
summerofhpc.prace-ri.eu

2017

A long hot summer is time for a break,
right? Not necessarily! PRACE Summer of
HPC 2017 reports by participants are here.

HPC in the
summer?
Leon Kos

There is no such thing as lazy
summer. At least not for the 21
participants and their mentors at 10
PRACE HPC sites.

S ummer of HPC is a PRACE programme that offers
university students the opportunity to spend two
months in the summer at HPC centres across Europe.
The students work using HPC resources on projects

that are related to PRACE work with the goal to produce a
visualisation or a video.

This year, training week was in Ostrava and it seems to
have been the best training week yet! From MPI to Vector-
ization and good food, the week was a blast! It was a great
start to Summer of HPC and set us up to have an amazing
summer!

At the end of the summer videos were created and are
available on Youtube as PRACE Summer of HPC 2017 presen-
tations playlist. Together with the following articles interest-
ing code and results are available. Dozens of blog posts were
created as well. At the end of the activity, every year two
projects out of the 21 participants are selected and awarded
for their outstanding performance. The winners of this year,
Mahmoud Elbattah and Arnau Miro Janea, presented their
experience at the award ceremony in IT4I supercomputing
centre, Chech Republic.

Therefore, I invite you to look at the articles and visit the
web pages for details and experience the fun we had this
year.

What can I say at the end of this wonderful summer.
Really, autumn will be wonderful too. Don’t forget to smile!

Contents

1 (MC)2 MI for matrix computations 3
2 Learning to move crowds 6
3 Bridging the gap between HPC and Big Data 9
4 Modelling Nanotubes in Parallel 13
5 Visualising HPC System’s Load 15
6 Viewing the Mediterranean Sea 18
7 Python based Well-Log Correlation application 21
8 Weather forecasting for SoHPC 24
9 HPC Usage Data 27
10 Climate Change Visualising 28
11 Metadata Extraction from Climate Simulations 31
12 El Niño around the world 33
13 Radiosity in Computer Graphics 35
14 Skeletal Motion Tracking 38
15 Go! Data Visualisation 40
16 Cude colors on phine grid 43
17 Portable GPU code for FMM 46
18 Accelerating climate kernels for SoHPC 48
19 Tracing in 4D data for SoHPC 50
20 Matrix Trifactorization 53
21 CAD data extraction for CFD Simulation 57

PRACE SoHPC2017 Coordinator
Leon Kos, University of Ljubljana
Phone: +386 4771 436 E-mail: leon.kos@lecad.fs.uni-lj.si

PRACE SoHPCMore Information
http://summerofhpc.prace-ri.eu Leon Kos

2

https://www.youtube.com/playlist?list=PLhpKvYInDmFWN5Hqkj771bLv6MyNlJaAt
https://www.youtube.com/playlist?list=PLhpKvYInDmFWN5Hqkj771bLv6MyNlJaAt
https://summerofhpc.prace-ri.eu/blogs-2017/
http://www.prace-ri.eu/summer-of-hpc-2017-awards-ceremony-at-cineca/
mailto:leon.kos@lecad.si
http://summerofhpc.prace-ri.eu

Accelerating stochastic methods for the solution
of linear systems of equations.

(
MC

)2MI for
matrix com-
putations
Anton Lebedev

We accelerated a stochastic method for
the computation of preconditioners and
compared it to a different, state-of-the-art
stochastic method. We show that our
method is a better choice. Furthermore, a
sequence of truly random numbers has
been compared to pseudorandom
numbers confirming that pseudo random
numbers are good enough for our
purposes.

Whether we are carrying out
simulations of the world’s
climate, of a car crash or
of the sound of drums spin-

ning at the speed of light, linear systems
of equations are omnipresent in science
and technology. Even if the problems
are considered to be non-linear they
will still rely on the solution of linear
systems! The solution of such systems is
therefore the bedrock of scientific com-
puting. The size of the systems varies
from four equations and unknowns (as
in computer graphics) to millions or
even billions (as in car or air-plane sim-
ulations). Small systems are solved us-
ing direct methods, whilst big systems
require iterative methods. If we can ac-
celerate these methods even a tiny bit,
it is worth every effort. Especially since
the solution process is often carried out
many times over which leads to accu-

mulation of savings.
Acceleration is possible using pre-

conditioners and the goal of this project
was:

Accelerating iterative
solvers by accelerating the
computation of stochastic
preconditioners.

Iterative Solvers and Precondi-
tioners

An iterative method is used to solve a
system of linear equations (signified as
Ax = b in matrix form) by essentially
performing the operation Ax, with a
modified matrix A, over and over again
until a desired precision of the solu-
tion is obtained. As the number of steps
needed increases, so does the compu-
tation of this expensive matrix-vector

product. It is thus imperative to reduce
the number of steps to be carried out!

This can be accomplished using a
preconditioner P to obtain

x ≈ PAx = Pb .

This will generally result in fewer steps
of the iterative solver and thus shorter
run times. Computations of precondi-
tioners are not easy, since they have to
fulfil the following three Properties:

1. P should be easy to compute.

2. P should approximate A−1 well.

3. P should be cheap to apply (P
should be a sparse matrix).

In general, one can fulfil two of the
above requirements and these need to
be chosen carefully.

3

0 10 20 30 40 50 60 70 80

MCMCMI non-recovered, ε=10−1 deterministic MCMCMI recovered, ε=10−1

−0.020 −0.015 −0.010 −0.005 0.000 −0.45 −0.30 −0.15 0.00 −0.45 −0.30 −0.15 0.00

Figure 1: Inverse of a finite-differences Laplacian on a 2D 10× 10 grid. Left: Inverse computed using (MC)2 MI without the application of
the costly recovery procedure. Centre: Inverse computed using a deterministic method. Right: Inverse computed using (MC)2 MI with
application of the recovery procedure. Using the method without recovery (left figure) yields a bad inverse matrix, but it is good enough
as a preconditioner!

At the Frontier of Science

Non-randomized (deterministic) pre-
conditioners are either easy to compute
but ineffective (such as point-Jacobi or
D-ILU variants) or effective, computa-
tionally expensive (ILU, IC) and in gen-
eral not easy to parallelise.4

In this project we focused on the
"Markov chain Monte Carlo matrix in-
version ((MC)2 MI)" method by Alexan-
drov and Straßburg1,2 which computes
an effective preconditioners and is easy
to parallelise.

Additionally, stochastic projection
(SP)3 has been considered as a paral-
lelisable alternative to deterministic it-
erative solvers. Its benefit is that it is
very easy to implement and does not
require a multi-stage solution process
of the linear system, as in the case of
(MC)2 MI.

Both methods are stochastic, i.e.,
they rely on chance. There is no such
thing as true chance in software - even
though its behaviour often seems to
be random. We thus additionally inves-
tigated the effects of pseudo-random
numbers on our method of choice.

The Nuts and Bolts

(MC)2 MI essentially treats a matrix as
a sort of city map on which many ran-
dom walks are performed. Hence, each
worker which computes part of the pre-

conditioner P , must have access to the
whole matrix A (the map). If the matrix
is large, the time to distribute a copy
of the matrix to each worker dominates
the computation by a very large margin,
no matter whether CPUs or GPUs are
used.

Figure 2: The network of a 2D FD Laplacian
(common in physics simulations) after a few
rows (and columns) have been cut out. This
is no longer a suitable Markov chain.

At the beginning of the project,
there was an MPI implementation of
(MC)2 MI, which suffered of the afore-
mentioned communication overhead.

We began with a collection of ideas
of how to reduce the amount of data to
be distributed. Chief among them were
the distribution of only a small subset
of rows and the dropping of the entries

of the matrix smaller than a prescribed
threshold.

Both approaches lead to a precondi-
tioner which will never fulfil Property 2!
That is the property we drop and con-
sider approximations of A−1 which are
not good, but good enough!

Performance begins on paper! The
usefulness of both ideas was first
checked using pen and paper. We chose
representative sample matrices (diag-
onal, 1D and 2D Laplacian), trans-
formed them in accordance with the
algorithm into graphs (read: city maps)
and checked what happens if we apply
our ideas.

To verify the conclusions obtained
from theoretical analysis, and to facil-
itate future experimentation (MC)2 MI
as well as SP have been implemented
in Python in serial and parallel versions.
Both were then been modified to imple-
ment the proposed ideas.

To see whether the use of a pseudo-
random number generator (PRNG) im-
pairs our methods, a random number
generator was written in Python to use
the sequence of random numbers pro-
vided by the Fusion Group at the BSC.
(MC)2 MI was then run, for a chosen set
of matrices, once using the PRNG and
once using the random sequence.

The assessment of the usefulness of
the resulting preconditioners was car-
ried out using the generalized minimal
residuals (GMRES) iterative solver.

4

Numerical Experiments - Evalu-
ated

The reduction in the amount of data
shipped to workers by using only a sub-
set of the rows of the matrix was no
good. The resulting preconditioners ful-
filled none of the criteria stated above.
The preconditioners were thus to be
computed using matrices modified by
dropping entries smaller than a cho-
sen threshold. The modified matrices
were used to compare the performance
of (MC)2 MI to its chief rival, modified
sparse approximate inverse (MSPAI).

Prior to launching these numerical
experiments, two problems in the orig-
inal C code were rectified. One being
a non-conformity to the MPI standard -
which prevented compilation using the
INTEL toolchain, and the other being
the use of a PRNG not suited for paral-
lel execution. The latter was replaced
by adding an interface to Tina’s random
number generator (TRNG), which is a
PRNG designed specifically for parallel
applications.

0 100 200 300 400 500
Number of processes

101

102

103

R
un

tim
e
[s
ec
]

Matrix: sym_r6_a11, drop: 0.0 %

MCMCMI
MSPAI

Figure 3: Scaling behaviour of (MC)2 MI
and MSPAI for a large matrix. Note the loga-
rithmic time scale.

For large matrices, the use of
(MC)2 MI yields solutions which are a
lot faster than when MSPAI is used, with
the difference largest when 7% of the
smallest (in magnitude) entries of the
original matrix are dropped (exact num-
ber depends on the matrix). The result-
ing approximate inverse matrices are
not good approximations of A−1, but
sufficiently good preconditioners.

The comparison of a sequence of

true random numbers and pseudo ran-
dom numbers has shown that for the
purposes of stochastic methods there is
no immediate benefit in using truly ran-
dom numbers. A good PRNG will do the
job just as well and is easier to obtain
than a true random number generating
device.

w recovery w/o recovery
0

200

400

600

800

N
o.
 o
f s
te
ps

N mber of GMRES steps to achieve ε<10−8 tol 0.062
TRNG
PRNGS

Figure 4: Number of steps required for GM-
RES to achieve a desired precision with
a preconditioner computed using a true
random number generator (TRNG) and a
pseudo-random number generator (serial
implementation, PRNGS).

Finally, a version of the SP method
was implemented in CUDA, demonstrat-
ing its feasibility. This implementation
has also demonstrated the usefulness of
dynamic parallelism in GPU program-
ming, limiting the hardware suitable for
this method to GPUs of the Maxwell
generation and younger.

Conclusion and Outlook

We have accelerated, using cold-
blooded theoretical analysis and simple
numerical experiments, the (MC)2 MI
method. Additionally, a set of scripts im-
plementing (MC)2 MI, SP as well as a
whole slew of tests necessary for the as-
sessment of the quality of the precondi-
tioners have been created. These, along
with the procedures established for the
reproducibility of the results, will con-
tinue to serve as a basis for theoretical
analysis and practical experimentation.

Though the PRACE Summer of HPC
programme is now over, the develop-

ment of the GPU version of (MC)2 MI
and investigation of the benefits of truly
random numbers will continue in the
upcoming months. Due to the high
bandwidth and low latency of the PCIe
bus, a GPU implementation promises
to provide further speed-up for the
computation of preconditioners using
(MC)2 MI.

Multiple possibilities to accelerate
the method by modifying the matrix A
have been devised by the end of the
Summer of HPC and will be investigated
by future generations of Master’s and
Bachelor’s students.

Since the methods presented above
are stochastic, meaning they require
randomness, additional numerical ex-
periments will have to be carried out to
obtain statistically significant results.

References
1 Alexandrov, V. N. (1998) Efficient parallel Monte

Carlo methods for matrix computations

2 Straßburg, J. and Alexandrov, V. (2014) Enhancing
Monte Carlo Preconditioning Methods for Matrix Com-
putations

3 Sabelfeld, K. and Loshchina, N. (2010). Stochastic it-
erative projection methods for large linear systems

4 Ferronato, M. (2012) Preconditioning for sparse lin-
ear systems at the dawn of the 21st century: History,
current development, future prospects

PRACE SoHPC Project Title
Hybrid Monte Carlo Method for Matrix
Computation on P100 GPUs

PRACE SoHPC Site
Barcelona Supercomputing Centre,
Spain

PRACE SoHPC Authors
Anton Lebedev, Universität Tübingen,
Germany

PRACE SoHPC Mentor
Vassil Alexandrov, BSC-CNS, Spain Anton Lebedev

PRACE SoHPC Contact
Anton, Lebedev, Universität Tübingen
Phone: +49 176 96984852
E-mail: anton.lebedev@student.uni-tuebingen.de

PRACE SoHPC Software applied
NumPy, SciPy, Tina’s Random Number Generator,
Paraver

PRACE SoHPC More Information
www.numfocus.org
TRNG
Paraver

PRACE SoHPC Acknowledgement
I would like to extend my thanks to Vassil Alexandrov
for his mentoring during the SoHPC as well as to
Aleksander Wennersteen who has been my compatriot
during my time at BSC. Additional thanks are due to
Diego Davila, for his original parallel implementation
of the MCMCMI method.

PRACE SoHPC Project ID
1701

5

Monte Carlo and Deep Learning Methods for
Enhancing Crowd Simulation

Learning to
move crowds
Aleksander Wennersteen

In an ever urbanised and densified world,
the ability to predict the behaviour of very
large crowds will become increasingly
important. We have shown that Monte
Carlo and Deep Learning methods used to
play games and drive cars are also
capable of controlling agents in a crowd.

Deep Reinforcement Learning, i.e. combining neural
networks with reinforcement learning, has been
adopted quickly in the last few years. First, Deep-
mind researchers used it to play Atari games with

superhuman performance; then they combined it with a tree
search algorithm to play Go — beating the best human
player; lastly, it is used in conjunction with various computer
vision techniques in self driving cars! These are the mighty
tools we have chosen for our crowd simulation.

It is well known that adding Monte Carlo methods to
deep learning can be very beneficial, both in terms of using
Stochastic Gradient Descent (SGD) versions and randomising
the minibatch samples. Similarly, Monte Carlo Tree search is
superior to breadth- and depth-first search in the case of large
graphs, such as a playing field, and in particular when there
is a stochastic element to it such as in our crowd simulation.
Monte Carlo methods also have an amazing benefit in that
they are almost trivially parallelisable both in sub-problems
and sub-areas. In the case of tree search and machine learn-
ing problems, it also greatly reduces the amount of work that
needs to be done.

Crowd Simulation

Crowd simulations are interesting for several reasons. An
interesting application is modelling how people react to ex-
ternal stimuli and potential problems that can occur when
evacuating people from buildings and cities. Moreover, it is
an interesting computer graphics problem because you have
to render and control a lot of individuals, as well as the world
they’re in, with very limited resources for the scale. Below
we see a diagram of the entire process.

