine Kinase 1

PRACE SoHPCSite
Biomedical Research Foundation,
Academy of Athens, Greece

PRACE SoHPCAuthor
Samanta Makurat, University of
Gdansk, Poland

PRACE SoHPCMentor
Zoe Cournia, BRFAA, Greece Samanta Makurat

PRACE SoHPCSoftware applied
Maestro, Gromacs

PRACE SoHPCAcknowledgements
The calculations were performed with the use of ARIS
supercomputer in Greek Research and Technology
Network. Apart from my supervisor Dr Zoe Cournia, I
would also like to thank Dr Dimitris Dellis (GRNET)
and Giannis Galdadas (BRFAA) for all the training
provided, support and insightful discussions.

PRACE SoHPCProject ID
1613

39

Performance Analytics Dashboard

Performance
Dashboard
Thomas Wright

Is your super important scientific
simulation running super slow, even
on a supercomputer? Then the
performance analytics dashboard
can help, giving you an in-depth view
of your application’s performance.

In the era of supercomputers, sci-
entists and businesses are able to
use these machines to process large
amounts of data, all with the goal

of helping them to model and better
understand the world. From simulating
the brain, exploring the inner working
of stars, to compiling and indexing all
of human knowledge, supercomputers
aim to provide some of the the great-
est scientific breakthroughs of our time.
Efficiently utilising all of this power is
by itself very challenging. Whilst most
applications struggle to efficiently use
the two or four cores provided in desk-
top computers, in order to benefit from
a supercomputer, one must efficiently
use hundreds, even thousands of cores
at the same time.

This project aims to make these chal-
lenges more manageable by develop-
ing tools to monitor the performance
of parallel programs on Fionn - Ire-
land’s largest supercomputer. This will
involve developing a web application
which visualises all of the resources a
running job uses on a supercomputer,
while at the same time identifying un-
derutilised nodes and any possible bot-

tlenecks which prevent a job from scal-
ing.

The project

Currently when a user wants to inves-
tigate the performance of their applica-
tion there are a number of tools avail-
able, ranging from command line util-
ities to dashboards which monitor the
various allocated nodes. However, even
with these tools, it is difficult to answer
a simple questions such as “Am I effec-
tively using all of the nodes I have been
allocated?”, “What are the bottlenecks
in my application?”, and “What does
my application’s performance look like
over the duration of its execution?”. The
goal of this project was to build a single
web application which allows users to
look at their past jobs and answer all
of these questions through the use of
performance profile visualisations.

The main challenge facing this
project was how to process all of the
existing performance and job data col-
lected on Fionn so these could be pre-
sented in a web application. Out of the
wide range of available languages de-

signed for data processing and analysis,
it was decided to use the Python pro-
gramming language as it has a large
repository of open source packages
which help with many aspects of build-
ing data driven web applications.

The data from Fionn comes in the
form of XML files exported from the
Ganglia monitoring system and from
Torque task scheduler text logs. Process-
ing these files we were able to store the
most important information in a Post-
greSQL database. The files were fairly
easy to process, however a supercom-
puter such as Fionn produces tens of
Gigabytes of data a day so it is essen-
tial that the performance dashboard can
handle this volume of data in a timely
manner.

Most of the work involves the pro-
cessing of Ganglia files as these include
readings for many different metrics
taken every second for each of Fionn’s
320 nodes. This is handled using custom
import routines such as the lxml XML
parser library and PostgreSQL’s COPY
statement for bulk data imports.

40

With the data imported, we get on to
the fun bit – presenting and visualising
the data in a web application. There are
many different frameworks available
for building web applications in Python,
but I chose to build the performance
dashboard using Flask, as it is simple
and modular and allows for the use of a
different database system should future
scaling require this. When implement-
ing the user interface I first focused on
providing basic building blocks for dis-
playing plots and collecting these into
dashboards, out of which I then imple-
mented the UI. This structure greatly
simplified the design of the application
and will make it easy for it to be ex-
tended with new types of visualisation
and new performance metrics in the fu-
ture.

A core feature of the web application
is to go beyond producing static plots of
data and produce interactive visualisa-
tions using dynamic plotting. These al-
lows the user to pan and zoom the data
in their browser. This allows for the visu-
alisations to serve as an essential part of
the application’s user interface. For ex-
ample, we can show the user a timeline
of their jobs and allow them to hover
over a job for more information, or click
on a job to open an in-depth profile of
the job’s execution. The Bokeh Python
library wa used to make this kind of
interactive visualisation possible.

Results

In just 6 weeks it was possible to com-
bine the latest web technologies and
the data collected from Fionn to build
an interactive performance analysis
dashboard. This allowed to present a
clear view of a user’s activity on Fionn
and allowed them to select individual
jobs for greater in-depth performance
analysis. As it is not always easy for
users to interpret graphs, we have
also implemented automated analysis
which detects common performance
problems and explains these issues
to users. As an example, users of-
ten try to speed up applications by
running it upon more nodes. How-
ever, unless their application is able to

scale to the number of allocated nodes,
computing resources will be wasted.
This is detected by checking that
each requested node is actually active.

The most important page of the ap-
plication is the job performance dash-
board which presents a full execution
profile of a user’s job using visual time
lines of various performance metrics.
This has proved to be very useful in
understanding the performance charac-
teristics of jobs and revealing potential
for performance. For example, a com-
mon design for jobs is to spend most of
their time executing CPU intensive com-
putations but periodically to stop and
write their results to disk. Depending on
how efficiently this writing is done and
how they distribute it across the various
nodes, it can easily become the limiting
factor in a job’s performance. To make
matters worse, it is often difficult to un-
derstand how great an impact this can
have and where the room for improve-
ment is. However, using our application,
it becomes easy to assess this impact by
comparing the CPU utilisation, and the
CPU I/O wait time. Combined together
this shows the proportion of the time
the CPU is blocked from performing
computations by I/O operations. If the
user determines that this significantly
impacts the performance of their job,
one way to improve it is by storing more
data in fast system memory before writ-
ing it to disk. However, one has to be
careful to avoid exhausting the limited
supply of available memory. Taking this
into account we display a job’s memory

usage and thus this is easy to keep track
of. Using visual performance presenta-
tions proved very effective as it makes it
possible to get an idea on the behaviour

of an application as well as provid-
ing a clear visual indication of differ-
ences in behaviour between applica-
tions or between the nodes executing a
single job. This allows for optimisations
in code and to be identified.

Key to the effectiveness of the ap-
plication is its design as an interactive
web application which allows users to
access the tool using a web browser. By
developing the performance dashboard
on web technologies, it was possible
to develop a single application which
works on devices ranging from mobiles
to desktop computers. The user inter-
face utilises responsive design so ele-
ments rescale and the layout adapts to
the resolution of the device being used.

Over the course of the project, I re-
alised how rapidly web technologies
have evolved and how much easier it
has become to build compelling user in-
terfaces. Whereas in the past graphics
rendering would have to be performed
by a server, due to the increasing power
of Javascript and technologies such as
AJAX and Websockets, it is now easy
to get the browser to do more of the
heavy lifting. This improves page load
times and interactivity, making websites
seem less static and more like full blown
applications. By moving to the web, ap-
plications can reach a much larger audi-
ences as they can run on all platforms
and users do not require the installation

41

of any software. As web technologies
become more powerful, I believe that
other scientific monitoring applications
could also benefit from this approach in
the future.

Whilst the application is at a stage
where it can be useful for understand-
ing the performance of jobs, more work
will need to be done before it can be
placed in the hands of users. This in-
cludes adding a mechanism to transfer
the datafiles which power the applica-

tion from the secure node on Fionn to
the web application and deploying the
application to an internal server. There
is also much scope to extend the appli-
cation and to perform a wider range of
analysis.