Previous work done on the topic by the group at the
BSC has enabled us to create visualisations with very high
levels of detail and automatically generated diversity – all
whilst keeping computational and memory costs low. The
program is distributed across several CPU nodes with one
master node required to combine everything, and utilises
GPUs for the navigational aspect. They have also done work
on the behaviour of different figures according to age, gender
etc.

Artificial Intelligence

Artificial Intelligence (AI) can be defined as the study of in-
telligent agents; a device that perceives its environment and
takes actions to maximise its chance of success at some goal.

As laid out in Russell and Norvig, a machine needs to
possess several capabilities in order to be able to pass the
Turing test for AI. Among these are understanding natural
languages, storing information and using this information to
reason, and to be able to learn and adapt to new situations.
This last ability is what we often call Machine Learning (ML)
– learning something without being told explicitly what to do

6

in each case. There are many approaches to this but the one
we will talk about is Neural Networks (NNs). The basic idea
of NNs is to model the structure of the brain, and to mimic
how humans learn. We split the task into several smaller
tasks and then combine all the small parts in the end.

With NNs, we try to enable the computers to learn from
previous experiences and understand the world in terms
of a hierarchy of concepts. Each concept is defined using
those concepts further down the hierarchy. This hierarchy of
concepts model allows the algorithm to learn complicated
concepts by building them out of simpler ones.

The basic idea behind reinforcement learning is that we
mimic how humans and animals are trained. If the agent
does something good, say, doesn’t crash, it gets a reward. If
it does something bad, e.g. crashes or breaks a rule, it gets
punished. There are many approaches to solve this, which all
centre around giving the machine a function which assigns
a predicted score for every action in a state. Q-learning and
Deep Q-Learning discussed below are examples of reinforce-
ment learning techniques.

Deep Q-Learning

Before we consider Deep Q-Learning (DQL) we need to ex-
plain regular Q-learning. Q-learning is a technique for solving
Markov Decision Processes (MDPs). They provide a frame-
work for modelling decision making in situations where the
outcomes are partly random and partly under the control of
a decision maker. It involves a Q-function which assigns a
numerical value - the “reward” R, for taking a certain action
a in state s. By keeping track of tuples of information of the
form < s, a,R >, i.e the “state, action taken and reward”,
we can construct a so called (action) policy (function).

A policy is a rule which tells you that in a certain state
you take some action. We are usually interested in the opti-
mal policy which gives us the best course of action. A simple
solution, but not very applicable in real world situations, is
explicitly storing a table specifying which action to take. In
the case of a tabular approach, we simply update the table
whenever we receive a better reward than the one we already
have for the state.

Compared to the dynamic programming problem of Q-
learning, we do “neuro-dynamic programming” in DQL,
meaning we replace the function from the dynamic pro-
gramming problem with a neural network. We then use the
stochastic gradient descent algorithm, together with the re-
ward, to guide our policy function towards the optimal policy.
An important thing to mention here is that we do not always
want to follow the optimal policy, as this would lead to us not
obtaining new information about our Q-function. Therefore,
every now and then, we take some random action instead of
the one given by the optimal policy. It has been shown to be
beneficial to start with executing almost exclusively random
actions in the beginning and then increase the number of
predicted actions later. We can perhaps see the analogy to
growing up. Children often do things we, as adults, know
not to do. This is the way they learn - by exploring the state
space and seeing if they are rewarded or punished.

DQL incorporates many interesting techniques for finding
the optimal policy – such as a version of the stochastic gra-
dient descent and minibatch updating. What is interesting
with the minibatch update version utilised is the experience

replay mechanism. Minibatch processing means that dur-
ing training we not only take into account the latest event,
but several. With experience replay, we store experiences in
memory and randomly sample from these to fill our batch in-
stead of the n latest experiences. This is advantageous as we
decouple the experiences, and in this way bad decisions do
not propagate through. This is also done by the brain’s hip-
pocampus, where recent experiences are being reactivated
and processed during rest periods, like sleeping.

Tree Search

In the AlphaGo program, Monte Carlo tree search is imple-
mented - as in most other Go playing programs, but guided
by two deep neural networks. A very nice feature with the
Monte Carlo tree search is that it allows us to almost triv-
ially decompose our problem into smaller workloads. When
the workload becomes large enough, this can make a huge
difference.

Monte Carlo tree search is superior to breadth- and depth-
first search in the case of large graphs, such as a playing field,
and in particular when there is a stochastic element to it
such as in our crowd simulation. The reason is simply that
we explore the most likely best options first. This way, we
can actually put a time limitation on how long we want to
run the tree search for!

In the crowd simulation scenario, this gives the benefit
of being able to explore finer grained paths than without.
You might want to ask how we choose exactly, and for crowd
simulation how we can know which paths are better. We can
either adopt the approach taken with AlphaGo and let DL
provide the intuition, or we can get the density of people,
and use that as a probability distribution.

Here we see how MCTS has run different searches in the
state space and identified the best path. At each stage, the
result is stored so that the computational load is minimised
by not having to re-evaluate the same node. There are sev-
eral fundamentally different methods of executing MCTS in
parallel: Leaf parallelization, i.e. parallel execution of many
playouts from one leaf of the game tree; root parallelization,
i.e. building independent game trees from the root; tree
parallelization, i.e. parallel building of the same game tree,
protecting data from simultaneous writes.

7

Sadly, MCTS parallelisation generally works best on CPUs
and less well on GPUs. This is due to the lower GPU core pro-
cessor speeds which lack the capability to effectively handle
operations other than arithmetic operations.

What have I done?

The original neural net used in the Atari paper started off
with several convolutional layers to process images because
the only input they gave it was an image of the game. The
program then calculated its own reward function by seeing
how the score increases. These of course, are features we
have no need for. We found various blog posts modifying
DQL to various uses and ended up modifying the collision
avoidance source code by Matt Harvey.3

As such, getting the deep learning part up was very easy,
and GPU support comes automatically with any deep learn-
ing framework. Of course, as with any code you find on the
internet, it was far from optimised, and a couple of hours
of work on critical parts of the code gave good performance
increase. We also wanted several extra features, such as mov-
ing towards a goal and accelerating. This involved simply
experimenting with the reward function, which is where the
P100 GPU cluster at the BSC came in handy.

Now for the tree search. After battling for a while with the
same game interface as I used for the deep learning, I moved
over to a CPU-only version where we only ran searches on a
grid. This is after all the same as in the final crowd simula-
tion.

Now, the crowd simulation originated in computer graph-
ics research. This means python goes out the window. C++,
here I come! Recent work on the collision avoidance and
navigation problem has also put a lot of CUDA code into the
project, as well as the MPI parallelism across nodes (differ-
ent computers). What does this mean? Well, we are moving
the MCTS and deep learning to C++ and CUDA! These are
words you never want to say. It is the reason why everyone
does DL research in languages like Python. Even interfacing
code is very much non trivial.

...

...
...

I1

I2

I3

IN

H1

H164

H1

H150

O

Input
layer

ReLu
layer

ReLu
layer

Output
layer

This is the final network I ended up with. Indeed quite similar to
the original Deepmind DQL network without the image processing
convolutional layers. The input to our network is a binary vector
which gives us the location of the obstacles and the output is the
direction to move in.

What did I find out?

My results are by definition hard to quantify. It is one of
the few times in science where you simply have to look. For
the deep learning, we had two objectives: move towards
a goal and avoid colliding into both moving and stationary
obstacles. Indeed, the agent learnt each skill very quickly and
on average improved well with time. Surprisingly, although
the loss-function indicated less learning with combined goal-
searching and collision avoidance, with the right reward
function, over-fitting ceased to be a problem. With collision
avoidance only, the agent tended to prefer rectangular paths,
and took a lot of training to care about the moving ones.
The fact that the learning easily adapts to different situations
suggests that it is stable.

Although both networks learn, here we really see the stochas-
tic nature of deep learning come into play as the left agent
ended up with a much better score where the networks and
environments were identical.

As expected, MCTS works very well for navigating in com-
plex circumstances such as finding the way out of a maze. It
does however need some fine tuning for collision avoidance.
However, this seemed to be something that improved with
scale. Wanting to move on to trying the algorithms on a full
scale, this was not pursued to great depth.

Whilst hard to transfer performance between Python +
Pygame to heavily optimised C++ & CUDA code, the com-
putational cost looks manageable. But how will it compare
in the end against the current MDP solving strategy of using
CUDA operations to find the least dense direction to go in?

References
1 Silver, Huang et.al., Nature 529 (2016). Mastering the game of Go with deep neural

networks and tree search

2 Minh et.al.,Nature 518 (2015). Human-level control through deep reinforcement
learning

3 Matt Harvey, https://github.com/harvitronix/reinforcement-learning-car

PRACE SoHPC Project Title
Monte Carlo and Deep Learning Methods for Enhancing
Crowd Simulation

PRACE SoHPC Site
BSC, Barcelona, Spain

PRACE SoHPC Authors
Aleksander Wennersteen,
The University of Edinburgh, UK

PRACE SoHPC Mentor
Vassil Alexandrov, BSC-CNS, Spain
Isaac Rudomin, BSC-CNS, Spain

PRACE SoHPC Acknowledgement
Firstly I would like to thank Vassil and Isaac for the project and all their assistance
along with their group members. I would also like to thank the many different
people I have met at the BSC for interesting conversations and for pointing me to
sources where I found help.

PRACE SoHPC Project ID
1702

8

Combining the benefits of native MPI-like
approaches with Big Data tools advantages
to bridge the gap between HPC and Big
Data

Bridging
the gap
between
HPC and
Big Data
Adrián Rodrı́guez-Bazaga
One of the hardest challenges of the current Big Data landscape is the inability to process huge volumes of information
in an acceptable amount of time. The goal of this work is to ascertain if it is useful to use typical Big Data tools to solve
High Performance Computing problems. We do this by exploring and comparing two distributed computing frameworks
implemented on commodity cluster architectures. We compare the Apache Spark Big Data framework written in Scala
with ’traditional’ approaches. These use the distributed memory model with MPI on a distributed file system such as
HDFS (Hadoop Distributed File System), and native C libraries that create the interface to encapsulate this file system
functionalities. To be more precise, we have chosen the K-means clustering algorithm that will be executed on variable size
datasets and will be compared in terms of computational time and failure resilience for both approaches.

Apache Spark [1] applications
are written in Scala [2] and
run on top of the JVM (Java
Virtual Machine). Because of

this, they cannot match the FPO perfor-
mance of Fortran/C(++) MPI programs
compiled to machine code. Despite this,
it has many desirable features of (dis-
tributed) parallel application. These in-
clude fault-tolerance, node-aware dis-
tributed storage, caching or automated
memory management (see Figure 1 for
an overview of the Apache Spark archi-
tecture).

Yet we are curious about the perfor-
mance limits of Apache Spark applica-
tions in High Performance Computing
problems. By writing and executing ref-
erential code in C++ comparisons can
be made.

We do not expect the resulting code
to be, in terms of performance, truly
competitive with MPI (or GPI-2) in

production applications. Still, this kind
of experiment may be valuable for Big
Data engineers and programmers who
may implement computationally de-
manding algorithms, such as Machine
Learning or Clustering algorithms.

Figure 1: Apache Spark architecture

1 Introduction

1.1 Apache Spark vs MPI

Previous work [3] has shown that HPC
frameworks based on MPI outperform
Apache Spark or HDFS-based Big Data

frameworks by usually more than by an
order of magnitude for a variety of dif-
ferent application domains (see Figure
2 for an overview of the HDFS architec-
ture).

Figure 2: HDFS architecture

Unlike previous approaches related
to the topic, we propose a fair com-
parison of similar implementations of
algorithms in Spark, C++ with MPI
and mixed MPI/GPI-2, using HDFS dis-
tributed data storage on top of cluster
architecture based on commodity hard-

9

ware. The I/O from/to the distributed
file system is arranged using native C
libraries which create an interface to
encapsulate the file system functional-
ities, while trying to preserve the fault
tolerance characteristics of the HDFS
architecture.

2 Proposed Fault Tolerance
approach: Tools & Libraries

In this section we describe some of the
tools which are used to provide our MPI
and Spark-like applications with fault
tolerance features.

2.1 GASPI

GASPI [3] is a communication library
for C/C++ and Fortran. It is based
on a Partitioned Global Address Space
(PGAS) style communication model
where each process owns a partition of a
globally accessible memory space. PGAS
programming models have been consid-
ered as an alternative to MPI for some
time. The PGAS approach offers devel-
opers an abstract shared address space
which simplifies the programming task
and at the same time facilitates data-
locality, thread-based programming and
asynchronous communication.

2.2 GPI-2

GPI-2, which is the implementation
of GASPI, takes full advantage of the
hardware capability to perform remote
direct memory access (RDMA). More
importantly, it focuses on providing
truly asynchronous communication
to allow for overlap of computation
and communication. The available
thread-safe communication also al-
lows multi-threaded applications with
a fine-grained communication and
asynchronous execution capability (see
Figure 3 for an architecture overview).

Figure 3: GPI architecture overview

GASPI was designed for the increas-
ing need for fault tolerant applications
and it supports application-driven fault
tolerance on the process level.

Along with other mechanisms avail-
able in GPI-2, we used a ping-based

fault tolerance and checkpoint-based ex-
tension to GPI-2 in order to compete
with Apache Spark fault tolerance fea-
tures to MPI-based applications. The
procedure gaspi_proc_ping tests the
availability of a particular GPI-2 rank.
As the name indicates, a ping message is
sent to a particular process. If a problem
is detected, a GASPI ERROR is returned
to which the application can react.

2.3 Libhdfs3

The Hadoop Distributed File System
(HDFS) is a highly fault-tolerant dis-
tributed file system designed to run on
commodity "low cost" hardware. HDFS
provides high throughput access to ap-
plication data and is suitable for appli-
cations with large data sets.

The Libhdfs3 library is an alternative
implementation of traditional libhdfs,
and is implemented based on the native
Hadoop RPC protocol and HDFS data
transfer protocol. It gets rid of the draw-
backs of JNI, and it has a lightweight,
small memory footprint code base. In
addition, it is easy to use and deploy,
and we use it to read and write directly
from/to HDFS in our C++ implementa-
tions of the benchmarked algorithms.

3 Case Study 1: K-Means

K-Means clustering is a technique com-
monly used in machine learning to or-
ganise observations into k sets, or so
called "clusters", which are represen-
tative of the set of observationse. Ob-
servations (S) are represented as n-
dimensional vectors, and the output of
the algorithm is a set of k n-dimensional
cluster centers that characterize the ob-
servations. Cluster centers are chosen
to minimize the within-cluster sum of
squares, or the sum of the distance
squared to each observation in the clus-
ter:

min

k∑

i=1

∑

~xj∈Si

||~xj − ~µi||

where Si is the set of observations
in the cluster i and µi is the mean of
observations in Si.

This problem is NP-hard and can be
solved with complexity O(ndk+1 log n).
In practice, approximation algorithms
are commonly used to get results that
are accurate enough to within a given
threshold and which terminate prior to
convergence.

The main steps of K- means algo-
rithm are as follows:

1. Select an initial partition with K
clusters; repeat steps 2 and 3 until
cluster membership stabilizes.

2. Generate a new partition by as-
signing each pattern to its closest
cluster center.

3. Compute new cluster centers.

Figure 4 shows an illustration of the
K-means algorithm on a 2-dimensional
dataset with three clusters.