Whilst we currently only use simple
checks to detect common performance
issues using SQL queries, it would be
possible to extract a lot more informa-
tion, such as long term performance
trends and comparative analysis of dif-
ferent runs of jobs, using big data anal-
ysis techniques. It would also be easy to
extend the application to utilise other
data sources such as I/O profiling and
power efficiency monitoring. In order
to enable the continued development
of the application, I have adopted a
flexible design and provided extensive
documentation of the application to get
future developers started as quickly as
possible. Hopefully with this work, the
performance dashboard will be able to
expand into a comprehensive perfor-
mance analysis tool for users across
Fionn.

PRACE SoHPCProject Title
Development of a Performance
Analytics Dashboard

PRACE SoHPCSite
ICHEC, Ireland

PRACE SoHPCAuthors
Thomas Wright, United Kingdom Thomas Wright

PRACE SoHPCMentor
Servesh Muralidharan, ICHEC, Ireland

PRACE SoHPCThanks
Simon Wong, ICHEC, Ireland
Eoin McHugh, ICHEC, Ireland

PRACE SoHPCContact
Thomas Wright, University of Edinburgh
Phone: +44 713 254 795
E-mail: t.d.wright@sms.ed.ac.uk

PRACE SoHPCSoftware applied
Python, Flask, Bokeh, PostgreSQL

PRACE SoHPCProject ID
1614

42

Parallelisation and output visualisation
of the shallow water equations based
on model output

Shallow
water
equations
Jiri Blahos

The aim of this project is the
simulation of fluid behaviour,
namely shallow water behaviour.
Such models can be very useful
while studying various natural
phenomena, such as ocean
waves - including tsunami waves,
or atmospheric air flows.

The shallow water equations are
a set of mathematical equa-
tions, which describe the phys-
ical behaviour of fluids (not

only water). As suggested by the name,
they simulate the behaviour of shal-
low waters which describes situations
where the horizontal span of the simu-
lated area is far larger than the vertical
one and where the vertical velocity of
the fluid does not vary with depth (or
the variations are negligible). The word
shallow can be a bit misleading here as
shallow water equations are commonly
used to simulate tsunami waves in the
ocean. Even though the ocean is not
shallow (in the common understand-
ing of the word), its surface area is still
far greater than its depth. Shallow wa-
ter equations - as other equations, are
solved using a computers which given
specific input, evaluate the equations
and provide the behaviour of the sys-
tem as an output. This output is typi-
cally in form of set of numbers, which

describe height, velocity pressure and
other physical parameters present in the
simulation.

1 Project assignment

As my starting point, I was assigned to
work on previous Fortran code which
simulates shallow water equations. I
began by studying and understanding
this code. Even though it was well writ-
ten, it is never easy to read someone
else’s code - especially given that For-
tran was something new for me. Given
I am mostly program in C# and C++,
the syntax of Fortran appeared unneces-
sarily complicated at certain points. Be-
sides this, I saw it as a good experience
to learn a new programming language.

My project was titled "Visualisation
of fluids and waves" which allowed for
plenty of freedom in how I would direct
my work. Furthermore, my project su-
pervisor, Dr. Adam Ralph explained how

the final result should ideally work and
allowed for flexibility on how things
could be done. The goal of the project
was split in two parts - code paralleli-
sation and output visualisation. For the
parallelisation part the goal was sim-
ple - alter the code so it can run on su-
percomputers (namely Fionn, the Irish
most powerful supercomputer) and run
faster. The visualisation included the
challenge of a 3D graphical view of the
shallow water model output and ideally
for this to be created as the output is
produced by the model in "real time".

It is always good to know the final
goal of a project - especially when it
comes to programming, to know how
it should look like and what it should
do. The question of how it should be
done arises as secondary to this and of
course, my project supervisor was of
great help here. We discussed the prob-
lem, the pros and cons of different ap-
proaches and adjusted the plan relative
to the current situation.

43

2 Project elaboration

2.1 Parallelisation

One of the crucial points when it comes
to physical simulations is time. It is
easy to create a detailed mathematical
model, which would require a long time
to evaluate on a computer. The stan-
dard way of writing a computer pro-
gram is simply putting down instruc-
tions which are then executed one by
one. But what if there are instructions
which can be executed independent on
each other? Could we execute them at
the same time, in a parallel manner?
That is exactly what parallelisation is -
taking advantage of a current multipro-
cessor computer architectures and writ-
ing our code in a clever way so we can
execute as many instructions in parallel
as possible. Simply running any code
on a supercomputer wont help much. It
needs to be properly adjusted.

I decided to use OpenMP for paral-
lelisation of the original Fortran code.
OpenMP is a software library which
allows for quite simple and straight-
forward code parallelisation by using
threads with shared memory. Given
than Fionn’s computational nodes each
offer 24 cores with shared memory, the
choice of OpenMP was correct. The
availability of 24 cores allows for the
possibility of splitting work into up to
24 independent "threads". This is good
enough for the shallow water simula-
tion I was working on, which is not "big
enough" to require higher degree of par-
allelisation.

Of course, code parallelisation has
its obstacles. You can’t just let your
workers (threads) do whatever they
want, and at any time. Sometimes all
workers must wait for each other and
synchronise as some tasks can be per-
formed by just one worker. When such
restrictions are not carefully taken into
account a program can still run and pro-
duce chaotic and unexpected results -
and it is very difficult to identify the
reason for this.

This is how the first part of my
project looked like. Using OpenMP,
modifying the simulation code, debug-
ging it, trying to make it efficient and
more parallel.

2.2 Benchmarking

After completing the parallelisation
part, some code benchmarking was car-
ried out. This is important so as to high-
light any potential benefits from paral-
lelisation. As expected, the parallelised
code run faster. The more computing
cores used, the faster the simulation ran.
However, even when using 24 cores, the
code ran only 5 times faster in the best
case scenario (see attached table). This
was a bit of disappointment. Reasons
for this could be that the simulation is
still not "big enough", or that it is not
capable of running faster in it’s nature,
or that I wasn’t able to find the optimal
way of parallelising the code. Despite
this, the goal was still met - the code
run faster after being parallelised.

2.3 Visualisation

The next part of the project was visuali-
sation and what I was looking forward
to most. Visualisation is about graphics,
pictures, animations, videos and how
starting with a huge pile of numbers
this can be turned into a nice looking
image which everyone can understand.
That for me is the goal of visualisation
- to present data in a way people can
understand and see the overall result.

After discussion with my supervisor,
ParaView was chosen as the visualisa-
tion tool to use. ParaView is a free

distributed software used for visual-
ising scientific data. It offers plenty of
built in mechanisms for loading data
in various formats, manipulating them
and viewing them, in both 2D and 3D.
My simulation code had to be altered

slightly so its output could be in a for-
mat compatible with ParaView. After
that, I could experiment with visualis-
ing the data. The simulation code out-
put consists of a height field - describing
the height of fluid surface at each point
of space, and a velocity field - which
describes the velocity of fluid at a given
point. To visualise the height field, I
let ParaView render a 3D surface based
on height. I could then stretch this sur-
face to make the fluid waves appear big-
ger and more visible and colour it to
mark out high and low points of the sur-
face. After using transparency, Fresnel
effects and experimenting with differ-
ent colours, the surface began to look
similar to a real water surface.

As previously stated, another goal
was to make a "real time" visualisation
- to display new model output as it is
produced. This was achieved by writing
a simple ParaView script which makes
it look for new output files and adds
them to the visualisation collection. Us-
ing this script, ParaView is able to dis-
play the simulation progress and add
new frames to the animation when new
output is produced. It is not an ideal so-
lution though, since running this script
makes ParaView non-responsive to cer-
tain user actions and the only way to
stop the script is to shut down ParaView
completely.

2.4 Custom OpenGL app

After experimenting with ParaView and
producing some nice images and videos
of shallow water simulation, there was
still some time left. Therefore, I decided
to write my own visualisation applica-
tion in the hope of improving the quality
of the visualisation result. I already had
experience with OpenGL, so I used one
of my previous applications and modi-
fied it for the purpose of fluid rendering.
There wasn’t too much time left, but
I still managed to render some decent
images, as can be seen in the pictures.
Furthermore the application is capable
of loading model output in "real time"
as data comes in and is able display it
in the form of an animation.

44

3 Project summary

As my work on this project has com-
pleted, its time to look back and com-
pare my initial goals to what I actually
managed to achieve.

For the parallelisation part, I man-
aged to modify the simulation code suc-
cessfully and test it on Fionn. The re-
sults were not too overwhelming as the
performance gain could probably be bet-
ter. Despite this, I managed to produce
a stable parallel code, which demon-
strates the methods of parallelisation
and still allows to speed up the simula-
tion computations. So I would consider
that the primary goal in this part was
met.

In the visualisation part of my
project things went quite well. The im-
ages created in ParaView look really
nice even though things can always
be improved. Working on the custom
OpenGL application turned out to offer
plenty of opportunities, but there wasn’t
enough time to make more of it.

To summarise the project, I learned
plenty of new things. New program-
ming techniques, new software, new
approaches. I also came across some
interesting bugs, which again extended
my knowledgebase about code debug-
ging and analysis. Therefore, I see this

project as a really valuable experience
which I would recommend to everyone.

4 Acknowledgments

I would like to thank all the people who
supported me during my Summer of
HPC work. First of all, my project su-

pervisor, Dr. Adam Ralph, for his guid-
ance, plenty of good advice, and for be-
ing always kind and patient to me. I
would also like to appreciate the sup-
port from all the ICHEC staff, especially
Simon Wong and Adam Murphy, for
their support in administrative parts of
the project. Special thanks also goes
to Dr. Enda O’Brien, who created the
original shallow water simulation code,
which I used during my project.

Next, I would like to thank
IT4Innovations, for supporting me in
this project. Namely I thank Ing. Tomas
Karasek, Ph.D. and Ing. Karina Pesatová,
MBA, for their support and help with
the application for this project.

PRACE SoHPCProject Title
Visualisation of fluids and waves

PRACE SoHPCSite
ICHEC, Ireland

PRACE SoHPCAuthors
Jiri Blahos, Czech Republic

PRACE SoHPCMentor
Dr. Adam Ralph, ICHEC, Ireland Jiri Blahos

PRACE SoHPCContact
Jiri, Blahos, VSB - TU Ostrava
Phone: +420 605 051 249
E-mail: j.blahos@seznam.cz

PRACE SoHPCSoftware applied

PRACE SoHPCMore Information

PRACE SoHPCProject ID
1615

45

46

Journey to the centre of the human body

Virtual
Reality
exploration
Alejandro Rodriguez Segrelles

Studying and navigating through 3D
generated parts of the human body is
not just for doctors but for everyone, as
long as you have a smartphone and
Virtual Reality glasses

The goal of this project was to
create an interactive game that
could allow the player to nav-
igate and contemplate formed

human parts from different angles.
The game engine Unity3d was used as
this makes the process of creating a
game easier than just programming in
notepad.
The medical data that was used came in
Digital Imaging and Communications in
Medicine (DICOM) format which con-
sists of many 2D scans piled up on top
of each other.
For this project, Computed Tomogra-
phies (CT) were used as input for the
medical data, but it is also possible to
use other technologies (Magnetic Res-
onance Imaging, radiographies, ultra-
sonographies, etc).
With this DICOM data, a 3D model is
created. With this format one can iden-
tify different tissues, so tissues which
will be studied will be isolated from the
rest to facilitate its visualization.
All this sounds technical and specific,
but the objective is to make it sim-
ple for the end user, with the player
being able to move and look around
a human body with Virtual Reality. Figure 1: CT scans from all 3 axis

Obtaining the mesh

According to Wikipedia, a 3D mesh is
a collection of vertices, edges and faces
that defines the shape of a polyhedron.
Now that we know what is a mesh, the
question is “How do we make it?”
Doing it by hand would be an inac-
curate and slow process, that is why
CT scans are used. But just using these
scans will not magically get the desired
results.
IT4Innovations uses Blender for all 3D
modeling related tasks, because it is free
and open-source. This allowed them to
program their own plugin to be able to
work with the DICOM format in a feasi-
ble way by allowing for the processing
of large medical data on supercomputer
nodes. The plugin is still not ready for
general release, but its current function
has been useful in this project.
Once Blender is executed in the super-
computer, it is time to start. The plu-
gin is able to load a DICOMDIR file
which stores information about all DI-
COM files.
From this point until the very end it
makes a huge difference to use a super-
computer instead of a normal computer
as processing these files requires less
time.

47

Once DICOM files are loaded, one can
start viewing the scans one by one in the
Blender 2D image viewer. For smoother
visualisations, the sagittal (left side to
right side) and coronal (front side to
back side) from the axial (top side to
bottom side) view slices were generated,
as you can see in Figure 1.
We can then isolate a desired tissue for
closer inspection once the mesh is gen-
erated.
We have plenty of tools and functions
for that purpose available, for example:

• Bright/contrast sliders

• Cut image

• Blur image

• Threshold image values

• K-means clustering

• Flooding of areas

• Create boundaries

• Poisson reconstruction

Most of them are self-explanatory and
some - such as K-means, can ease and
make clearer the process of image
segmentation. We briefly explain how
K-means works. The scans are in gray
scale thus for each pixel, the red, green
and blue values are equal. K-means is
a mechanism for coupling and is able
to identify different groups from similar
gray pixels value. These sets can then
be "painted" in different colours in a
2D viewer. The more groups which are
set can allow for more details to be
identified - as can be seen in Figure 2.

Figure 2: Scans with 2, 4 and 6 K-means groups

The coupling itself does not achieve
anything, but it does provide a clearer
visual image identifying which tissues
we can select to isolate. After this, it
is time to plant a seed. To accomplish
this, we will point to a specific pixel
which will select the group the pixel is
assigned to. We can then flood to the se-
lected seed, meaning that every group
will be deleted but the group in which
the seed belongs to.

Every scan that was used has some
selected areas, but it is a 2D surface and
we just care about its edges. Because
of this, the tool create boundaries is the
most appropriate to use as it detects
edges from every scan and leaves CT
scans ready to form the 3D model.

Once a piece of tissue has been cho-
sen, it can then be transformed into
a 3D model. Since the selected pieces
also include the inside part of tissue,
applying the create boundaries function
will detect the edges from the scans. All
that remains is to generate the mesh
which is achieved using the poisson re-
construction method. Once ready, the
mesh should appear in the 3D viewer
used. Some final enhancements such as
smoothing the shape can be carried out
to make it easier for the eyes to view. It
can also be exported to be later used in
different software.

Making the game

With the 3D model ready, its time to
open Unity. Virtual Reality was one of
the planned features of this game and
thankfully, Google released a Software
Development Kit for Unity that makes
the game compatible with Virtual Real-
ity visualisation devices through a very
simple configuration process.
Unity is a complete game engine, there-
fore it is easy to make assets due to
its compatibility with a wide variety of
formats. Because of this, importing pre-
viously obtained 3D models wasn’t diffi-
cult at all.

Figure 3: Tissue flooded in the left, flood boundaries created in
the right

To make a pre-
defined player
route we used
splines (curves).
We set a high num-
ber of waypoints
for a more precise
journey and thanks
to the spline scripts,
the transition from
one waypoint to an-
other was smooth,
delivering a pleas-
ant experience to

the user.
PRACE SoHPCProject Title
Journey to the centre of the human
body

PRACE SoHPCSite
Ostrava, Czech Republic

PRACE SoHPCAuthors
Alejandro Rodriguez Segrelles, Spain

PRACE SoHPCMentor
Milan Jaroš, IT4Innovations, Czech
Republic

Alejandro Rodriguez
Segrelles

PRACE SoHPCContact
Karina Pešatová, Ostrava
Phone: +420 596 999 587
E-mail: karina.pesatova@vsb.cz

PRACE SoHPCSoftware applied
Unity3d, Blender

PRACE SoHPCMore Information
Unity3d Blender

PRACE SoHPCAcknowledgement
To Petr Strakoš and Milan Jaroš for the constant help
and patience. Also thanks to IT4Innovations and their
free coffee policy.