4 Experiments architecture

The experiments were run on the HPC
cluster from the Matej Bel University
in Banská Bystrica, Slovakia. The clus-
ter constitutes of 24 computing nodes
made up of IBM System x iDataPlex
dx360 M3 servers. Each computing
node is embedded with two Intel Xeon
X5670 processors, 48 GB of RAM, and
two hard drives from which a RAID
0 with a total capacity of 1.2 TB is
created. Two computational nodes in-
clude nVidia Tesla M2070 GPUs with
448 CUDA cores and 6GB of RAM. The
computing nodes are interconnected
with 40Gbps InfiniBand. The InfiniBand
network also provides connection of
computational nodes to data repos-
itories. The cluster also has 6 IBM
iDataplex dx360 M4 hubs embedded
with Intel Xeon E5-2670, 128GB RAM,
2x900GB HDD and three IBM iDataplex
dx360 M4 nodes with Intel Xeon E5-
2670, 64GB RAM, 2x900GB HDD and
two graphics NVidia Tesla K20 cards.

There are in total 560 CPU cores
with HyperThreading support. In ad-
dition there are 2 nVidia Tesla M2070
graphics accelerators each with 448
CUDA cores and 6 nVidia Tesla K20
graphics accelerators.

We deployed HDFS over the nodes
to be accessible from Spark and C++
programs, where the input files were
stored.

5 Spark vs Mixed MPI/GPI-2
implementations

In the Apache Spark MLlib implemen-
tation, each of the K-Means iterations
is packed in one job, and that job is
divided in two stages. In Figure 5 we

10

Figure 4: Illustration of the K-Means algorithm with three clusters (differentiated with colours). In each iteration the cluster centers (crosses) are getting more precise until convergence on iteration 6.

illustrate the Directed Acyclic Graph
for the K-Means main job, with the two
stages and their tasks.

Figure 5: Directed Acyclic Graph for the K-Means main job in Spark.

The first stage is the map partitions
task where input data is mapped. This
means that with this step we convert
each element of the RDD source into a
single element of the RDD result by ap-
plying a split function to get the correct
format to load the algorithm data with
it. After that, the data is zipped and
finally a mapPartitions is applied. This
converts each partition of the source
RDD into multiple elements of the re-
sult.

The second stage is a reduction
phase, where the output from the first
stage is used to generate a new RDD
where all values for a single key are
combined into a tuple - the key and the
result of executing a reduce function
against all values associated with that

key.

5.1 Mixed MPI/GPI-2

In order to have a fault-tolerance ap-
proach, we have used a checkpoint-
based methodology, saving the state at
certain points of the execution, to allow
recovery of that state in case of failure.
The application needs to decide when it
is more reasonable to perform a check-
point. It must also detect a failure and
proceed to a recovery process. In this
recovery process, a spare node replaces
the node that reported a failure, the last
saved checkpoint (state) is read and the
application loads it in order to continue
it’s execution without exiting. To have
this feature, the application needs to
start with a set of available spare nodes
(the greater the number of spare nodes,
the higher time resilience the applica-
tion will show). These spare nodes are
a set of nodes that at an initial stage
are idle while the rest of the nodes are
executing the application.

In the initialisation phase, the ap-
plication provides a segment, offset
and a size where the backup data will
be placed in each checkpoint iteration.
This is application specific and, in our
case, we save the K-Means cluster as-
signments in that backup data.

A checkpoint policy and group must
also be defined. Using the in-memory
checkpoint approach, we follow an

asynchronous, coordinates checkpoint
approach. The coordination is achieved
by ensuring global consistency of a
snapshot using a GASPI barrier collec-
tive operation. The goal of this barrier
is to ensure that there’s at least one
particular snapshot that is consistent on
all processes. When a checkpoint is per-
formed, the saved data is transferred to
the mirror using GASPI asynchronous
communication.

Carrying out a checkpoint is a two
step procedure. First the checkpoint
needs to start and then it has to be
committed. To commit a checkpoint a
global operation is used, ensuring the
completion of a previously initiated
checkpoint operation on all nodes. At
each execution point, a valid snapshot
thus exists, so the application can return
to it if required. This commit operation
has timeout to avoids blocking.

After the GPI-2 environment is set
up, the fault detection and recovery
process operations need to be set up.

The fault detection method we im-
plemented, relies on a global GASPI
barrier operation after each algorithm
iteration. This barrier waits for all pro-
cesses to reach the end of an iteration
before reaching a timeout. If some node
doesn’t make it to this point then a
failure has occured. In order to detect
which nodes have failed and which not,
we retrieve the GASPI ranks state vector,

11

Figure 6: Execution time of K-Means on a varying number of nodes with 1 million points, 1000 centroids and 300 iterations over 1 million 2-dimensional points.

which returns the healthy or corrupt
status of each node. After the problem
is detected, the failure is communicated
to all other running processes, so all the
remaining healthy processes can enter
in a consistent way to the recovery
process.

The recovery process is divided into
3 actions, starting with bringing up
a spare node to take the place of the
failed one, creating a new ranks group
and restoring the data from the con-
sistent checkpoint saved at the GASPI
working segment.

6 Results

In Figure 6 we depict the results for run-
ning K-Means with Apache Spark, first
and second MPI methods and mixed
MPI/GPI-2 method, with different num-
ber of cluster centers and maximum
number of iterations, using the 1 mil-
lion 2-dimensional dataset. We used 2
and 4 nodes for this benchmarking.

This experiment ran for 1000 cen-
troids and 300 iterations. Apache Spark
works, as expected, significantly slower,
with a decrease in speed of 2.5 times in
comparison with other approaches.

The first MPI approach turned to be
slightly better in terms of computation
time than the second MPI approach.

Also, the Mixed MPI/GPI-2 method,
even with the added fault-recovery ca-
pability, it is slightly better than the
second best implementation (the first
MPI approach). GPI-2 features do not
add any appreciable delay in the ex-
ecution due to the fact it uses, in the
logical level, the GASPI asynchronous
methodology to perform all the check-
point savings and fault detections.

References

1 http://spark.apache.org/

2 http://www.scala-lang.org/

3 Anderson, M., Smith, S., Sundaram, N. and L. W.,
Theodore. Bridging the Gap Between HPC and Big
Data Frameworks. 43rd International Conference on
Very Large Data Bases, Munich, Germany. Procedia
Computer Science, 53:121 – 130, 2015.

4 A. Raveendran, T. Bicer, and G. Agrawal. A framework
for elastic execution of existing MPI programs. In IEEE
International Symposium on Parallel and Distributed
Processing Workshops and PhD Forum (IPDPSW), pages
940–947, May 2011.

5 S. Kamburugamuve, P. Wickramasinghe, S.
Ekanayake, G. C. Fox. Anatomy of machine learning
algorithm implementations in MPI, Spark, and Flink.
Technical report, January 2017.

6 J. L. Reyes-Ortiz, L. Oneto, and D. Anguita. Big
data analytics in the cloud: Spark on Hadoop vs
MPI/OpenMP on Beowulf. Procedia Computer Sci-
ence, 53:121 – 130, 2015.

7 A. Gittens, A. Devarakonda, E. Racah, M. Ringen-
burg, L. Gerhardt, J. Kottalam, J. Liu, K. Maschhoff, S.
Canon, J. Chhugani, P. Sharma, J. Yang, J. Demmel, J.
Harrell, V. Krishnamurthy, M. W. Mahoney, and Prab-
hat. Matrix factorizations at scale: A comparison of sci-
entific data analytics in Spark and C+MPI using three
case studies. In 2016 IEEE International Conference
on Big Data (Big Data), pages 204–213, Dec 2016.

8 K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and
B.-G. Chun. Making sense of performance in data ana-
lytics frameworks. In Proceedings of the 12th USENIX
Conference on Networked Systems Design and Imple-
mentation, NSDI 2015, pages 293–307, Berkeley, CA,
USA, 2015. USENIX Association.

9 A. Raveendran, T. Bicer, and G. Agrawal. A framework
for elastic execution of existing MPI programs. In IEEE
International Symposium on Parallel and Distributed
Processing Workshops and PhD Forum (IPDPSW),
pages 940–947, May 2011.

10 Xiaoyi Lu, Fan Liang, Bing Wang, Li Zha, and Zhi-
wei Xu. DataMPI: Extending MPI to Hadoop-like Big
Data Computing. IEEE 28th International Parallel &
Distributed Processing Symposium, 2014.

PRACE SoHPC Project Title
Are Big Data tools applicable in HPC?

PRACE SoHPC Site
Computing Centre of the Slovak
Academy of Sciences, Slovakia

PRACE SoHPC Authors
Adrián Rodrı́guez-Bazaga, Spain

PRACE SoHPC Mentor
Michal Pitoňák, CCSAS, Slovakia

Adrián Rodríguez-
Bazaga

PRACE SoHPC Contact
Adrián Rodríguez Bazaga
Phone: +34 676 024 363
E-mail: adrianrodriguezbazaga@gmail.com

PRACE SoHPC Project ID
1703

PRACE SoHPC Acknowledgements
This work has been funded by the Summer of HPC
program by PRACE (Partnership for Advanced
Computing in Europe).

The computing was performed in the High Performance
Computing Center of the Matej Bel University in
Banska Bystrica using the HPC infrastructure acquired
in project ITMS 26230120002 and 26210120002
(Slovak Infrastructure for High-Performance
Computing) supported by the Research & Development
Operational Programme funded by the ERDF.

12

Using the Helical Symmetry of Nanotubes to
Calculate their Band Structure

Modelling
Nanotubes
in Parallel
Andreas Neophytou

Using MPI to parallelise the
calculation of nanotube band structures.

Abstract

The software used in this project utilises
the Hartree-Fock method to calculate
the electronic structure of nanotubes.
MPI was successfully implemented into
the existing code in order to parallelise
the diagonalisation of the Fock matrix.
Distributing this part of the Hartree-
Fock method across multiple nodes will
enable larger nanotubes to be modelled.

Introduction

The band structure of a solid de-
scribes its electronic properties
(for instance conductors and in-

sulators have different band structures).
Carbon nanotubes have been shown to
display different electical properties de-
pending on their structure, hence there
has been much interest in modelling
them.
By making use of the helical symme-
try, it is possible to simplify the band
structure of the nanotubes and the cor-
responding calculations. The Hartree-
Fock method is used to calculate the
band structure and energy of the nan-
otubes by approximately solving the
Schrödinger equation. One step of the
Hartree-Fock algorithm involves the di-
agonalisation of what is known as the
Fock matrix. The goal was to implement
MPI in the routine that performs this
diagonalisation.

Helical Symmetry and k -Space

I’ll spare you the full mathematical for-
malism of constructing a nanotube us-
ing its helical symmetry (for the pur-
poses of this report I don’t think it is
necessary). Instead I’ll try to explain
why we do this and its relevance to my
project.
Imagine you have a ribbon (the kind
you might use to wrap Christmas
presents with) and you wrap it around
your finger to make a tube. This is the
basis behind the helical symmetry of
nanotubes. It is possible to say that any
nanotube can be formed by rolling up
a sheet of atoms. Now we can take a
small unit cell (for instance 2 atoms)
and replicate it N times in such a way
that it follows the path of the ribbon. In
this way, we can construct a nanotube
using very small components. Then, us-
ing what we call k-points, define a par-
ticular symmetry representation for this
nanotube as an infinite system. Their
number is infinite in principle, though,
in our case we can map the nanotube of
N unit cells to N k-points. However, due
to the symmetry of the nanotube, we
need only consider (N+1)/2 as some of
the k points are degenerate.
This is essentially, the crux of why we
use the helical symmetry to define the
nanotube. By doing so, we can construct
any nanotube from small components
and greatly reduce the number of k
points we need to consider. This in turn

will greatly reduce the size of the calcu-
lations carried out during the Hartree-
Fock method.
Now, if you’re not a chemist or physicist
you’re most likely confused as to what
these k points are. All you need to know
is that we need them in order to calculate
the band structure of the nanotubes and
that we only consider (N+1)/2 of the N
k points in our calculations.

Solving the Fock Equations

Now I won’t go into the theoretical back-
ground of the Hartree-Fock method, in-
stead I’ll skip right to the end. The fi-
nal step of each Hartree-Fock iteration
involves diagonalising k Fock matrices
(Fk) using the following equation:

FkCk = εkSkCk

Solving these equations gives us the in-
formation we need to calculate the band
structure and energy of the nanotube
being modelled.
The key point to understand is that we
have k matrix equations and that each
of these equations are independent of
one another. Given this, it is possible
to split up the problem into M blocks
of k points. Our problem can then be
spread over a number of independent
nodes, with each node diagonalising M
Fk matrices and sending the results to
the Master node. The goal of my project
was to use MPI to do just this.

13

1 2 3 4 5 6 7 8

50

100

150

200

250

300

350

400

450

500

Number of Nodes

Ti
m

e
/

se
co

nd
s

Cell Size: 20
Cell Size: 40
Cell Size: 45

Figure 1: Time taken to diagonalise 813 Fock matrices on 1-8 nodes, with varying unit cell size.

A Master and his Slaves

In principle this is a simple project,
but (as is always the case) it wasn’t in
practice. The most difficult part of this
project was getting acquainted with the
code I was working with, mainly due to
the shear size of it (it has roughly 3,500
different routines). Slowly, I managed
to get to know the parts of the code
relevant for my project.

Now the code is also quite old - it is writ-
ten in FORTRAN77 and I’m pretty sure
it’s at least a decade older than me, so
that means it uses MPI that is also quite
old. The code uses a Master/Slave sys-
tem where the Master must manually
’wake’ each Slave to run the code on the
extra nodes. The Master calls a routine
which allocates memory for the argu-
ments of the subroutine you want to
run in parallel, and then has each Slave
call that subroutine. So, before I could
get going with actually parallelising the
diagonaliation of the Fock matrices, I
had to create the Master diagonaliser
and his Slaves. Once that was done, it
was more or less (probably less) smooth
sailing.

Results

To really see the benefit of parallelising
the diagonalisation of the Fock matri-
ces I would have to model a nanotube
which has thousands of unique k-points.
Unfortunately it would take too long
to collect the data for such large sys-
tems (we’re talking days for a single
run to complete) so instead I ran the
program for nanotubes that have 813
unique k-points, but have quite large
unit cells (a larger unit cell corresponds
to larger Fock matrices). The results can
be seen in the figure above. As the unit
cell becomes larger the time required to
diagonalise each Fock matrix increases
and so the effect of the MPI on the total
runtime becomes more prominent. In
summary the MPI works, but it works
better for larger nanotubes.

What Next?

Clearly the MPI implementation has de-
creased the time required to diagonalise
the Fock matrices, however it is also
clear that it is only really needed for
very large nanotubes (much larger than

those used to collect the data shown
above). It’s now just a case of making
use of the MPI to model much larger
nanotubes.

References
1 P. Baňacký, J. Noga, and V. Szöcs. 2013. “Electronic

Structure of Single-Wall Silicon Nanotubes and Sili-
con Nanoribbons: Helical Symmetry Treatment and Ef-
fect of Dimensionality”. Advances in Condensed Matter
Physics. 2013. Article ID 374371

PRACE SoHPC Project Title
Using the Helical Symmetry of
Nanotubes to Calculate their Band
Structure

PRACE SoHPC Site
Computing Centre, Slovak Academy
of Sciences, Slovakia

PRACE SoHPC
Acknowledgements
I would like to thank everybody at the
SAS Computing Centre for their help,
and for making the summer so very
enjoyable. I would also like to thank
Professor Noga for his help with the
project.