PRACE SoHPCProject ID
1617

48

Need for speed: Solving the n-body
problem on GPUs

FMM for
GPUs
Johannes Pekkilä

Want to know the latest tricks for
simulating particle-particle
interactions on GPUs? Look no
further! In this article, we show how
to accelerate N-body simulations with
the fast multipole method using
state-of-the-art GPUs.

The simulation of the move-
ment and interaction of parti-
cles, from astronomical scales
to atomic, is of great interest

for scientists striving to unravel the mys-
teries of the universe. Since it is im-
practical to wait for billions of years for
galaxies to collide, or follow the move-
ment of individual atoms in a super-
heated plasma, we have to harness the
power of massively parallel supercom-
puters to predict the likely outcomes.
There is one problem though. Since
each particle can interact with another
in these types of simulations, the com-
putational cost increases very quickly as
we add more particles into a simulation.

Using a naive approach and a home
computer, predicting the collision of
galaxies would require time equivalent
to the age of the universe, if not more
to compute. Given this time, we might
as well just wait a few billion years for
the galaxies to collide by themselves!

Luckily, there is a way around
this problem. Using the fast multipole
method (FMM) and a highly parallel su-
percomputer, we can reduce the time
needed for simulating the collision to
just a few days. The bad news is, that
figuring out how to solve the problem
on state-of-the-art hardware in the most

efficient way possible is far from trivial.
In this project, we seek to provide a

proof of concept for solving the n-body
problem on graphics processing units
using the fast multipole method and a
few extra tricks.

Methods

The O(np3) approach to FMM consists
of five steps. The bottleneck in these
steps is called multipole-to-local opera-
tor, which in turn is composed of three
subroutines. The subroutines consist of
forward rotation, shift and backwards
rotation. In this work, we focus on op-
timising the bottleneck - the rotation
operation, on GPUs using CUDA. For
more information on FMM, we refer the
reader to [1, pp. 49–54].

For the rotation operation, we take
a stack of triangles ω, a single pyramid-
shaped rotation matrix D and a one-
dimensional array of constants eiφ as
input. The output is a stack of triangles.
These data structures are shown in Fig.
1.

ω and eφ are complex numbers and
the rotation matrix d consists of real-
valued tuples. We also need to intro-
duce an operator we call complex scale

◦, which is defined as a complex number
(a, bi) and a real tuple (c, d) as follows

(a, bi) ◦ (c, d) = (ac, bdi) . (1)

Each element in the output can be
solved in parallel using the following
equation - with l and m signifying the
index of an element within a triangle
which consisting of (p+1)(p+2)

2 elements.

ω′
l,m =

p∑

l=0

l∑

m=0

l∑

k=0

dl,m,k ◦ eiφk ωl,m .

(2)

To be able to efficiently use GPU re-
sources, this problem must be decom-
posed into sub-problems of a certain
size. However, the optimal size is not ob-
vious. We implemented four approaches
to explore this, where the sub-problems
consisted of computing the output for

• a whole triangle

• a whole column in a triangle

• a single element in a triangle

• several elements in a column of a
triangle

49

l

m

l

k

m

l

x

m

Figure 1: From left to right: A triangle (ω or ω′), a rotation matrix (d) and several triangles stacked in the x-axis.

In our implementations we assumed
that the same rotation matrix is used
for computing all ω′. In practice, there
are 27 different rotation matrices. How-
ever, in our implementations the rota-
tion matrix is reused within blocks of
128 threads, so we did not expect a se-
vere performance penalty as long as the
same rotation matrix is used to compute
at least 128 output triangles.

Results

The tests were run on the JUHYDRA
cluster containing:

• 2× Intel Xeon E5-2600 @ CPUs

• 8× 8 GiB DDR3 @ 1600 MHz

• 2× NVIDIA Tesla K40m @ 745
MHz GPU

• 2× NVIDIA Tesla K20Xm @ 732
MHz GPU

The results were generated on a sin-
gle Tesla K40 GPU with ECC enabled.
We compared our solutions to the ab-
solute minimum time we could theoret-
ically achieve with the hardware. The
absolute minimum was calculated by us-
ing a hypothetical machine, which has:

1. Infinitely large and infinitely fast
caches

2. Free arithmetic operations

3. The maximum bandwidth of
268.22 GiB/s (the theoretical max-
imum of a K40m with ECC dis-
abled)

The results are shown in Fig. 2 and
3. With sufficiently large number of tri-
angles and p = 10, our best implemen-
tation of the forward rotation achieves

58% of the absolute maximum perfor-
mance. It should be noted that the the-
oretical maximum bandwidth used in
calculating the absolute maximum per-
formance, is reduced approximately by
20% when ECC is turned on.1 Figure 3
shows the comparison of the reduction
in reads in the forward rotation, when
either ω or d is completely reused. For
4096 triangles and 27 different rotation
matrices, it is beneficial to reuse the ro-
tation matrix instead of ω when p < 236.
This limit is further increased with the
number of triangles.

Discussion

We implemented and optimized the ro-
tation operator for the FMM on GPUs.
Our results show that the problem de-
composition has a huge impact on per-
formance when programming for GPUs.
We showed that by prioritizing the reuse
of the rotation matrix d and solving mul-
tiple elements within a column is a very
efficient way to solve the rotation oper-
ation on GPUs. With a sufficiently large
number of triangles, the thread proces-
sors of the GPU have enough work to
hide the latencies caused by arithmetic
and memory fetches. As shown in Fig-
ure 2, we can reduce latencies in the
kernel by having a thread solve multi-
ple elements per column. Through un-
rolling, the threads can execute several
independent instructions in a pipelined
fashion, which has a similar latency hid-
ing effect as increasing occupancy of the
GPU.

Despite this, even with large un-
rolling factors the performance of our
implementations suffer when the num-
ber of triangles is low. This occurs when
there are not enough triangles to fill
the GPU with work. With large unroll
factors, we hit the limits of the caches

and registers, which in turn causes data
to spill to the main memory of the
GPU. This degrades performance, since
the main memory is slow compared to
caches and registers.

As shown in Fig. 3, the same tech-
niques used to accelerate the forward
rotation, can also be used for shift and
backward rotation. The rotation matrix
is not used in the shift operation, so
we prioritize the reuse of the input ω
instead.

In future work, we will explore how
the problem scales to multiple GPUs.
Since the complete M2L operation is so
close to the theoretical limit, there isn’t
much more we can gain by optimising
it further.

References
1 Garcia, A. (2015). Parallel FMM on a

GPU: a CUDA/C++ love story [ONLINE]:
https://summerofhpc.prace-ri.eu/
wp-content/uploads/2016/04/SoHPC2015_
final_editorial.pdf

1 NVIDIA. Cuda C: Best Practices Guide
[ONLINE]: http://docs.nvidia.com/
cuda/cuda-c-best-practices-guide/
#theoretical-bandwidth-calculation

PRACE SoHPCProject Title
Shape up or ship out – You decide!

PRACE SoHPCSite
Jülich Supercomputing Centre,
Germany

PRACE SoHPCAuthors
Johannes Pekkilä, [Aalto University
School of Science] Finland

PRACE SoHPCMentor
Andreas Beckmann, JSC, Germany
Ivo Kabadshow, JSC, Germany Johannes Pekkilä

PRACE SoHPCAcknowledgement
Great thanks to I. Kabadshow and A. Beckmann for
continuous support in all matters, from tree structures
to templates to coffee and snacks.

PRACE SoHPCProject ID
1618

Appendix

50

Figure 2: Performance results for the rotation operation using double-precision.

Figure 3: Left: Number of reads when reusing either ω or the rotation matrix d. Right: Results for the full M2L operation including
forward and backward rotations and shift. Here a thread solves 12 elements in a column (along the m-axis) per thread in the rotation
kernels. In the shift kernel, a thread solves 8 elements per row (along the l-axis).