PRACE SoHPC Authors
Andreas Neophytou, University of
Birmingham, England

PRACE SoHPC Mentor
Jozef Noga, Slovak Academy of
Sciences, Slovakia Andreas Neophytou

PRACE SoHPC Project ID
1704

14

Web Visualisation of Energy Load of an HPC System

Visualising
HPC System’s
Load
Petr Stehlı́k

Energy efficiency is one of the most timely
problems in managing HPC facilities and this
can be addressed at different scales and
perspectives. Using Internet of Things
technologies this project focuses on visualising
data collected from the Galileo supercomputer
in a web application.

The current monitoring system1

consists of several layers which
allow to aggregate at a sin-
gle point, heterogeneous data

sources which consist of computing ele-
ments, nodes, job scheduler and facility
telemetry of the Galileo supercomputer
located at CINECA, Bologna, Italy.

The system was named ExaMon
(shorthand for Exascale Monitoring)
and is built on top of the MQTT pro-
tocol.2 It allows measured metrics to
be sent to a central broker where re-
ceived data are processed and stored
in the KairosDB database which utilises
the Cassandra cluster.

Figure 1: Examon Architecture

It allows post-processing of data in a
time-oriented fashion, visualising them
on a time-line and as a single number.

The current implementation uses
the Grafana framework to visualise data
stored in KairosDB. Grafana will be
replaced by the results of the project
which will create a dedicated web appli-
cation for defined use-cases. It will also
include a 3D model of a cluster room,
showing various metrics of the whole
HPC system with focus on energy con-
sumption and efficiency.

Methods

The whole project can be separated into
three phases.
Data Analysis
First phase is data analysis where the

whole dataset of available metrics was
presented, how they are distributed and
eventually processed on the back-end.
Datasets can be divided into multiple
levels of aggregation:
Per-core level
The most low-level data can be found
in a core’s registers - such as IPS and

Lx-cache misses. It also provides infor-
mation about its load and temperature.
Per-CPU level
The two CPUs of nodes can each pro-

vide data about its C-states, energy
counters and its frequency.
Per-node level
Most of the information available on

node-level basis come from IPMI.3 With
this interface, we can access informa-
tion about a node’s utilization, multiple
temperature sensors and average power
consumption.
Per-cluster level
Galileo’s cluster room was equipped

with several environmental sensors.
This dataset is not currently available
due to technical problems.
Per-job level
This data is gathered using the PBS

scheduler’s hooks. This dataset is aside
from previous ones since it points to
allocated and used resources of a job
submitted to the queue. This data are
stored directly to the Cassandra cluster
omitting KairosDB.

With each level, we can aggregate
the lower levels (except job-level data).
This is especially useful for core-level

15

data which are mostly too dense for any
comprehensible visualisation.
Visualisation

The second phase was to visualise
data stored in KairosDB in a simple
yet insightful way using a lightweight
web application. The ExaMon Web ap-
plication, uses the Angular framework
as its base on top of which several
other libraries were used. Two libraries
worth mentioning are Dygraphs and
Bootstrap. Dygraphs produces powerful
time-oriented charts utilising the canvas
element in a web browser. Bootstrap is
a CSS framework to produce a uniform
user interface across the whole applica-
tion.

Compared to Grafana, the web appli-
cation feels more lightweight, faster and
easier to use because of the prepared
datasets which are being used. The bal-
ance between configurability and ease
of use must have been found. We con-
cluded the best way to achieve this
was to enable time selection on given
datasets but restrict configurability of
the charts. In this way, the user is not
bogged down with configuration and
only focuses on prepared data.

If there is such desire to see other
metrics, the Grafana framework is still
available right next to the ExaMon
Web. As an additional feature, com-
pared to Grafana, we can perform more
advanced queries using the KairosDB
REST API.
Live Data
The last phase was to utilize the live

stream of MQTT messages right in the
ExaMon Web. Two use-cases were de-
fined for the MQTT messages depend-
ing on their origin.
PBS Jobs
Each PBS job is assigned a unique job
ID and goes through a specific set of
events during its lifecycle. Using the ID,
the user can subscribe to such MQTT

messages and view various information
on the ExaMon Web job dashboard. The
dashboard also uses the Cassandra clus-
ter in case the job is already finished
and stored in the cluster. In this way,
the user can see additional data about
their job.

Using the job data, a user can view
detailed information about allocated re-
sources of a given job such as CPU load,
system utilisation and others, as seen in
Figure 2. With this information, the user
can assess some conclusions about their
program. How effective it is, where the
slow parts are and even perform a top-
down analysis for performance issues.
They can also view how the program
performed in terms of energy efficiency.
3D Model of Cluster Room
The second use-case is for the gen-

eral public, partly for system adminis-
trators and is separated in two different
parts. The first is very similar to the job
dashboards where data are displayed us-
ing aggregated cluster level time-series
charts. This allows to easily display, for
example, the cluster’s CPU load.

The other part is the most crucial in
terms of interactive data visualisation.
An accurate 3D model of the Galileo
cluster was created using Blender and
with the help of Blend4Web incorpo-
rated into the ExaMon Web. More in-
tegration was achieved utilizing Web-
Sockets (using Socket.io library) that
enables us to create a reactive paradigm
model instead of a polling-based one.
The model inside the page receives live
data that has been published by the
nodes and sent to the broker. A subscrip-
tion model was developed to accom-
modate large amounts of visitors. The
model then colours each node based
on the minimum and maximum value
of all received data. Weighted moving
average was used in order to accommo-
date for sudden spikes in data using the

given formula:
vnew = vcurrent + vprevious × (1−α)

where vprevious value is set to the first
available value and α = 0.75 as a de-
fault value was chosen based on short-
term evaluation.

Results

ExaMon Web can be split to two ma-
jor parts: 1) A tool for overseeing jobs
submitted to PBS queue and 2) Cluster-
level visualisation and analysis. Each of
them are designed with a prepared use-
case scenario.
Job Visualiser
The main task of the job visualiser is to
inform a user about their submitted job.
The job ID is then used in the ExaMon
Web job lookup. UI allows to query by
manual input or, the list of active jobs
and the last finished job are shown.

In order to capture and keep this
data lifecycle, a new tool in the form
of a Python class had to be developed.
The JobManager subscribes to MQTT
topics that send job-related data. This
data is then stored in an internal volatile
database. This way it can keep track of
all submitted jobs. The JobManager is
aware of the job’s state and sorts the
incoming job data according to their
lifecycle.

The class is designed to be expand-
able and configurable. This means we
can add callback functions to certain
points of a job’s lifecycle. This is used
when a user subscribes to a live job and
with each new received message with
the same job ID, the job record in the
database is processed and sent to the
user via a WebSocket.

If the job is finished, the application
will assess all information in the same
way as for an active job and add addi-
tional information to the page as seen

Figure 2: From left to right: intro page with jobs lookup, currently running jobs and last finished job; job’s info dashboard with a finished
job; job’s energy dashboard.

16

The public 3D model, its other possible arrangement and a public overview dashboard with a 30 minutes pre-selected time range.

in Figure 2.
In both cases, a user can view the

performance and energy usage of their
job. Each of the dashboards provide pre-
selected interactive time-series charts.
Cluster Visualiser
The cluster visualiser is very similar to
the job visualiser in terms of used com-
ponents and the form of data. The main
difference between them is that the clus-
ter visualiser is mainly designed for the
general public which does not run jobs
on the cluster but is interested on how
a HPC facility performs.

The introductory dashboard shows
several charts aggregated to cluster
level with averaged and last values right
next to each chart. The user can also se-
lect a time range in which the data will
be shown.

The second part is a precise 3D
model developed in Blender and used
in the Blend4Web framework which is
incorporated into the ExaMon Web ap-
plication. The model utilizes the same
class as Job Visualiser to capture incom-
ing MQTT messages but this time for
metrics published by the cluster’s sen-
sors and tools. The manager computes
the weighted moving average which are
then available for querying.

Once a user opens the 3D model, the
application subscribes to given metrics
and waits for available data. A mini-
mum and maximum value is computed
and according to these values each node

is colour-coded in usual colours rang-
ing from red to blue in the HSL colour
model.

The application then receives new
data for each node as soon as they are
made available by the manager and re-
colours nodes.

Users can operate the 3D model in
the usual way (panning, rotation and
zooming) and can see detailed informa-
tion about each node by clicking it. This
highlights the node and shows a legend.

Discussion & Conclusion

The ExaMon Web application was suc-
cessfully developed and plans for pub-
lic deployment are arranged. The ap-
plication is already running on one of
CINECA’s virtual machine in a staging
environment. The expected web applica-
tion was delivered with several improve-
ments and additions which will help the
team at UNIBO to further develop the
whole ExaMon system.

The application can be further de-
veloped with new dashboards such as
System Administrator dashboard. Such
a dashboard can help the system admin-
istrator of Galileo to quickly assess valu-
able insight of the whole cluster which
would otherwise be very complicated
and time-consuming.

Using this application, CINECA can
show the general public how a super-
computer performs and what it takes

to run it. The users of Galileo can com-
fortably and easily view detailed infor-
mation about their jobs and how they
behave in real-time and adjust their pro-
grams to perform better and more effi-
ciently.

References
1 Beneventi, Francesco, et al. "Continuous learning of

HPC infrastructure models using big data analytics
and in-memory processing tools." 2017 Design, Au-
tomation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2017.

2 Locke, Dave. "Mq telemetry transport (mqtt) v3.1 pro-
tocol specification." IBM developerWorks Technical Li-
brary (2010).

3 Kaufman, Gerald J. "System and method for applica-
tion programming interface for extended intelligent
platform management." U.S. Patent No. 7,966,389. 21
Jun. 2011. APA

PRACE SoHPC Project Title
Web visualization of Energy load of an
HPC system

PRACE SoHPC Site
CINECA, Italy

PRACE SoHPC Authors
Petr Stehlı́k, BUT, Czech Republic

PRACE SoHPC Mentor
Dr. Andrea Bartolini, UNIBO, Italy Petr Stehlík

PRACE SoHPC Software applied
Angular, Dygraphs, Bootstrap, Blender, Blend4Web

PRACE SoHPC Acknowledgement
I would like to express my gratitude to all people at
CINECA and UNIBO who made this project possible
and to all people who helped during the development
of ExaMon Web. I would like to also thank my family
and close friends for all the support I received.

PRACE SoHPC Project ID
1705

17

Web visualisation of biogeochemical parameters
of the Mediterranean

Viewing the
Mediterranean
Arnau Miró

ParaViewWeb is a very interesting tool for
data visualisation. This project explores
the capabilities of generating 3D
visualisations using ParaView web
capabilities for off-line browsing of
archived data. A custom web application
as well as a number of ParaView plugins
have been developed in order to explore
OGSTM-BFM data sets.

Most people have an idea of
the ocean as a surface, how-
ever, the third dimension,
i.e., depth, is extremely im-

portant since the sunlight penetrates
down to a certain profundity. Moreover,
vertical transport processes are key to
biological dynamics.

Researchers at the Istituto Nazionale
di Oceanografia e di Geofisica Sperimen-
tale (OGS) use a highly optimised 3D
transport reactions non-linear PDE ap-
plied to biogeochemical problems. Us-
ing OGSTM-BFM1 (OGS Tracer Model -
Biogeochemical Flux Model) code, OGS
researchers are able to perform simula-
tions to study the major biogeochemical
properties in marine ecosystems, with a
special focus on the Mediterranean.

For this reason, they consider that
efficient three dimensional visualisation
of numerical data is crucial to under-
stand the dynamics of the sea2 (Figure
1). Three dimensional views of phos-
phate,3 which is considered one of the
most important nutrients in the Mediter-
ranean, and chlorophyll,4 which is an
important indicator of biological activ-
ity, are useful to understand the biogeo-
chemical processes of the marine sys-
tem. In addition, sea temperature and
water mass circulation help us under-

stand transport processes in terms of
vortex and strain structures that can be
detected by three dimensional visualisa-
tion methods.

Figure 1: Chlorophyll iso-surfaces (0.25
- 0.30 mg/m3) coloured by phosphates
mmolP/m3. Credits: "Generated with E.U.
Copernicus Marine Service Information".

This is where ParaView comes to
play. ParaView provides researchers
with an open-source data analysis and
visualisation tool. Data exploration can
be done either interactively in 3D or pro-
grammatically using multiple python
interfaces. ParaView can be easily cus-
tomised using plug-ins written in XML
language that have python code em-
bedded. Recently, ParaView developers
have begun to explore the possibility
of using web browsers to visualise and
explore data. The new API is called Par-

aViewWeb and it offers an easy access
point to the data, for both researchers
and general public.

Unveiling ParaViewWeb

ParaViewWeb is a next-generation
JavaScript library (React) web frame-
work to build applications with interac-
tive scientific visualisation inside a Web
browser. These applications can use a
ParaView backend for large data pro-
cessing and rendering.

Precisely, ParaViewWeb basically
consists of two approaches:

• Rendering at the server.

• Rendering at the client.

The first approach is better for those
applications that require flexibility and
large data processing, however, the ap-
plication runs slower and for the largest
datasets a powerful server is needed.
Whereas the second approach uses We-
bGL techniques and runs faster on the
client but requires the data to be pre-
processed beforehand.

18

Examples of the ParaViewWeb tool developed for OGS. Left, chlorophyll concentration (mg/m3) on the Mediterranean. Right top, nitrate
concentration(mmolN/m3) on the open sea region. Right bottom, phosphate concentration (mmolP/m3) on the Ionian basin.

ParaViewWeb workflow

The easiest way to understand how Par-
aViewWeb works is with a simple exam-
ple. Let us imagine a person going to
a restaurant for a meal, for example, a
pizza. The client walks in and sits on the
table and, at some point, the waiter will
ask what the client wants. The client
will place their order, ask for a specific
pizza in the menu, and wait until it is
done. Meanwhile, the waiter will take
the order to the kitchen. The chef will
look at the order and prepare the pizza.
When the pizza is ready, the chef will
request the waiter to bring the pizza to
the client. The waiter will take the pizza
and bring it to the client’s table, where
the client will be able to enjoy it.

The four players in this simple
example: the client, the waiter, the or-
der and the chef, are similar to those
in a ParaViewWeb deployment. Fig-
ure 2 sketches the deployment of Par-
aViewWeb and illustrates the four play-
ers. There is a client, a researcher, with
his personal computer connecting to
a virtual machine that serves the web-
page using Apache2. Apache2 plays the
role of the waiter, it annotates the client
connection in the file proxy.txt and
communicates with the launcher. The
launcher is a python code that runs
in the background of the virtual ma-
chine. It plays the role of the chef,
i.e., prepares the content that Apache2
requested by sending ParaViewWeb
jobs to cluster machines through PBS
jobs. It also annotates which port is

using proxy.txt so it can be re-
lated with the user connecting to the
website through web socket interface.

Figure 2: ParaViewWeb deployment in CINECA.

OGS specific plugins

Before visualising data from OGSTM-
BFM, the output data-sets need to be im-
ported into ParaView. In addition, other
post processing operations either to gen-
erate new fields or to visualise a certain
region of the Mediterranean are needed.
Python plugins have been created to fill
these tasks.

The pipeline must be built taking
into account that the data is imported
to a rectilinear grid for easier post pro-
cessing. All operations involving a recti-
linear grid must be placed right after the
data is loaded. When selecting among

different regions, the data is converted
to an unstructured grid. For this reason,
the selection plugins should be placed
last in the pipeline.

NetCDF import plugins

The NetCDF importer plugin lets the
user load a full OGSTM-BFM dataset
and select the biogeochemical and phys-
ical variables to visualise. The mesh res-
olutions (either low, medium or high)
must be previously preprocessed in or-
der to use them with this plugin. The
plugin selects the current time step by
referring to the file date and time.

Rectilinear grid operations

So far, the only rectilinear grid opera-
tion plugin developed is the computa-
tion of the Okubo-Weiss5,6 criterion for

19

oceanic turbulence. The plugin lets the
user choose over which variable apply
the filter and select an adequate filter
coefficient, defined as

W0 = kσW , (1)

where W0 is the filtered Okubo-Weiss
criterion, k is the filter coefficient and
σW the spatial standard deviation of
W .7

Selection plugins

Sometimes, OGS researchers need
to visualise the data in a specific re-
gion of the Mediterranean. Selection
plugins are provided to cover this
need. Different zones of the Mediter-
ranean can be selected - such as the
coastline or the open sea, where
the water is deep. Moreover, the
different sub basins depicted at Fig-
ure 3 can be selected individually.

Figure 3: Sub basins in the Mediterranean. Credits: http://medeaf.inogs.it/nrt-validation.

The web application

A web application tailored to OGS’s
needs has been developed as part of
this project. The application, named
OGSTM-BFM Data Viewer is a fork of
the Visualizer application, developed by
Kitware.

The ParaView Visualizer is an in-
teractive web data viewer, where the
users can access the data remotely and
build their own pipelines. It uses the
render at the server approach, connect-
ing to a python script running ParaView,
which sends the visualisation to the web
browser. ParaView Visualizer is entirely
built in React.

However, ParaView Visualizer is too
complex, therefore, the need for a
specifically tailored application arises.
OGSTM-BFM Data Viewer is build on
ParaView Visualizer and has many of
the functions deleted or simplified. A

specific pipeline using OGS plugins is
fed to OGSTM-BFM Data Viewer and
cannot be changed, i.e., the pipe ele-
ments (or proxies) cannot be deleted or
added. Proxies can be hidden or viewed
by clicking on the coluored ball in the
pipeline. Moreover, their properties can
also be modified and affect the whole
pipeline. Similar to the Visualizer, the
colour map and the variable to be vi-
sualised can be easily selected and tai-
lored to the user’s needs.

OGSTM-BFM Data Viewer also fea-
tures two annotations. The first one, at
top right of the screen displays the date
and time of the current visualisation,
whereas the bottom right one the port
in which the application is running. The
latter is particularly useful in order to
connect directly to the visualisation.

Conclusion

ParaViewWeb provides a number of fea-
tures that are worth exploring. At one
hand, the render on the server approach
is used to directly render large data
sets on the cluster machine. This is spe-
cially useful for viewing data without
the need to download the whole dataset.
The amount of interactiveness is also ad-
equate to provide a valid scientific tool.

On the other hand, the python back-
end running ParaView provides enough
flexibility to build complex pipelines
and provide custom tools for specific
sets of data. Due to the render on the
server approach, the full power of Par-
aView can be used without penalties for
the user’s computer.

Moreover, being programmed in Re-
act offers reusable code for other similar

applications.
ParaViewWeb is still under develop-

ment, providing modifications and im-
provements in each new version. It is
worth to explore in the future, a possi-
ble connection between ParaView Cat-
alyst and ParaViewWeb in order to vi-
sualise in real time the data sets in a
browser.

References
1 Lo Vichi M., Lovato T., Lazzari P., Cossarini G., Gutier-

rez Mlot E., Mattia G., Masina S., McKiver W. J.,
Pinardi N., Solidoro C., Tedesco L., Zavatarelli M.
(2015). The Biogeochemical Flux Model (BFM): Equa-
tion Description and User Manual. BFM version
5.1. BFM Report series N. 1, Release 1.1, July 2015,
Bologna, Italy, http://bfm-community.eu, pp. 104

2 Lazzari, P., Teruzzi, A., Salon, S., Campagna, S.,
Calonaci, C., Colella, S., Tonani, M., Crise, A., (2010).
Pre-operational short-term forecasts for the Mediter-
ranean biogeochemistry. Ocean Sciences, 6:25–39.
doi:10.5194/os-6-25-2010.

3 Lazzari, P., Solidoro, C., Salon, S., and Bolzon, G.
(2016). Spatial variability of phosphate and nitrate
in the Mediterranean: A modeling approach. Deep Sea
Research Part I: Oceanographic Research Papers, 108:
39–52.

4 Lazzari, P., Solidoro, C., Ibello, V., Salon, S., Teruzzi,
A., Béranger, K., Colella, S., Crise, A., (2012). Sea-
sonal and inter-annual variability of plankton chloro-
phyll and primary production in the Mediterranean:
a modelling approach. Biogeosciences, 9:217–233.
doi:10.5194/bg-9-217-2012.

5 Okubo, A. (1970). Horizontal dispersion of floatable
particles in the vicinity of velocity singularities such as
convergences. Deep-Sea Research, 17:445–454.

6 Weiss, J. (1991). The dynamics of enstrophy trans-
fer in two-dimensional hydrodynamics. Physica D,
48:273–294.

7 Isern-Fontanet, J., García-Ladona, E. and Font, J.
(2006). Vortices of the Mediterranean: An Altimetric
Perspective. American Meteorological Society, 36:87–
103.

PRACE SoHPC Project Title
Web visualisation of the
Mediterranean

PRACE SoHPC Site
CINECA, Italy

PRACE SoHPC Authors
Arnau Miró, UPC ESEIAAT, Spain

PRACE SoHPC Mentor
Dr Paolo Lazzari, OGS, Italy Arnau Miró

PRACE SoHPC Contact
Luigi Calori, CINECA
Phone: +39 051 6171 509
E-mail: l.calori@cineca.it

PRACE SoHPC Software applied
ParaView

PRACE SoHPC More Information
www.paraview.org

PRACE SoHPC Acknowledgement
The author would like to acknowledge the help of the
OGS researchers Dr. Paolo Lazzari, Dr. Stefano Salon
and Dr. Cosimo Livi, as well as the CINECA mentors Dr.
Luigi Calori, Dr. Massimiliano Guarrasi and Francesca
Delliponti for their invaluable help during this project.

PRACE SoHPC Project ID
1706

20

Steps towards the Preliminary design of a
Machine-Learning algorithm for Automated
Well-Log Correlation

Automated
Well-Log
Correlation
Method
visualized with
real data
Dimitra Anevlavi

The aim of this project is to evaluate an
existing state of the art Well-Log
Correlation method through visualisation
techniques with real borehole data. This
effort will contribute to the creation of a
Python-based Machine-Learning
application that will facilitate geologic
interpretation of basin areas of interest.

TThe main purpose of this
project was to develop utili-
ties that would enable the pre-
processing of a wide range of

real borehole data so that the visualisa-
tion of the well-log correlation among
the wells would be substantially facili-
tated. The correlation was conducted us-
ing an already existing method suitable
for the simultaneous correlation of any
number of logs. The suitability of the
well-log correlation for our project, was
based not only on the fact that it gave
promising results, but also due to the
fact that it is open source and well docu-
mented. The evaluation of this method
through the visualised results and the
implementation on realistic case studies
was the final output.

Introduction

The idea of using automated algorithms
to facilitate the work done by geologists
- for geological interpretation and lithol-
ogy identification purposes, is not new.
The prevalence of machine-learning
research and the application of neural
network methods in a wide variety of
research fields proves that it is time to
revisit the topic. In any case, before
we can implement any of these new
technologies, we should first familiarise
ourselves with the challenges of the
work conducted by geologists nowa-
days.
One aspect of geological interpretation
includes facies classification methods.
By facies, we refer to "the character

of a rock" expressed by its formation,
composition, and fossil content. Fa-
cies classification methods are widely
used by geologists, since a basin of
interest can be characterised by its
lithology formation. With a variety of
well log recordings at their disposal,
a group of researchers have already
implemented a novel method of facies
classification using an inception con-
volution network[1]. The output of
the machine-learning implementation
produced during their study has been
compared to the work of geologists,
but the results were not very accurate.
These may be due to human factors
and the uncertainties of well-log data
measurements which cannot be com-
pletely avoided. Furthermore, a lack of

21

neural network algorithm training data,
seems to have been the main reason
for the loss of accuracy. A suggestion
for improvement, would be to train
existing neural networks with realistic
case studies. In general, the problem of
efficient and accurate Facies Classifica-
tion is considered to be one of the most
challenging problems geologists need
to solve, and up to date methodologies
that take into consideration the wide
variety of parameters that affect the
results have not been fully developed.

Figure 1: Example of colour-coded facies
classification output based on the measure-
ments of geologic functions of depth[m]

Another aspect of the work that geol-
ogists conduct, concerns well-log corre-
lation methods[2]. During the process
of well logging, scientists record var-
ious properties of the rock/fluid mix-
tures penetrated by drilling into the
earth’s crust. After this process is fin-
ished, it is up to geologists to determine
corresponding depths among well logs,
that are both geographically and geolog-
ically related to each other. It is often
the case that corresponding depths rep-
resent a single geologic time in which
sediments of similar properties were de-
posited over large areas. This interpreta-
tion is crucial as far as the identification
of basin areas of interest are concerned,
in the search for petroleum, gas, miner-
als or other substances. Recent research
in well log correlation showed that an
improved method of simultaneous cor-
relation of multiple well logs is possible.
An example of this procedure is shown
in the graph above, where in a colour-
coded manner, 13 boreholes have been

correlated in the means of relative geo-
logic time.
At this point, if we take into account
the results of recent geologic interpre-
tation research, we can properly intro-
duce the concept of this project. Learn-
ing from experience, machine-learning
algorithms are able to discover abstract
representations, and to understand the
data in terms of a hierarchy of concepts.
This concept seems very suitable for the
high dimensional data of well-log mea-
surements that geologists need for both
pre/post-processing.

Final Product

The aim of this project is to contribute
to the preliminary concept and design of
a Python-based application of Machine-
Learning methods that will facilitate ge-
ologists in the process of well-log corre-
lation. The machine learning method
used for the identification of facies
could be used as an effective solution
to the well log correlation problem.
An idea at this point would be for re-
searchers and developers to combine
previous work in this field.
A crucial first step, and the final goal
of this project, would be the evaluation
of already existing state of the art Well-
log Correlation methods based on real
well-log data. After this step is complete,
researchers would be able to make alter-
ations to the convolution network for-
merly used to implement facies classifi-
cation, so that it would solve the prob-
lem of well-log correlation.

The Methods that I used

For the purpose of the project, well-log
data from the Netherlands and Dutch
sections have been analysed and pre-
processed.
The pre-processing was conducted with
code developed in Python that takes
into account different file formats and
parameters. This is important as bore-
hole data are typically found in .las, .lis
formatting. The identification of neigh-
bouring groups of well-logs that are of
greater interest to geologists proved to
be challenging, as well as the selection
of parameters upon which data extrac-
tion were to be implemented.

Figure 2: Map of borehole data available in
the Netherlands and the Dutch sector of the
North Sea continental shelf.

After pre-processing data in a format
that would allow for the input files for
the Well-Log Correlation code to be eas-
ily prepared, we were able to produce
visualisations of the Correlation among
the wells.The pre-processing utilities
provide geologists with a wide variety
of options:

• Data extraction based on specific
geologic parameters and storage
both in different formats as well
as in binary form.

• Plotting options with interpola-
tion features.

• Merging of borehole data for data
entry suitable for the Well-Log
Correlation method in the Mines
Java Toolkit open source reposi-
tory.

This enabled the visualisation of the
simultaneous and automated well-log
correlation of real borehole data. It was
also done in a way which could al-
low researchers to produce case studies
which could later evaluate the correla-
tion method itself. Whether this Well-
Log correlation method would be the
base for the neural network algorithm
or not would be decided by the expe-
rience of geologists. In any case, stay
tuned for the results!!

Results – What did I find out?

The generation of case studies of well-
log groups was significantly facilitated
by the utilities developed in Python dur-
ing this project. Only a small amount
of well-log data-sets has been examined
so far, but nevertheless the visualisation
of the correlated wells has proven to
be successful. It is understandable that
the overall evaluation of the method,

22

The graphs above depict examples of well-log correlation. On the left we have in a colour-coded manner the measurements along the
depth, and on the right the measurements as a function of relative geologic time. The right part of each of the three graphs are actually
the results of geological interpretation!

as far as limitation and accuracy are
concerned, will be conducted by experi-
enced geologists in the near future.

Discussion & Conclusion

It is important to note that the resources
available in the open source Mines Java
Toolkit are not suitable, without alter-
ations, for the correlation of a large
amount of data due to memory limi-
tations in the application. The variety
of features that facilitate geologic inter-
pretation was impressing, but the docu-
mentation proved to be challenging to
users unfamiliar with these methodolo-
gies.
The compatibility of the final Well-Log
correlation application should be im-
proved as well to provide for more fea-
tures and development. The final re-
sults of our work is available as an
open source repository linked with the
Mines Java Toolkit library. In this way,
improvements and additions are more
than welcome.
Suggestions for future research in-

clude the concept of machine-learning
and pattern recognition techniques. As
stated above, researchers have already
implemented methods of deep convolu-
tion networks for the challenging prob-
lem of facies classification and the re-
sults are quite promising.

Machine-Learning Methods

A great challenge for researchers would
be the adaptation of the already existing
neural networks, so that they solve the
well-log correlation problem. Literature
and open-source projects that focus on
such machine-learning methodologies,
suggest that lack of realistic case stud-
ies could be the reason for poor perfor-
mance and results.
Our project in this way would prove
to be a good generator of various case
studies based on real data, suitable for
the training of newly developed neural
networks. If you would like more infor-
mation, feel free to check out my video
presentation as well.

References
1 Loralee Wheeler & Dave Hale (2014) Simultaneous

correlation of multiple well logs

2 Valentin Tschannen, Matthias Delescluse, Mathieu Ro-
drigeuz and Janis Keuper (2017) Facies classification
from well logs using an inception convolutional net-
work

PRACE SoHPC Automated Well
Log Correlation Method
visualized with real data
Official title of the project

PRACE SoHPC Edinburgh
University of Edinburgh, EPCC,
Scotland

PRACE SoHPC Author
Dimitra Anevlavi, [National Technical
University of Athens] Greece

PRACE SoHPC Mentor
Dr Amy Krause, EPCC, Scotland Dimitra Anevlavi

PRACE SoHPC Software applied
Python, Jython, Java

PRACE SoHPC Acknowledgement
I graciously acknowledge the welcoming members of
EPCC, my mentor for her support, as well as Ms. Rosa
V. Fulgueira(BGS) and Mr. Stavros Arsenikos(BGS) for
their help and enthusiasm for the project at EPCC as a
collaboration with the British Geological Survey.

PRACE SoHPC Project ID
1707

23

A new atmospheric model which the scientific
community can use to simulate clouds has been
developed. A demo of this model has been
created as an interactive outreach tool.

Weather
forecasting
for SoHPC
Sam Green

An interactive weather forecasting demo is
a useful tool to allow the public,
undergraduates, and even some scientists
to appreciate and understand how their
decisions on the initial conditions of a
simulation can have an impact on the
simulation’s outcome.