51

Speeding up strong interactions of
quarks and gluons on modern CUDA
graphic cards and Intel Xeon Phi
accelerators

Phine
quarks
and cude
gluons
Peter Labus
Lattice Quantum Chromodynamics is a discretized version of the theory of strong interactions, which in recent years has
produced high-precision predictions for elementary particle and nuclear physics using large amounts of resources on
world-class supercomputers. In this project we try to understand how to implement the most time-critical kernels of this
theory on multi-core architectures such as graphic cards and accelerators.
To this end, we study a smaller toy model from the field of solid state physics which still has the full algorithmic
complexity and depth as Quantum Chromodynamics. We identify a highly strong-scalable threading scheme and a large
amount of vectorisation (SIMD) as the two main requirements for achieving high performance on an Intel R© Xeon PhiTM

coprocessor.

Lattice Quantumchromodynamics
(LQCD) is the discretized ver-
sion of the physical theory that
is believed to described the so-

called strong interactions — one of
the four known elementary forces in
the universe. It describes the move-
ment and interaction (the dynamics)
of elementary particles called quarks.
Their charge is called colour (Greek
chromos) and determines how they
combine into heavier particles - such
as protons and neutrons, which then
themselves form the nucleus of the
atom. The particles that are responsi-
ble for this sort of binding mechanism
are called gluons because they stick
or glue the quarks together. Interest-
ingly enough, these particles are also
charged and interact with the quarks
and amongst each other also. As a re-
sult, the equations which describe their
dynamics are non-linear and the the-
ory cannot be solved easily with an-
alytic methods. However, discretizing
the underlying continuous space-time
structure and looking only onto a fi-
nite subset of points provides an excel-
lent framework to study the theory on
the computer. The discrete version of
space-time assumes the form of a grid

or lattice — which explains the origin
of the name of the theory.

Mathematically, QCD is fully de-
scribed by an integral (the so-called
path integral or partition function)
which can be manipulated to extract
information from the theory and calcu-
late observable quantities which could
then be compared with data from ex-
periments. Numerical methods to es-
timate integrals have a long history.
Standard methods turn out to be com-
putationally expensive when the di-
mensionality of the domain of integra-
tion is big. For these kind of integrals,
a sophisticated but simple technique
which is based on pure randomness
turns out to be most efficient. This is
known as Monte Carlo Integration —
with reference to the infamous casi-
nos of the Principality of Monaco. In
essence, one lets the computer roll a
(very clever) dice many times to select
the portions of relevance of the integral
and then sums them up. This can be
shown to be a sufficiently fast converg-
ing estimate of the full integral.

In LQCD, the preferred variant of
this method is called Hybrid or Hamil-
tonian Monte Carlo (HMC) algorithm.
The former name indicates that the al-

gorithm merges two of the three most
influential ideas in Scientific Comput-
ing of the 20th century — the Metropo-
lis Monte Carlo algorithm and Molecu-
lar Dynamics (the third being the Fast
Fourier Transform). The latter name
however is somewhat more suggestive
since it refers to the specific system of
equations that is used for the Molecu-
lar Dynamics (MD) Integration. MD is
the procedure of integrating a system
of differential equations (i.e. equations
of motion) by means of discretizing
the differential operators, which trans-
forms the equations into simple alge-
braic ones.

To put it in a nutshell, to solve the
theory one has to calculate an inte-
gral — which, using a computer can be
done by integrating the relevant equa-
tions of motion (eom) and then using
the HMC algorithm. The eom describe
how the quarks move or propagate
in space-time under the influence of
the gluons. It turns out that this is de-
scribed by the inverse of an intricate
differential operator (the Dirac opera-
tor or Dslash) in the continuum the-
ory, which however becomes a (very
sparse) matrix in the discretized ver-
sion. This is why one has to solve a lot

52

Figure 1: Left: One possible geometry of the lattice: a honeycomb layer rolled up to a tube. Right: The stencil operator.

of sparse systems of linear equations
involving this matrix.

The best way to do this is to use
so-called iterative solvers, which solve
the system of linear equations only up
to a finite precision, but have the great
advantage that the matrix involved is
not changed during the process. This
allows for the possibility of implement-
ing the matrix multiplication “by hand”
and restricting the floating point oper-
ations to only those that involve non-
zero elements.

In LQCD matrix multiplication, this
is simply what computer scientists call
a stencil operation — that is, for each
and every point of the grid the opera-
tion is a combination of multiplications
and additions involving only a few adja-
cent elements of the point in question
(cf. Figure 1 as well). When it comes to
LQCD, one may simply count the num-
ber of floating point operations (flops)
involved, as well as the number of
data elements one has to read or write
from/to the main memory or cache.
The resulting ratio turns out to be very
small in terms of flops per bytes of
moved data. Since the gap between
the velocity of calculation and move-
ment of data continues to increase, the
memory bandwidth of a computational
system will be a limiting factor. This is
one of the great challenges in Lattice
QCD.

Lattice QCD is one of the most
computationally expensive fields in sci-
entific computing and uses large frac-
tions of the available supercomputer
resources worldwide. Walltimes for the
generation of Monte Carlo configura-
tions can easily reach a year on most
supercomputers. In particular, sev-
eral new important results in hadron
physics are expected to have demands
of hundreds of Teraflop-years or even
Petaflop-years.

It is therefore very desirable to
have simpler and smaller toy models
to test the impact of algorithmic vari-

ations and hardware specific consid-
erations in much smaller time scales.
One of the areas where one may find
such examples is the field of solid state
physics, where many phenomena are
naturally described using grids - due
to the rigid structure of the materials
one wants to study. Furthermore, inter-
actions are usually local, i.e. appropri-
ately modelled by nearest neighbours,
which result in very similar stencil op-
erators for the Dslash matrix multiplica-
tions.

In this project, we are interested
in optimising an existing code base
that simulates nearest neighbour in-
teractions of electrons, supplemented
with a screened Coulomb potential.
The electrons are spatially confined to
honeycomb structures, similar to two-
dimensional planar carbon layers of
graphene.

The goal of the project was to
optimise this program for modern
many-core and multi-core architec-
tures which come with big vector regis-
ters - such as the Intel R© Xeon PhiTM

coprocessors. To use their large reg-
isters, time-critical parts of the code
have to “vectorise”, i.e. single instruc-
tions with multiple data (SIMD) have to
be used. This means that the program
has to be parallelised, even to the level
of a single computing core. To use a
large number of available cores, one
has to make sure that all cores execute
similar amounts of work in parallel.

Methods

As with most matured code bases, we
had to invest a fair amount of time
to study the serial (unthreaded) pro-
gram and to get a principal under-
standing of function hierarchy and call
structures. Profiling tools was used to
identify hot spots and bottlenecks of
the code. A great number of improve-

ments were made by removing con-
stant expressions out of for-loops, min-
imizing branching, reducing the num-
ber of re-allocations of large arrays,
adding compiler optimization among
other techniques. After implementing
these, code profiling revealed that the
predominant part of the program exe-
cution was indeed spent – as expected
– in the matrix multiplication kernel.

Originally, the matrix was allocated
in its entirety in the code and then
parsed to a sparse layout. Since
the multiplication can however be de-
scribed as a five-point stencil opera-
tion (cf. Figure 1) — similar to the
case of LQCD — the matrix need
not be allocated at all. The multipli-
cation can rather be described as a
sum of shift operations and multiplica-
tions with constants. One pitfall of not
allocating the matrix is however the
following. The nearest neighbour ele-
ments involved in the matrix multipli-
cation are not know at compile time.
They strongly depend on the geome-
try used, which in turn should be freely
adjustable in a configuration file that
is passed to the executable. To re-
solve this issue, we originally decided
to implement a python script that gen-
erates C++ code with pre-calculated ar-
ray indices for all relevant cases. This
however turned out to be rather cum-
bersome and hard to maintain. There-
fore, we implemented a lookup table
from which the positions of the nearest
neighbours could be read out at execu-
tion time. This did not cause any mea-
surable overhead — possibly because
the number of instructions was greatly
reduced at the same time.

Implementing the matrix multiplica-
tion as a stencil operator presented a
large improvement in terms of perfor-
mance and in particular in terms of the
memory footprint. In this way, we could
reduce the required memory by sev-
eral orders of magnitude (cf. Figure 2)
and were even able to fit the entire iter-

53

Figure 2: Left: Memory usage for version with external library (Pardiso) and without. Right: Time to solution for the same geometries.

ative solver into the L3 cache.
After restructuring the serial ver-

sion in this way, the code was ready to
be parallelised. To be able to use an
entire CPU node or an entire Intel R©
Xeon PhiTM coprocessor it was nec-
essary to “thread” the program - that
is to use a shared memory paralleli-
sation scheme. We initially decided to
use OpenMP, because it is a simple
and fast to implement Pragma-based
C++ language extension. The final ver-
sion showed good strong scaling up to
half of a two-socket 24 core XeonTM

node.
Equipped with a fully parallel ver-

sion of the program, the expected
memory footprint, bandwidth and
throughput which had been calculated
could be compared with data from de-
tailed profiling. Of particular interest
was the memory bandwidth which —
as explained above, is often the lim-
iting factor for stencil based codes.
Comparing the peak performance of
the available hardware with the mea-
sured throughput can give an indica-
tion if vectorisation (SIMD) can benefit
the code, or if the memory bandwidth
is already saturated within the (core)
serial version.

The OpenMP version of our code
showed that the memory bandwidth
was not saturated at this point. Since
the Xeon PhiTM coprocessor has large
512-bit vector registers, one expects
that successful SIMDization can mas-
sively increase the throughput.

The implementation of this feature
however was a non-trivial task. This
because the stencil operator in ques-
tion is fairly irregular, depends strongly
on the geometry and boundary condi-
tions and differs from site to site. This
is why the direction of vectorisation
had to be considered carefully, in par-
ticular because it was not clear if the
rather small problem sizes of interest
could benefit from the implementation
of OpenMP threading and SIMD in the
same direction.

Since we did not want to change
the main memory layout of the data,

mainly so we wouldn’t need to change
major fractions of the existing code,
there was no way to avoid implement-
ing the threading in the time direc-
tion. We additionally decided to use
a common and easily implementable
vectorisation procedure which goes un-
der the name of site fusion. In this ap-
proach, vectors are formed by cutting
the outer most dimension (time in our
case) into pieces of equal length and
‘laying’ them above each other. The
number of pieces correspond to the
number of elements that fit into the reg-
ister, such that the combined nth ele-
ments of all pieces form the nth vec-
tor. Special care had to be taken for
the boundary elements which had to
be shuffled in a clockwise or counter-
clockwise manner using vector intrin-
sics. Using threads and vectors in the
same direction did however have the
disadvantage that small problem sizes
could not benefit from the additional
throughput, because the thread syn-
chronisation became the limiting fac-
tor.

Furthermore, we discovered that
we could use a simpler linear solver
— a conjugate gradient (CG) solver, in-
stead of the original bi-conjugate gra-
dient (BiCG) solver. The simpler CG
solver assumes additional properties
of the matrix (which turn out to be sat-
isfied) but uses only half of the mem-
ory and converges at roughly half of
the iterations. We also implemented
the CG solver in single precision in
order to use it as a pre-conditioner
in a mixed precision solver that can
achieve further speed-up through an
increase in the memory bandwidth. We
could however not observe any im-
pact. One possible explanation for this
is that one might be limited by either
cache misses or instructions already.

Conclusions and Outlook

Originally, the code shipped in two ver-
sions - one with customised functions
and another one which used a library

for sparse matrices (Pardiso) to solve
the linear equations. With our final in-
house version we managed to obtain
both a speed-up of a factor 10x to 14x,
as well as a reduction of the memory
footprint by 3 to 4 orders of magnitude
(cf. Figure 2). The improved memory
demands further allow us to simulate
much bigger problem sizes than before.
One issue that we want to deal with
in the future is the improvement of the
cache use. The re-use of data in the
cache, which is essential for memory
bound problems, may be improved by
keeping elements that are adjacent in
the grid closer together in the cache.
This may for instance be realised by us-
ing so-called space-filling curves.
PRACE SoHPCProject Title
Phine quarks and cude gluons

PRACE SoHPCSite
Jülich Supercomputing Centre,
Germany

PRACE SoHPCAuthors
Peter Labus, SISSA Trieste, Italy

PRACE SoHPCMentor
Dr. Stephan Krieg, JSC, Germany Peter Labus

PRACE SoHPCContact
Labus, Peter, SISSA Trieste
E-mail: Peter.Labus@sissa.it

PRACE SoHPCSoftware applied
GNU/Linux, GCC, Perf, Valgrind, Vim

PRACE SoHPCAcknowledgement
I would like to thank S. Krieg, T. Luu and E. Gregory for
insightful discussions. I am also grateful for the
hospitality of the JSC during the duration of this
project.

PRACE SoHPCProject ID
1619

PRACE SoHPCReferences
1 T. Luu and T. A. Lähde, “Quantum Monte Carlo Cal-

culations for Carbon Nanotubes,” Phys. Rev. B 93
(2016) no.15, 155106

2 D. Smith and L. von Smekal, “Monte-Carlo simula-
tion of the tight-binding model of graphene with par-
tially screened Coulomb interactions,” Phys. Rev. B
89 (2014) no.19, 195429

3 R. Brower, C. Rebbi and D. Schaich, “Hybrid Monte
Carlo simulation on the graphene hexagonal lattice,”
PoS LATTICE 2011 (2011) 056

54

The CFD devil is in CAD details

The Easy
guide to
CFD
Sam Hewitt

Computational Fluid Dynamics
involves a lengthy process starting
with modelling a geometry, building a
domain, creating a mesh, simulating
the flow before finally analysing the
results. This lengthy process can be
automated using two open source
software.

Like many problems in engineer-
ing, fluids are described by a
series of equations which are
known as the Navier-Stokes

equations. These are made up of equa-
tion 1 and 2 - where ρ is the fluid den-
sity, P the pressure, t the time and U
the velocity vector uvwt.

∂ρ

∂t
+∇.(ρU) (1)

∂U

∂t
+∇.(ρUU)−∇τ +∇P = ρb (2)

These equations tell us that at any
two points in time in any bound system,
the system must have the same mass
and the same momentum.

For very simple problems these equa-
tions can be solved analytically, but for
more complex problems they need to be
solved numerically. To do this, we sep-
arate the spacial and time domain into
discrete areas/volumes and steps. In
moving from a continuous domain to a
discrete one, we are introducing the pos-
sibility of numerical errors, so care must

be taken. The two equations above can
then be altered to provide us with a set
of linear equations which can be numer-
ically solved over the system for each
time step. This is where supercomputers
come in. As problems get more interest-
ing and more complex, large numbers
of small cells are required to maintain
a good level of accuracy. In doing so,
systems of equations grow to sizes that
make it unfeasible to calculate a result
on a single desktop machine.

Problem description

In Slovenia and Croatia, roads and
bridges are often subjected to high
speed cross flows that can impart large
drag forces on passing vehicles - making
it dangerous and difficult to drive. One
of the proposed solutions to this prob-
lem is the use of wind barriers which
have been studied in a range of man-
ners. This project considers how the use
of porous wind barriers can manipu-
late the flow and reduce the dangerous
forces imparted on vehicles. An exam-

ple of one of these barriers can be see
in Figure 3. It can be seen that a series
of bars are used to distort the incoming
flow.

Software

This project involved the use of
three open source software, Open-
CASCADE, OpenFOAM and ParaView.
These three C++ based programs are
easily accessible and can be run from
the kernel. Before describing the soft-
ware in more detail, we present the
basic work flow of a CFD problem -
which will make it easier to visualise
how these pieces of software are used.
Figure 1 shows the three main steps in
any CFD Problem.