MONC (Met Office NERC
Cloud model) is a new
atmospheric model devel-
oped in conjunction with

the UK Met Office. It is being used by
the scientific community to simulate the
atmosphere, clouds and turbulent flows.
It is a highly scalable Large Eddy Sim-
ulation (LES) model that can simulate
the atmosphere at high resolution, with
an accuracy of up to 10s of meters. The
model was built to run on thousands of
cores on supercomputers like ARCHER,

Figure 1: Wee-Archie: a small 64 core clus-
ter made out of 18 Raspberry Pis.

but can also run on smaller systems
like Wee-Archie (a mini supercomputer
EPCC built out of Raspberry Pis, see Fig-
ure 1) for outreach purposes. An inter-
active outreach demo of this model was
created during the 2016 SoHPC pro-
gramme (by Tomislav Subic) to show
how choosing different initial condi-
tions (such as temperature, pressure,
accuracy, scientific method, etc) can af-
fect the outcome of the simulation. This
demo is then run on Wee Archie where
the user can visualise the development
of the weather/simulation in real time.

This current demo is considered suc-
cessful for public engagement and show-
ing the public how a weather simulation
is set up and run. However, it could also
be very useful for atmospheric, compu-
tational and HPC education targeted
at undergraduates. A tool which illus-
trates the impact of the different choices
of calculation accuracy, what scientific
method to use (for modelling flows
in the atmosphere), and how many

computer cores/hours to use would be
hugely beneficial. Especially showing
users the simulation in real time, both
in terms of the actual progression of the
weather but also the performance and
scalability of the system.

Therefore, this current outreach
demo was modified into an interactive
visualisation tool which can be used for
education in weather prediction and il-
lustrating the impact that different sci-
entific choices can have upon the fi-
delity of results and performance of
the models. The initial feedback from
events in the previous year was used to
expand the outreach demo.

Several upgrades have been made
to this outreach demo throughout the
course of the project. These include a
new window - separated from the visu-
alisation window, that now contains all
the settings and a map of the UK, live
weather data being fed into the simu-
lation, and a temperature and pressure
view of the atmosphere and clouds.

24

The visualisation generated from the outreach demo showing the formation of the clouds and rain over land and sea. The bottom plot
shows the ratio of computation and communication time for each core.

Development

EPCC have developed a framework to
run demos on Wee Archie which in-
cludes the transfer of configuration files,
executing a job and getting the gener-
ated data back. This outreach weather
demo was created by a student during
the Summer of HPC 2016 so the basic
framework was already in place for me.
A few of the tools that were used to
create this framework were a Python
(2.7 and 3), Visualization Toolkit (VTK),
and the WxWidgets GUI framework. My
task was to use these tools to update
the core demo and make it more user
friendly and useful for outreach events.
At the beginning of the project, the aim
was to update the core demo for it to
be used for education. However, once
the demo got accepted to feature at
the NERC showcase event (a public out-
reach event), it was decided to focus on
outreach instead.

I will now describe the general
pipeline of the application and the
changes that have been made. The
demo visualisation now takes up the
whole display window (previously one
third of the window was occupied with
buttons) and allows the user to see the
simulation in more detail. When the
simulation is started, Wee Archie (or

whatever system is running the demo,
i.e. a laptop or supercomputer) creates
a data file which is used to generate
the visualisation. This occurs when the
data file is used by VTK to render all the
objects that are specified by the render
script.

Clouds are rendered using filters
that create a surface around points
in the atmosphere that have a certain
amount of cloud mass. Rain is set-up
as a separate quantity and the points in
the atmosphere that contain rain mass
are rendered as blue spheres. To distin-
guish between the different amount of
rain mass at each point, transparency
and colouring are applied from light
to dark blue. Most of the rain begins
within the clouds (similar to clouds in
our atmosphere) so you can only see
it when it starts raining. This visuali-
sation is meteorologically accurate and
we can see how clouds form and move
and how rain will start to accumulate
around the clouds and then fall. Also,
land (brown) and sea (blue) have been
rendered to give a landscape for the
weather to evolve over. An animation
has also been included which simulates
the effects of rainfall on crops. If enough
rain falls, crops will grow out of the
land, but too much rain will kill the
crops. A decomposition grid is also ren-

dered in the simulation to show how
the atmosphere is split up amongst the
cores. The plot at the bottom of the vi-
sualisation window shows the ratio of
the computation (green) and communi-
cation (red) time for each core.

Before the simulation can be started
and the visualisation made, the user
first needs to open the new interactive
settings window. There is a button built
into the the top of the visualisation win-
dow that does this, and once the set-
tings window opens, you are greeted
with a map of the UK and Ireland. Four
buttons, with icons, have been placed

25

over the UK (and one in Ireland) and
when one of them is pressed, a weather
simulation will start. The buttons are
all linked to a live MetOffice data feed,
known as DataPoint. This is a service to
access freely available MetOffice data
feeds, from hundreds of weather sta-
tions all over the UK, in a format that
is suitable for application developers.
The button’s images relate to whatever
this data feed is saying. So, a picture
of a cloud relates to cloudy weather,
rain to rainy weather, and sun to sunny
weather. Also, the four buttons over the
UK are positioned in the Highlands, Ed-
inburgh, London and Cornwall. This po-
sitioning is to give the demo the option
of different landscapes upon which to
simulate the weather. So if you click on
the icon in the Highlands, it will create
a mountainous landscape. If you click
on the icon in Edinburgh, it will create a
city next to the sea landscape. London,
a city with a river running through it.
And in Cornwall, land and sea. There
is also an ’Advanced’ tab in the settings
window that contains several buttons to
change some of the simulations input
parameters (for example wind power,
temperature, number of cores), how-
ever since I didn’t set these up I won’t
discuss them further.

We are now also able to see the tem-
perature profile of a cloud and rain sys-
tem. This gives us a whole new outlook
into the temperature of different parts
of the atmosphere as the clouds form
and the rain begins to fall. As the tem-
perature profile evolves with time, you
can see that the heat in the atmosphere
is undergoing some turbulence. We can
also see the pressure profile of the sys-
tem too. Throughout the course of the
simulations I ran, nothing much seems
to change with the pressure over time.

However, with other simulation setups
(for example a mountainous terrain)
the pressure will be more interesting
to visualise. A useful feature of this is
that we can switch between the temper-
ature, ’real’ world, and pressure view
to see what parts of the atmosphere
and clouds are associated with high or
low temperatures and pressures. MONC
was already developed to calculate the
temperature and pressure of the sim-
ulation but the data values were not
set up to be passed into the outreach
demo. This data was then set-up as an-
other separate quantity and the points
in the atmosphere that contain tem-
perature/pressure mass are rendered
as spheres. To distinguish between the
high or low temperatures or pressures
at each point, colouring is applied from
blue to red (blue being low values and
red being high). The addition of these
two views is a critically important part
of the visualisation as it provides the
user with extra information on how the
weather is evolving. They add a lot of
extra realism to the demo and are more
interesting to visualise than the existing
real world view.

Discussion and conclusions

During the course of this project I
have further developed a demo that
can be used at outreach events to
help the general public understand the
weather, simulations, HPC and paralleli-
sation. It gives an idea of what kind
of simulations run on HPC systems,
how large workloads are distributed be-
tween cores, and what kind of factors
can influence performance. At the start
of the project, the idea was to simply
expand the current capabilities of the
outreach demo. It was not until after a
few weeks and discussions that the idea
of bringing live weather data into the
project was thought of. Another impor-
tant aspect of being able to access live
weather data from DataPoint that hasn’t
been looked into is that not only can we
have an image of the current weather,
but we can feed this data (it contains
values such as temperature, pressure,
wind speed, humidity, etc.) into MONC
to simulate the current outside weather.
So when you click on the button over
Edinburgh, whatever the weather the
button’s image is representing is the
weather that will be simulated (i.e. a
sun image will produce no clouds ini-
tially). However, this has not yet been

done and is a task that can further ad-
vance this project.

This outreach demo also has the po-
tential to be used as an education tool -
which was one of the hopes at the start
of this project. It can be used in classes,
training courses, with early stage me-
teorologists (or any stage depending
on their background), other scientists,
and with college students who want to
use and understand HPC and its compu-
tational methods. This will help them
understand the impact of the various
input parameters on the results and
performance of HPC codes. Most sci-
entists/PhDs/developers who start to
use HPC systems are not fully aware of
the trade-offs they have to make and
this demo can give them an inside look
into the fact that HPC performance de-
pends on a number of different factors.
Also, the decomposition grid is an in-
teresting way of showing how data and
the workload is distributed between all
the cores being used. It is also useful to
demonstrate that having more cores is
not always the solution if your workload
isn’t intelligently distributed between
the cores.

Since this demo is still really only
in it’s early stages of development and
because of the way it is written and the
tools it uses, it is simple to improve and
change many aspects of it in the future.
Also to set up different versions target-
ing different audiences. It will be inter-
esting to see how this application will be
used and what other outreach applica-
tions it can inspire. It has already taught
me many things about HPC and Python
that I can bring forward into other sim-
ulation projects throughout the course
of my PhD and personal hobbies.
PRACE SoHPCProject Title
Interactive weather forecasting on
supercomputers as a tool for
education.

PRACE SoHPCSite
EPCC, University of Edinburgh,
Scotland

PRACE SoHPCAuthors
Sam Green, [DIAS] Ireland

PRACE SoHPCMentor
Dr. Nick Brown, EPCC, Scotland Sam Green

PRACE SoHPCContact
Ben, Morse, EPCC
E-mail: B.Morse@epcc.ed.ac.uk

PRACE SoHPCSoftware applied
VTK, wxPython

PRACE SoHPCAcknowledgement
Thanks to my mentor Nick Brown for giving me access
to his code MONC and for all his help during the course
of the project.

PRACE SoHPCProject ID
1708

26

ARCHER, UK National Supercomputing
Service - online visualisation of current and
historic supercomputer usage

HPC
Usage
Data
Jakub Nurski

The ARCHER supercomputer has an
active user base of around 3000
users. It is desirable to be able to
analyse its usage data and provide
some visualisation to help track what
is working well and what needs
attention.

Edinburgh Parallel Computing
Centre is a supercomputing cen-
tre based at the University of
Edinburgh. It houses the UK

national supercomputer service called
ARCHER. There are a lot of projects and
communities that rely on this machine
in their everyday work. It is a crucial,
scientific instrument for many different
people, not only academics of the Uni-
versity of Edinburgh, but its extended
3000 active user base!

EPCC would really like to keep track
of usage data of ARCHER. This will al-
low them to check that everything on
ARCHER is running as expected, and
will also allow them to analyse changes
and trends in the community as time
has progressed.

The goal of this project was to use
historical ARCHER usage data and illus-
trate them in a way that is easy to under-
stand, and accessible - ideally through
an online visualisation tool.

Final Product

Built using Angular, the final result of
the project is an online visualisation tool
that allows ARCHER users to explore,
sort, group and compare the usage data.
Project Title Online
visualisation of current and
historic supercomputer
usage EPCC University of
Edinburgh, United
Kingdom Authors Piotr
Nurski

27

From models to intelligence:
Understanding climate change
through visualisation

Climate
Change
Visualisation
Edwige Pezzulli

Visualisation plays a crucial role for
sharing climate results in an
easy-to-understand manner. It is thus
important to improve graphic tools and
visualisation concepts. Presenting climate
results to the general public in an
appealing and accessible manner will also
help in raising public awareness on a
crucial issue such as global warming. This
project aims to develop tools capable of
visualising climate data, producing 2D
graphs and animation over time.

Climate is changing. The global
temperature is rising - about
1.1 degrees Celsius since
1880.1 The oceans also ab-

sorb the heat, so they are warming,2

with a growing acidity of surface wa-
ters, which has increased by 30% since
the Industrial Revolution.3 The arctic
sea ice has declined rapidly both in
its extent and thickness over the last
several decades.4,5 As a consequence,
the global sea level is rising - about 20
cm in the last century.6 Glaciers are
retreating everywhere,7 and the snow
is melting earlier in the Northern Hemi-
sphere.8 Moreover, the number of ex-
treme events, such as high-temperature

peaks and intense rainfall events, is
increasing.9–11

Generally speaking, the climate has
always slowly changed, and it varied for
several reasons. Its changes have been
caused by biotic processes, astrophys-
ical variability (such as differences in
solar radiation received by the Earth),
or volcanic activities. However, the sci-
entific community jointly agrees that
the main cause of the current global
warming trend is anthropogenic mean-
ing it is human induced. In fact, hu-
man activity has increased the concen-
tration greenhouse gases - such as car-
bon dioxide, methane and nitrous oxide,
which are produced by burning fuels

like coal and oil and by clearing land
for agriculture and industries. Why are
greenhouse gases so important? Well,
the heat-trapping nature of carbon diox-
ide and other gases was demonstrated
in the mid-19th century, so there is no
question that increased levels of green-
house gases must the Earth to warm up
in response. To give you an idea, carbon
dioxide levels raised from 280 part per
million to 400 part per million in the
last 150. years1.

What’s going to happen in the near
future? To answer this question, we
need climate models. The real world
is a complex system made up of a
large number of interacting components

1https://climate.nasa.gov/

28

Figure 1: Schematic example of a climate model.

whose behaviour is non-linear. There-
fore, it is necessary to put all the phys-
ical components together and see how
the entire system interacts and evolves.

Climate models

A climate model consists of a set of
equations, which describe the interac-
tion between the solar radiance, the at-
mosphere, oceans, land surface and ice
(see Figure 1). But if the human activ-
ity plays a fundamental role in climate
change, how can scientists make cred-
ible future climate projections? They
assume four different future emission
scenarios- the so-called Representative
Concentration Pathways (RCP). This
consists of 4 possible greenhouse gas
concentration futures.12 The optimistic
curve assumes that greenhouse gas
emissions peak now, with a subsequent
declining trend, while the in the pes-
simistic case emissions continue to rise
throughout the 21st century.

In my project I am handling output
data from the regional climate Weather
Research and Forecasting (WRF) model.
WRF is a numerical weather pre-
diction system for both atmospheric

research and operational forecasting
needs, which can generate atmospheric
simulations using real data (obser-
vations, analyses) or idealised condi-
tions. It has been developed by the
National Center for Atmospheric Re-
search (NCAR), the National Oceanic,
the Air Force Weather Agency (AFWA),
the Naval Research Laboratory, the Uni-
versity of Oklahoma, and the Federal
Aviation Administration (FAA)2.

WRF model outputs are stored in the
NetCDF (Network Common Data Form)
format, which is very common in the
climate community because of its ad-
vantages. For instance, it includes infor-
mation about the data it contains, it can
be accessed by computers with different
ways of storing integers, characters and
floating-point numbers. It also includes
useful metadata - such as units of the
quantity they contain, data timestamps,
type of modifications/post-processing
data has undergone, name of author(s)
etc.13

From data output to visualisation

The use of visual representations has
always been an integral part of climate

science, as it helps scientists to better
understand complex climate phenom-
ena. Visualisations bring intuition to re-
searchers on how climate systems be-
have and are also important in commu-
nicating the problem of climate change
to the public. In fact, possible advance-
ments towards a more green future start
from recognising the effect of our ac-
tions on the Earth’s climate and ecosys-
tem.

I revisited the relevant literature on
climatology to understand which quan-
tities are important to visualise from a
physical point of view. Then, under the
supervision of my mentor, we decided to
focus on temperature variation, which
is the most evident feature of climate
change.