OpenCASCADE
This is a collection of C++ libraries

that are used for building and manipu-
lating geometric models. It has a python
wrapper that makes it easier to use for
users who are not used to C++. This is
the pre-processing step (red) from Fig-
ure 1. However it will not be used for

55

the meshing step in this problem.
OpenFOAM
This is a C++ library that can be

used for the "Mesh the domain" step
in the pre-processing section (red) and
analysis step (blue) from Figure 1.

ParaView
This software is used by many ap-

plications to read data and visualise re-
sults. It accepts .foam formatted files
that contain all the information from
an analysis step. It will be used for the
post-processing step (green).

Solution

This section describes methods which
are used to make a CFD engineers life
easier.

Build the Geometry - The geometry
is produced by OpenCASCADE using the
shape and file writing libraries. These
libraries allow easy manipulation of ge-
ometric values and allow the object to
be saved in STL format. To change the
geometry of the barrier, the user need
only change one value and a range of
stl files are created for the new wind
barriers. For the problem in this report
the angle of the bar was chosen as the
critical variable. Therefore four angles
were used as input to the python script
and 4 stl files were the output. Figure 3
shows a range of bar angles at a 2D cut
and a full barrier.

Figure 1: Pre-processing, Analysis and Post-
processing steps in CFD problems.

Mesh the Domain

The output of the python script is four
stl files that are copied to the correct
directories. These are the directories
in which OpenFOAM can find the stl
files. In order to build a problem that
OpenFOAM can solve, a domain must
be generated and a mesh produced. To
build the domain, the user uses another
python script that takes the height di-
mension of the barrier as its input and it
outputs a file(blockMeshDict) that can

be read by OpenFOAM, to define the do-
main. This is used in combination with
a dictionary - called snappyHexMesh-
Dict, which describes the overall mesh-
ing constraints to mesh the domain us-
ing hexahedral elements. This step is
done in parallel by decomposing the
problem into a set of user defined vol-
umes. An example of a final mesh is
shown in Figure 2.

Figure 2: Example Mesh

Analysis

The analysis step is the easy part. At
this stage in the process, the user has
created a geometry and defined the do-
main using a python script and 6 input
variables. They have then selected how
many cores they want to use and used
the OpenFOAM meshing algorithm to
automatically mesh the domain in par-
allel. All that remains is to select which
OpenFOAM solver to use, and type run.
In reality, the run script does a few ex-
tra things but a user doesn’t need to to
worry about these, as someone else has
already written the script.

Visualisation

OpenFOAM, like OpenCASCADE has
a series of python utilities that can
be used to output visual results. One
very useful tool is pyFoamPVSnapShot.
Having created four different angled
wind barriers the results of these can be
compared. After importing one of the
results files to Paraview and configur-
ing the options, the chosen view can be
found. By saving the state and calling
the pyFoamPVSnapShot python script
using the saved state and the results
files, four images of pressure and veloc-
ity at the latest time step are produced.
Figure 3 shows the results from the test
cases ran by the author.

Figure 3: The pressure and velocity distri-
butions from a range of bar angles, along
with a full geometric model of the barrier
and a 2D slice of the bar in the x-y plane

Discussion & Conclusion

In conclusion, I have developed a ver-
satile and flexible method to build a ge-
ometric model in OpenCASCADE and
subsequently offered an easy way to
mesh and simulate this model using
the capabilities of OpenFOAM and some
added python scripts. To finish, I have
made use of Paraview capabilities to
compare a series of results for similar
simulations.

56

Acknowledgements

The author would like to thank PRACE
for the opportunity and funding for this
project, along with the site coordina-
tor and project supervisor, Leon Kos
and Marijo Talenta, who were incred-
ibly kind and helpful during the project.

References
1 Figueredo, A. J. and Wolf, P. S. A. (2009). Assortative

pairing and life history strategy - a cross-cultural study.
Human Nature, 20:317–330.

PRACE SoHPCProject Title
The CFD devil is in CAD details

PRACE SoHPCSite
University of Ljubljana, Slovenia

PRACE SoHPCAuthors
Sam Hewitt, [University of
Manchester] England

PRACE SoHPCMentor
Marijo Talenta, LECAD lab, Slovenia Sam Hewitt

PRACE SoHPCContact
Sam, Hewitt, University of Manchester
Phone: +44 7949914899 E-mail:
sam.hewitt@postgrad.manchester.ac.uk

PRACE SoHPCSoftware applied

OpenFOAM,OpenCASCAE and Paraview

PRACE SoHPCMore Information
OpenFOAM CFD

PRACE SoHPCAcknowledgement
The author would like to thank the project supervisors
Mario Talenta and Leon Kos for the help provided and
PRACE for the oppurtunity to undertake such a
fantastic project.

PRACE SoHPCProject ID
1620

57

Link prediction in large-scale
literature-based discovery networks with
Apache Flink framework

Literature-
based
discovery
at scale!
Mateusz Lango

Big Data can change the way we identify scientific discoveries. Big data analytics
upon huge volumes of data are probably sufficient to make significant discoveries
otherwise unnoticed due to a lack of proper analytical tools. In this project, I
created an application which uses artificial intelligence techniques to explore a
large database of scientific medical publications looking for discoveries missed by
humans.

We live in the era of big data.
This statement is nowa-
days heard more and more
often in the media. But

from where does all this data comes
from? Let me give you an example.
Ten years, ago almost everyone was
paying for their shopping using cash,
whereas nowadays people usually pay
using their credit or debit card. This
may seem like a small change in our
lives, but it causes the production of big
amounts of data! Every card transaction
is stored in the databases of banks but
also on the servers of card providers
and in the interbank transfer exchange
systems. What’s more, all these systems
produce log files and other data arti-
facts. This is a lot of data, especially tak-
ing into account that in some European
countries the number of card transac-
tions grows exponentially in time.

Recently, the widespread use of mo-
bile devices has changed the way we
live and caused the generation of even

bigger amounts of data. Using data from
our mobile phones, companies are able
to estimate the traffic on public roads
and recommend us a faster route. They
can also warn us about the delay of a
bus or propose good restaurants nearby.

Big data has changed the way we
live, but has it changed the way we are
doing science? Not yet.

The Big Data challenge in Sci-
ence

At first glance, one can think that in
science we are using the most modern
technologies, so big data should not be
a problem for us. Indeed, in science we
do not have problems with generating
huge amounts of data. As an example,
the Large Synoptic Survey Telescope
which is currently under construction
in Chile will create high-resolution pho-
tos of the sky. The quality and size of
these photos will be so high that 30 TB

of disc space will be required to store
such an image. How much data does
this amount to?, you may ask. Well, the
storage space required for the human
genome of 30 thousand people or for
storing 60 million books is of similar
size. Do you think this is a lot? In 2020 it
is planned to launch the Square Kilome-
tre Array which will generate 1,048,576
TB of data every second.

However, it is impossible for a sci-
entist to analyse such a huge amount
of data by hand and techniques for au-
tomatic analysis of scientific data are
still lacking. Because of this, there is an
increasing interest in automatic knowl-
edge discovery techniques using ma-
chine learning, computational and arti-
ficial intelligence, decision support sys-
tems and others.

58

Literature-based Discovery

One of these ideas is the concept of
Literature-based Discovery (LBD). In
LBD we assume that a scientist is not
aware of every single paper which ap-
peared in their discipline and the goal
is to help them by analysing these auto-
matically.

Figure 1: The prob-
lem of link prediction

I explain
how LBD works
through an ex-
ample. Let’s as-
sume that some
researchers dis-
covered that
medicine A cures
the disease B.
Later, another sci-
entist has written
a paper where he
claims that dis-

ease C is somehow related to disease B.
However, no one is aware of the possi-
ble interaction between medicine A and
disease C. Maybe even by applying this
drug we can cure this disease? Such a
discovery is just waiting to be found -
no stroke of genius is required at all!

How to find a discovery in data?

In my project, we are concentrated on
exploring the MEDLINE database of
medical scientific papers. MEDLINE is
the largest bibliographical database in
the world and it’s freely available.

Each MEDLINE entry is annotated
by hand with around 12 Medical Sub-
ject Headings (MeSH) terms which aim
to describe the content of the arti-
cle in a concise way. The examples
of MesSH terms are ”Postmenopause”,
”Cardiovascular Diseases/chemically in-
duced” or ”Estrogen Replacement Ther-
apy/adverse effects”.

Using MeSH terms we can build a
knowledge graph in the following way.
We first add a node to the graph for
every MeSH term in the database. We
then construct the edge between nodes
(terms) if the terms co-occur in at least
one scientific paper. This way we have
a graph of terms, but naturally, the ma-
jority of the terms are not connected to
each other. If we could predict which
nodes in the graph should be connected
in the future, then actually we would
be able to automatically make discover-
ies! Note, that - just like in our example,
two vertices can represent the cure and
the disease and the edge is the possi-

ble new publication which claims that
they are related! Hence, we used link-
age prediction techniques to automat-
ically find promising new connections
between MeSH terms.

Figure 2: The dashboard of Apache Flink with visualised data-flow of our linkage
prediction algorithm.

The need for HPC

In order to decide, which connections
in the graph are probable and which
are not, the computer has to analyse all
of them. Unfortunately, the number of
possible connection is very big. For in-
stance, if our graph contains 200 000
nodes, then there are almost 20 000
000 000 possible edges!

This makes such calculations com-
putationally demanding as it requires
great computational power, which can
be provided by high-performance super-
computers.

One of the challenges of the project
was to implement linkage prediction in
a distributed way, i.e. to write a pro-
gram which can use multiple computing
nodes of a supercomputer. To achieve
this I decided to implement the project
in one of the big data frameworks which
implement the MapReduce paradigm.

MapReduce consists of three steps:
Map, Shuffle (which is done automati-
cally) and Reduce. During a map stage,
each line/object of the input file is trans-
formed into one or many key-value
pairs. For a particular line/object the
map operation does not depend on
other lines/objects, hence it can be exe-
cuted at any time and at any node. Later,
during the shuffle, each node sends all
previously produced key-value pairs to
other nodes. However, they are trans-
ported in a way which ensures that all
pairs with the same key will be trans-

ported to the same node - thus making
further processing much simpler. Finally,
the reduce stage reduces the group of
key value pairs with the same key to
one value.

This sounds pretty complicated and
specific, but MapReduce allows us to
write distributed applications in a rela-
tively simple way and it has come to be
a standard in the implementation of big
data processing applications.

I looked into three MapReduce-
based frameworks for the implementa-
tion of my system - Hadoop MapReduce,
Apache Spark and Apache Flink. After
reviewing documentation and perform-
ing some initial performance tests I de-
cided to use Apache Flink.

Implementation in Apache Flink

Since there are millions of possible
connections in a graph I implemented
the calculation using the Apache Flink
framework. Flink is an open source big
data processing engine which treats
data as a data stream. I was work-
ing with standard, static databases, but
even then Flink considers it as a data
stream of a constant and finite size -
which allows Flink to perform more
optimisations than standard big data
frameworks. In particular, in many cases
Flink does not need to wait for the ter-
mination of the previous stage of calcu-
lations to start the next one. Since the
previous stage output is a data stream,
then just after the first result is pro-
duced it can be further processed with-
out waiting for the rest of the results.
Another advantage of using Flink is that

59

it comes with a library for graph process-
ing called Gelly. Gelly supports transfor-
mations and mutations on graphs, as
well as more advanced algorithms

Figure 3: The main page (top) and view of
search results (bottom) of LBDream.

such as PageRank, Triangle Count,

Label Propagation, amongst others.
Flink provides programmatic APIs

for several popular programming lan-
guages such as Java, Scala, and Python.
In the project, the Java API was used,
which included modern features of Java
8 such as lambdas and diamonds. I also
used Flink-specific function annotations
to allow Flink’s engine to better opti-
mise my code during the construction
of the execution plan.

Figure 4: The execution time of linkage pre-
diction algorithm on one and ten nodes.

We experimented with Flink using
one PC (of 12 cores, 64 GB RAM, SSD)
and on a cluster of 10 nodes (each with
24 cores, 48 GB RAM, HDD) with Flink
set to standalone mode - which sets the
number of task slots to be equal to the
number of available cores. The compari-
son of execution times on one node and
on the cluster is presented on figure 4
with the results showing that Apache
Flink scales very well.

LBDream

After processing the whole graph in
Apache Flink, the resulting file is im-
ported to a specially developed Web ap-
plication called LBDream. LBDream is
written in a python-based Django web
framework and its main functionality
is to search and explore linkage predic-

tion results. Besides python, I also used
Twitter Bootstrap, D3.js as front-end li-
braries and PostgreSQL as a database
engine.

On the main page of LBDream (see
figure 3), the user can search for dis-
coveries by typing MeSH code or MeSH
name in the input field (which also has
auto-completion capabilities). The sys-
tem enables search using four linkage
prediction methods - Jaccard similarity,
Adamic/Adar, Preferential Attachment
and Common Neighbours.

The result of the search is then pre-
sented both as a table and as an inter-
active graph visualisation. On a special
tab, the user can see specific informa-
tion about the search method and se-
lected MeSH terms (position in the hi-
erarchy, specificity etc.).

I hope to make LBDream accessible
to all medical researchers on the Inter-
net soon.
PRACE SoHPCProject Title
Link prediction in large-scale networks
with Hadoop framework

PRACE SoHPCSite
University of Ljubljana, Slovenia

PRACE SoHPCAuthors
Mateusz Lango, Poznan University of
Technology, Poland

PRACE SoHPCMentor
Andrej Kastrin, Faculty of Information
Studies in Novo mesto, Slovenia Mateusz Lango

PRACE SoHPCContact
Mateusz Lango, Institute of Computing Science, Poznan
University of Technology, ul. Piotrowo 2,
60-965 Poznan, Poland
Phone: +48 61 665 23 33
E-mail: mateusz.lango@cs.put.poznan.pl

PRACE SoHPCSoftware applied
Apache Flink (HPC processing), Django, PostgreSQL,
D3.js, Twitter Bootstrap (webapp)

PRACE SoHPCMore Information
flink.apache.org

PRACE SoHPCAcknowledgement
I would like to thank to my site coordinator, Dr. Leon
Kos from University of Ljubljana for his help and
support.

PRACE SoHPCProject ID
1621

60

About PRACE

The Partnership for Advanced Computing in Europe (PRACE) is an international non-profit association with its seat in Brussels.

The PRACE Research Infrastructure provides a persistent world-class high performance computing service for scientists and

researchers from academia and industry in Europe. The computer systems and their operations accessible through PRACE

are provided by 5 PRACE members (BSC representing Spain, CINECA representing Italy, CSCS representing Switzerland,

GCS representing Germany and GENCI representing France). The Implementation Phase of PRACE receives funding from

the EU’s Seventh Framework Programme (FP7/2007-2013) under grant agreement RI-312763 and from the EU’s Horizon

2020 research and innovation programme (2014-2020) under grant agreements 653838 and 730913. For more information,

see www.prace-ri.eu.

 www.summerofhpc.prace-ri.eu

	Discography Classification
	Computer Vision for SoHPC
	Searching for Nucleon Excited States
	Multigrid: it's time to speed it up!
	Calculating Nanotubes (precisely)
	Quantum Chemistry in Spark for SoHPC
	InSitu Visualization Tornado effect
	Real Time Exploration of Data
	Python scientific application booster
	Weather visualisation for outreach
	Smartphone Task Farm
	Re-ranking Virtual Screening Results
	Molecular Dynamics of hTK1
	3D Performance Dashboard
	Shallow water equations
	Project 1616 abandoned
	Virtual Reality exploration
	FMM for GPUs
	Phine quarks and cude gluons
	The Lazy guide to CFD
	The Literature-based discovery at scale!