I then wrote some Python pipelines
to extract all the information from dif-
ferent NetCDF output data from various
WRF pessimistic simulation. In partic-
ular, the model forecasts the evolution
of temperature over Central and South-
ern Europe, from 2006 to 2099. I wrote
Python code for producing temperature
colour maps over this region for differ-
ent years (see the top right panel of Fig-
ure 2), with a final animation of local
surface temperature change over time.

2https://www.mmm.ucar.edu/weather-research-and-forecasting-model

29

Figure 2: WRF model prediction. Left panel: Colour map of local temperature for different altitudes, August 2074. Top right panel:
Contour map of local surface temperature, August 2088. Bottom right panel: probability distribution of surface temperature, August 2027.

However, different altitudes carry differ-
ent information.

In fact, global warming often occurs
faster at higher altitudes such as moun-
tains. And what happens on mountains
has a deep impact on critical aspects of
our economic and social system, such
as access to water (re)sources. In fact,
warming causes the snow to melt, with
a subsequent increasing temperature of
the ground. This implies that snow will
accrue slowly in the winter, and will
melt faster in the spring, with less fresh
water flowing down the mountains dur-
ing the summer. If more than one billion
people don’t have daily access to clean
water, climate change will definitely ag-
gravate this situation. It will also have
serious implications upon agriculture.
For this reason, we also produced the
animation of temperature evolution for
different altitudes (see left panel of Fig-
ure 2).

Another way to extract information
from data is through visualising the
probability distribution function (PDF)
of a variable. Therefore, we focused on
the PDF of surface temperature over
time, shown in the bottom right panel
of Figure 2.

Thanks to the collaboration between
science and informatics, by building
complex models and running simula-
tions upon supercomputers, we can
foresee what is expecting us and our
planet. It is up to us to intervene to pre-
vent from what may happen.

Acknowledgement

I acknowledge Eleni Katragkou for her
supervision, Ioannis Liabotis and Dim-
itris Dellis for their friendly hospital-
ity. Thanks to Giannis Sofiadis, Dimitris
Akritidis, Maria Karypidou for their kind
help and a special thank to my traveling
companion Mahmoud Elbattah, for his
amiable support.

References
1 https://crudata.uea.ac.uk/cru/data/temperature

2 Levitus, et al, "Global ocean heat content 1955–2008
in light of recently revealed instrumentation prob-
lems," Geophys. Res. Lett. 36, L07608 (2009).

3 http://www.pmel.noaa.gov/co2/story/What
+is+Ocean+Acidification%3F

4 L. Polyak, et.al., “History of Sea Ice in the Arctic,”
in Past Climate Variability and Change in the Arctic
and at High Latitudes, U.S. Geological Survey, Climate
Change Science Program Synthesis and Assessment
Product 1.2, January 2009, chapter 7

5 R. Kwok and D. A. Rothrock, “Decline in Arctic sea ice
thickness from submarine and ICESAT records: 1958-
2008,” Geophysical Research Letters, v. 36, paper no.
L15501, 2009

6 https://www.ipcc.ch/pdf/assessmentreport/
ar5/syr/AR5_SYR_FINAL_SPM.pdf

7 http://nsidc.org/cryosphere/sotc/glacier_balance.html

8 C. Derksen and R. Brown, "Spring snow cover extent
reductions in the 2008-2012 period exceeding climate
model projections," GRL, 39:L19504

9 "Attribution of Extreme Weather Events in the Context
of Climate Change," National Academies Press, 2016
https://www.nap.edu/read/21852/chapter/1

10 Kunkel, K. et al, "Probable maximum precipitation
and climate change," Geophysical Research Letters,
(12 April 2013) DOI: 10.1002/grl.50334

11 Kunkel, K. et al, "Monitoring and Understanding
Trends in Extreme Storms: State of the Knowledge,"
Bulletin of the American Meteorological Society, 2012.

12 https://en.wikipedia.org/wiki/File:All
_forcing_agents_CO2_equivalent_concentration.png

13 http://www.unidata.ucar.edu/software/netcdf
/docs/netcdf_introduction.html

PRACE SoHPC Project Title
Visualizing European Climate Change

PRACE SoHPC Site
Aristotle University of Thessaloniki,
Greece

PRACE SoHPC Authors
Edwige Pezzulli, University of Rome
”La Sapienza”, Italy

PRACE SoHPC Mentor
Eleni Katragkou, Aristotle University
of Thessaloniki, Greece

Edwige Pezzulli

PRACE SoHPC Software applied
Virtuoso

PRACE SoHPC More Information
www.virtouso.org

PRACE SoHPC Acknowledgement
Write any requested
acknowledgements or thanks here.
Mentors should be asked for them too.

PRACE SoHPC Project ID
1710

30

Automated Extraction of Metadata from Climate
Simulations: Helping Researchers Share,
Discover, and Use Data

Metadata
Extraction
from Climate
Simulations
Mahmoud Elbattah

The goal of our project was to extract
descriptive metadata from NetCDF-based
output generated by climate simulation
models. The metadata should also be
formatted in a query-able format, so that
search and query tasks can be conducted
effectively. In this manner, climate
researchers can easily share, discover,
and use NetCDF datasets.

Figure 1: Project overview.

As the project worked inten-
sively with NetCDF datasets,
this section serves as a brief
background to the NetCDF for-

mat and its underlying data structure.
NetCDF stands for “Network Common
Data Form”. The NetCDF creators (Rew,
and Davis, 1990) defined it as a set of
software libraries and self-describing,
machine-independent data formats that
support the creation, access, and shar-
ing of array-oriented scientific data. It
actually emerged as an extension to the
NASA’s Common Data Format (CDF).
NetCDF was developed and is main-
tained within the Unidata organisation.

Unidata is a diverse community
of education and research institutions
with the common goal of sharing geo-

science data and the tools to access
and visualise that data. Unidata aims
to provide data, software tools and
support, to enhance Earth-system ed-
ucation and research. Funded primar-
ily by the National Science Foundation
(NSF), Unidata is one of the University
Corporation for Atmospheric Research
(UCAR)’s Community Programs (UCP).

The NetCDF data abstraction, mod-
els a scientific dataset as a collec-
tion of named multi-dimensional vari-
ables along with their coordinate
systems, and some of their named
auxiliary attributes. Typically, each
NetCDF file has three components
which are: i)Dimensions, ii)Variables,
and iii)Attributes. Dimensions describe
the axes of the data arrays and each

dimension has a name and a length. A
typical NetCDF variable has a name, a
data type, and a shape described by a
list of dimensions. Variables in NetCDF
files can be one of six types (char, byte,
short, int, float, double). Scalar vari-
ables have an empty list of dimensions.
Any NetCDF variable may also have an
associated list of attributes to represent
information about the variable.

Figure 2 illustrates The NetCDF ab-
straction with an example of dimen-
sions/variables that can be contained
in a NetCDF file. The variables in the
example represent a 2D array of surface
temperatures on a latitude/longitude
grid, and a 3D array of relative humidi-
ties defined on the same grid, but with
a dimension representing atmospheric

31

level.

Figure 2: NetCDF data structure.

Problem Description

DSpace is a data repository where
climate researchers and institutions
can easily share their datasets (e.g.
NetCDF files). However, shared files
can be considered as a “black box”,
which always needs to be opened first
in order to know what is inside. In fact,
climate simulation models generate
vast amounts of data, stored in the
standard NetCDf format. A typical
NetCDF file can contain a set of many
dimensions and variables. With so
many files, researchers can spend a lot
of time trying to find the appropriate
file (if any).

Figure 3: Problem description.

Project Objectives

The goal of our project is to produce
explanatory metadata that can describe
NetCDF datasets. The metadata should
also be stored and indexed in a query-
able format, so that search and query
tasks can be conducted effectively. In
this manner, we can facilitate the search
and query of NetCDF datasets uploaded
to the DSpace repository, so that re-
searchers can easily discover and use
climate data. Specifically, a set of objec-
tives were defined as below:

• Defining the relevant metadata

structure to be extracted from
NetCDF files.

• Extraction of metadata from the
NetCDF files.

• Storage/indexing of extracted
metadata.

• Extending search/querying func-
tionalities.

The project was developed in a collabo-
ration between GrNet and the Aristotle
University of Thessaloniki. GrNet pro-
vided us with access to the ARIS super-
computing facility in Greece, and they
also manage the DSapce repository. The
ARIS supercomputer is usually utilised
to run the computationally intensive cli-
mate simulation models. The output of
simulation models was also stored on
ARIS.

Data Source

As already mentioned, the DSpace
repository contains the main data
source of NetCDF files. DSpace is a digi-
tal service that collects, preserves, and
distributes digital material. Our particu-
lar focus is on climate datasets provided
by Dr Eleni Katragkou from the Depart-
ment of Meteorology and Climatology,
Aristotle University of Thessaloniki. The
datasets are available through the fol-
lowing URL:
https://goo.gl/3pkW9n

Methodology

The project was mainly devel-
oped using Python. A set of
packages was utilised as follows:
i)NetCDF4., ii)xml.etree.cElementTree.,
iii)xml.dom.minidom., iv)glob,and
v)os.
Subsequently, the extracted metadata
was encoded using the standard Dublin
Core XML-based schema. The Dublin
Core Schema is a small set of domain-
independent vocabulary terms that can
be used to describe information or data
in a general sense. The full set of Dublin
Core metadata terms can be found on
the Dublin Core Metadata Initiative
(DCMI) website. The full implemented
Python code can accessed on GitHub
via:
https://goo.gl/LFAeGz

Results

The project outcomes included the fol-
lowing:

• More than 40K metadata fields
were extracted.

• 940 DublinCore-based XML
files.Figure 4 provides an exam-
ple of the extracted metadata.

Figure 4: Example of extracted metadata.

Acknowledgements

First, I would like to thank my mentors
Ioannis Liabotis and Eleni Katragkou
for their kind support and help. Further-
more, many thanks to Dimitris Dellis
from GrNet who provided a lot of tech-
nical support during the project devel-
opment. Last but not least, thanks to
Edwige Pezzulli for her kind collegiality
and companionship.

References

Rew, R., and Davis, G. (1990). NetCDF:
An Interface for Scientific Data Ac-
cess. IEEE Computer Graphics and
Applications,10(4), 76-82.

PRACE SoHPC Project Title
European Climate Model Simulations

PRACE SoHPC Site
Aristotle University of Thessaloniki,
Greece GrNet, Greece

PRACE SoHPC Authors
Mahmoud Elbattah, National
University of Ireland Galway, Ireland

PRACE SoHPC Mentor
Eleni Katragkou, Aristotle University of
Thessaloniki, Greece
Ioannis Liabotis, GrNet, Greece

Mahmoud Elbattah-
photo

PRACE SoHPC Software applied
Virtuoso

PRACE SoHPC More Information
www.virtouso.org

PRACE SoHPC Project ID
1711

32

El Niño, it’s periodicity and impact on world
weather

El Niño
around the
world
Ana Maria Montero Martinez

El Niño is a periodic climate event that
causes abnormally warm surface weather
in the equatorial Pacific Ocean. We will
see what its effects are in different parts of
the worl.

El Niño-Southern Oscillation
(ENSO) is a major climate pat-
tern that causes oscillations in
the meteorological parameters

in the equatorial Pacific ocean. Normal
weather conditions of this region in-
clude the following:

• Low pressures (L) in the Pacific is-
lands, causing rainy weather and
warm ocean waters.

• High pressures (H) near the
eastern American coast, causing
colder ocean waters and less rain.

In these normal conditions, the
higher amounts of water taken to the
western part of the Pacific by trade
winds raises ocean levels in Indonesia
to half a meter, when compared to Peru.
The difference between surface water
temperatures in the above locations can
be up to 8 degrees. Tthe lower coastal
temperatures in Peru occur due to ris-
ing deep water which is rich in nutrients
and helps maintain the marine ecosys-
tem in Peru - upon which many fisher-
men are dependant.

When ENSO occurs, the trade winds
that normally flow from west to east
start to slow down, causing warm wa-
ters to move towards the west (since the

winds are no longer pushing them to
the east). This changes the the climate
pattern in the Pacific Ocean. The main
characteristic of these ENSO events in-
clude:

• Areas of low and high pressures
switch places (this is why it is
called Southern Oscillation), caus-
ing the rain to move towards the
west.

• Because of this, warm ocean wa-
ters move towards the west, caus-
ing alterations in in South Amer-
ica fishing patterns.

Figure 1: Sea surface temperature anoma-
lies during the winter season for the
1982/83 El Niño event.
ENSO is a phenomenon that involves

the ocean, the atmosphere and the land
upon such a huge scale that it affects
weather in the entire world - afeect-
ing precipitation, temperature and wind
flows. As a consequence various events
occur which include assive forecast fires
in Indonesia - since it stops raining in
that area, flooding in Peru - caused by
a severe amount of rain in a short pe-
riod of time, drought in India - because
of abnormally light monsoon months,
and an overall temporal warming of the
global climate.

All of these events highlights ENSO
as an important part of the weather cli-
mate cycle. It is a phenomenon which
is worth studying and that is what I
worked on at ICHEC, Dublin this sum-
mer.

Initially, I analysed previous El Niño
events and whether it is possible to find
common trends between them which
could help in predicting future El Niño
events. Secondly, I studied how El Niño
impacts other parts of the world, what
is the correlation between all these
events and for how long they last. Fi-
nally, I looked into all the available
forecast systems one season ahead, to
check their accuracy and precision in
detecting future El Niño events.

33

Why is it called El Niño?
El Niño is a phenomenon that occurs
throughout the year, but mostly when
water in the Peru coast is most warmest
- and this occurs in December. Fisher-
man associated this phenomenon with
the Christmas holidays and called it “El
Niño” that literally means “The boy”
after the nativity.

El Niño... and also La Niña?

Figure 2: Sea surface temperature anoma-
lies for La Niña event in 1973/74 during
winter.

La Niña is a phenomenon that is also
part of the ENSO oscillation and occurs
naturally in the world’s climate cycle.
The El Niño phase is also called the
warm phase - due to the abnormally
warm water in the east coast of South
America. Conversely, La Niña is the cold
phase when abnormally strong trade
winds from the west cause lower than
usual temperatures in the equator, as
shown in Fig. 2

Similar to El Niño, la Niña condi-
tions change global temperatures and
precipitations patterns - even though its
consequences are drastically different
to those of El Niño. Among its conse-
quences, we can highlight greater pre-
cipitations in Asia and some parts of
Africa and Brazil, more hurricanes in
the United States and severe droughts
in Mexico and the west of America.

Consequences around the
world

El Niño events affects the weather in
many places around the world. The
main areas affected experience changes
in rainfall patterns, as seen in Fig. 3
and 4.

Figure 3: El Niño rainfall pattern changes.

Figure 4: El Niño rainfall pattern changes.

North America

During ENSO events, precipitation in
Mexico and the south of the US - such as
California and Florida, increases drasti-
cally. This is usually good for the region
as it mostly suffers from drought.

However, although this rainfall can
be beneficial, the risk of extreme rain-
fall is high, and this can cause lead to
higher instances of flooding.

Somalia

In Somalia, the risk of flooding is se-
vere and it causes - according to the
United Nations, up to 55,000 people hit
by this hihg level of precipitation. The
floods causes roads to be impassable
and prevents thousands of people from
receiving aid. As a consequence, river
banks need to be strengthened and peo-
ple need to move to higher ground.

India

During El Niño years, the monsoon in In-
dia is weaker. As a result, precipitation
is lower and as a consequence, there is
a risk of drought in the country.

Conclusions

At the end of this project, we can con-
clude that El Niño is an event that af-
fects the weather in many parts of the
Earth. It is also very difficult to predict
since it involves the atmosphere, the
ocean and the land in such a way that
a lot of different scenarios can happen
under similar initial conditions. Nowa-
days, it is important to correctly pre-
dict these events so that we can min-
imise the impact on property and hu-
man life. But predicting when and how
an El Niño event in going to happen
cannot be done accurately more than
three months before the event.

Nowadays, most El Niño research is
moving towards its prediction and its
evolution under climate change condi-
tions. Given that global Earth tempera-
tures are rising El Niño events may be
more frequent. At the moment, it is im-
possible to find any correlation between
the periodicity of El Niño and climate
change because no statistically signifi-
cant trend can be found.

References
1 Xu, Kang & Tam, Chi-Yung & Zhu, Congwen & Liu,

Boqi & Wang, Weiqiang. (2017). CMIP5 Projections of
Two Types of El Niño and Their Related Tropical Pre-
cipitation in the 21st Century. Journal of Climate. 30.
849-864. 10.1175/JCLI-D-16-0413.1.

PRACE SoHPC Project Title
El Niño, its periodicity and impact on
world weather

PRACE SoHPC Site
ICHEC, Ireland

PRACE SoHPC Authors
Ana Maria Montero Martinez,
University of Extremadura, Spain

PRACE SoHPC Mentor
Emma Hogan, ICHEC, Ireland

Ana Maria Montero
Martinez

PRACE SoHPC Software applied
Python, Sony Vegas Pro.

PRACE SoHPC Project ID
1712

34

Photorealism Never Looked So Good

Radiosity in
Computer
Graphics
Jamie Quinn

Be it in films, visual arts or computer
games, photorealistic rendering of a virtual
scene has been a hot topic for decades.
The ultimate aim here is to use physically
motivated techniques to realistically render
a simple scene similar to the one shown.

Firstly, what is rendering? Well, stored in the com-
puter is only the description of the geometry. For the
box shown, only the location of the faces are stored.
Rendering is simply the process of turning that de-

scription of geometry into an actual image you can see. The
standard way to render a scene is to choose a virtual camera
position, take the geometry that the virtual camera is “seeing”
and draw it to the screen.

For a simple box, using perspective to make the box ap-
pear like it would in the real world looks like the image
below. What about colour? Simply drawing solid colours
looks a little strange, as seen in the upper right image. What
we really want is to be able to add a virtual light to the scene
and give the box some kind of shading. Adding a light behind
the camera produces the lower right image.

35

What is Radiosity?

The shading used for that last image uses a simple method
called Gouraud shading.4 It’s easy and efficient, but all it
does is calculate how much each bit of the geometry is di-
rectly affected by each light in the scene. Take a look at the
room shown on the first page, there’s only one light, a white
light, and yet the box on the left is coloured a little bit red be-
cause of the red wall. Here we have a case of light bouncing
off one object and affecting another. Gouraud shading doesn’t
(easily) take this into account, so we turn to radiosity.1

To give a quick definition, radiosity is a measure of how
much light a patch of a virtual scene is giving off. This amount
of light depends on two things, how much light is hitting the
patch and bouncing off, and how much light the patch itself
is emitting. We use this to render a scene by considering
how the light given off by each patch in a scene affects every
other patch. We can then properly colour a scene using the
resultant radiosity.

How Do We Mathematically Find Radiosity?

Calculating the radiosity really depends on calculating the
spatial relationship from one patch to another - called the
form factor. It is a number between 0 and 1 describing how
much one patch can “see” another patch. If two patches are
very far away from one another the form factor between
them will be near 0, and if they are very close the form factor
will be closer to 1. If one patch can’t be seen at all from
another patch, the form factor will equal 0. From these form
factors, we can find how the radiosity is propagated through
the scene from patch to patch.

How Do We Actually Find Radiosity?

A few different techniques and algorithms are used in the
process of calculating radiosity. To calculate the form fac-
tors, a model-view-projection transformation must be set
up. This allows the placement of a virtual camera on a patch
in order to see which other patches that patch “sees”.

This transformation is used to project the geometry onto
a half-cube sticking out of the patch. This is known as the
hemi-cube approximation.3

After projection, each triangle of the geometry is ras-
terised to the hemicube faces. That simply means that we
figure out which pixels on the faces should come from which
triangles. That usually happens in scanlines, where we scan
across the triangle, figure out which pixels are inside the
triangle and colour them accordingly. That looks like this.

When rendering the triangles that make up the entire
geometry, we come to a problem. All the triangles are simply
kept in a list and rendered in an arbitrary order. So what if
we’ve moved the camera so that a red triangle should be in
front of a blue triangle, but the blue triangle just happens to
come after the red triangle in the list? The blue triangle will
rewrite the correct red colour with a false blue colour.

We solve this problem by using the z-buffer along with
an algorithm that for every pixel we’re trying to rasterise
asks, has it already been taken by a triangle that was closer?

We then find the area the projection each patch covers
on the hemi-cube. This determines the form factor.

To calculate the final radiosity, we use a technique known
as progressive refinement.2 This is where we know the ini-
tial radiosity in the scene, i.e. that given off by the lights
we’ve specified. We then propagate this radiosity through the
scene in one of two ways. First using the gathering method.
We select the i-th patch and find the form factors between it
and every other patch. Then, from each j-th patch we gather
how much radiosity is being sent from that patch to ours.
This depends on the total amount of radiosity of patch j,
rj , the form factor, Fij , and the reflectivity of patch i, ρi.
Reflectivity is a measure of how much light bounces off our
patch. It equals 1 if all the light bounces and 0 if none of it
does. The radiosity of patch i from patch j is given by

ri = ρiFijrj .

The second method, the shooting method, is essentially
the opposite of the gathering method. We select the i-th
patch, work out form factors, and then shoot the radiosity
from our patch into every other patch. The gathering method
deals better with low resolution hemi-cube faces, however
the shooting method may be stopped sooner if it detects that
the radiosity has reached an acceptable accuracy.

Snapshots of the progressive refinement process:

36

The Code

Coding the entire project essentially from scratch was a won-
derful learning experience. Although there are many excel-
lent vector maths libraries out there, I decided to roll my
own as an educational exercise. Vectorisation, letting the

computer know that certain things can be done all at one
time instead of one operation after another and treating the
cache well by making sure my little data structures fit well
into the very fast memory right beside the processor, were
two concepts I kept in my mind while developing the vector
maths parts of my code. In the future I would most definitely
use a library, it was good for my learning but there are faster
and better designed libraries out there.

The same was similarly true for the rendering process.
Though the original code used entirely my own algorithms,
parallelised for one single machine using OpenMP, I ended
up managing to code a nearly complete alternative solution
using the low-level graphics library OpenGL with a surpris-
ingly small amount of code. OpenGL dealt with the entire
rendering process - it was designed for games after all and
no games programmer wants to reimplement forty years
of graphics research! The only caveat is that OpenGL runs
exclusively on graphics cards and although such cards are
becoming more popular - mainly because they’re very good
at applications like machine learning, they’re reasonably rare
in high-performance computing centres.

Futher Work

Amongst standard polishing of a rushed codebase (there was
only 7 weeks to do all this after all) there are a few other
features/implementations to try, which include:

• Parallelisation on cluster with MPI.

• Complete GPU implementation.5

• Substructuring around shadow boundaries.

• Fixing of minor graphical glitches and artifacts.

• Implementation of 3D viewer for final scene.

References
1 Cindy Goral, Kenneth E. Torrance, Donald P. Greenberg and B. Battaile, Modeling

the interaction of light between diffuse surfaces, Computer Graphics, Vol. 18, No. 3.
2 Cohen, Michael F., et al. "A progressive refinement approach to fast radiosity image

generation." ACM SIGGRAPH computer graphics 22.4 (1988): 75-84.
3 “The Hemi-cube - a radiosity solution for complex environments” Michael F Cohen

and Donald P Greenberg ACM SIGGRAPH Computer Graphics 1985 Vol 19 Issue
4 H. Gouraud, "Continuous shading of curved surfaces," IEEE Transactions on Com-

puters, 20(6):623–628, 1971.
5 Toshiya Hachisuka, "High-Quality Global Illumination Rendering Using Rasteriza-

tion", https://developer.nvidia.com/gpugems/GPUGems2/gpugems2_
chapter38.html

PRACE SoHPC Project Title
Radiosity in Computer Graphics

PRACE SoHPC Site
ICHEC, Ireland

PRACE SoHPC Authors
Jamie Quinn, University of Glasgow, Scotland

PRACE SoHPC Mentor
Oisin Robinson, ICHEC, Ireland Jamie Quinn

PRACE SoHPC Software applied
C++, Python, OpenGL, OpenMPI, Three.js, OpenMP, Blender

PRACE SoHPC Acknowledgement
I’d like to acknowledge the whole ICHEC team for being extremely welcoming and
wonderful in a strange new city.

PRACE SoHPC Project ID
1513

37

Visualisation of Human Skeletal Motion Using
Motion Capture and CT Images

Skeletal
Motion
Tracking
Report written by mentor Petr Strakos

Motion capture technology can be used to
identify and track the human frame. Using
new tools developed by IT4Innovations to
process DICOM images, it was possible to
develop a tool for real time visualisation of
human skeletal motion.

Motion capture technology
has advanced rapidly in re-
cent years. Using a combi-
nation of depth sensors and

cameras, with sufficient resolution and
frame-rate, it is possible for software
to identify and track a human skeletal
frame.

The goal of this project was to de-
velop a program which renders and dis-
plays a human skeleton, whose pose cor-
responds to a human subject of motion
capture. This program could be a use-
ful tool for athletes, sports coaches and
physicians. It may also be a useful for
education of the human anatomy.

Computed Tomography

Computed Tomography (CT) is a medi-
cal imaging technique which takes X-ray
measurements from several different an-
gles, to provide a set of cross sectional
images of a scanned object. The pic-
ture below is an example of a CT image.

While the picture above is two di-
mensional, various tools can be used in
conjunction with CT data to generate
3D models of various organs and calcu-
late the volume of various tissues in the
human body.

The scope of this project though was
to use CT images to generate 3D models
of bones.

Blender

Blender is a professional, free and open-
source 3D computer graphics software
that can be used for 3D modelling.

Given its open-source nature,

Blender can be extended through plug-
ins. Blender plugins are Python scripts
that the user interacts with using the
Blender GUI.

A team at IT4Innovations developed
an interesting Plugin for Blender which
is useful for processing Computed To-
mography (CT) images. The actual im-
age processing algorithms are imple-
mented in C++ with OpenMP, with Py-
Object interfaces so they can be called
from Python.

This plugin allows somebody with
little knowledge of programming to use
a high performance cluster for Digi-
tal Imaging and Communications in
Medicine (DICOM) image processing.

At the click of a button, the user can
load in a series of ordered DICOM im-
ages, view the loaded images by using a
slider to move through them and select
various orientations to view the data.
Furthermore, the user can apply vari-
ous denoising filters to view the data in
greater clarity, or to improve the effec-
tiveness of later image processing.

38

The K-Means Segmentation Al-
gorithm

The K-Means Segmentation Algorithm is
a simple, yet powerful, algorithm which
solves the well known clustering prob-
lem.

It was used within the project to seg-
ment skeletal image data into a set of
images representing individual bones.

Although the algorithm requires a
long time to run on a large dataset,
IT4Inovations researchers have imple-
mented a parallel version of this algo-
rithm using OpenMP, which when run
on the Xeon Phi co-processors of the Sa-
lomon cluster allows one to generate
models of individual bones of the skele-
ton in much less time.

From 2D to 3D

Even though CT images are 2D data,
image processing operations can be ap-
plied to all selected slices given as out-
put by the K-Means algorithm.

Thus, once the data has been seg-
mented, it is only necessary to select a
segment to be converted into a struc-
tural 3D model called a “mesh model”.
The picture below is one such model.

The level of detail of the mesh
model generated by the tool can be con-
trolled by various parameters. Below is
a higher detail model generated from
the same images as the previous model.

The appropriate detail of a model
produced using this tool will vary, de-
pending on what it will used for. Highly
detailed models will be computation-
ally expensive to render, and as such,
may not be suitable for games or inter-
active tools that require the model to
be rendered in real time. However, for
generating pre-rendered animations, a
highly detailed model may be more im-
pressive, and worth the computational
resources required for production.

Kinematic Chains and Kinect 2

Once image data have been pro-
cessed to generate mesh models, a 3-
dimensional kinematic chain based on
motion capture of a moving human can
be created.

A kinematic chain is simply a set of
rigid bodies, connected by fixed points
and various constraints defining how
the fixed bodies can move relative to
the rigid bodies they connect to.

The picture below is an ex-
ample of a kinematic chain
modelling the human body.

Kinematic chains are often used in
robotics, but can also be useful in other
fields including structural engineering
and physiotherapy.

The Microsoft Kinect 2 (K2) is a rel-
atively inexpensive device which can be
used to generate a 3-dimensional kine-
matic chain based on motion capture of
a moving human.

Code was developed to identify and
track a human kinematic frame using
the K2 and when the structural models
are applied to the corresponding bod-
ies of the kinematic chain, a model of a
human skeleton can be rendered in real
time.

Conclusion

Using all the above mentioned tools and
methods, an application can be devel-
oped that identifies and tracks human
skeletal motion from CT data.

PRACE SoHPC Project Title
Visualization of Real Motion of Human
Body Based on Motion Capture
Technology

PRACE SoHPC Site
IT4Innovations, Czech Republic

PRACE SoHPC Authors
Report written by mentor Petr Strakos

PRACE SoHPC Mentor
Petr Strakos, IT4Innovations, Czech
Republic

David J. Bourke carried
out part of this work

PRACE SoHPC Contact
Karina Pesatova, IT4Innovations
E-mail: karina.pesatova@vsb.cz

PRACE SoHPC Software applied
Blender

PRACE SoHPC More Information
www.blender.org, http://blender.it4i.cz

PRACE SoHPC Project ID
1714

39

Visualizing Performance of Machine Learning
Chemical Bioactivity Prediction on a HPC system

Go! Data
Visualisation
Shukai Wang

If you are a big fan of data visualisation,
you are in the right place. Here I will
introduce a number of visualisation
techniques to turn the results of a machine
learning pipeline to interactive heatmaps.

The identification of bioactive
compounds is one of the most
important steps in drug dis-
covery. In the past, scientists

could only measure bioactivity once a
particular compound was made. Some
predictions could be made based on
their structures (e.g. weights, functional
groups, etc), however, in many cases,
predictions was limited and inaccurate.
Nowadays, there is enormous develop-
ment in proteomics and genome se-
quencing technology. In the field of bio-
chemistry, there have been several re-
cent publications which make some pre-
dictions by applying Machine-learning
(ML) algorithms.1,2 At the same time,
there are many readily available chemi-
cal databases which contain experimen-
tal structure-bioactivity information. Ex-
amples of these include PubChem,3 Bid-
ingDB,4 Reaxys,5 etc. ML algorithms can
be applied to these to get insights into
structure-bioactivity relationships. This
will be illustrated in this project report.

In short, ML is a set of approaches
which use a series of complex models
and algorithms to make data predic-
tions. The key idea of ML is to train
the algorithm using learning data, for it
to later make relevant predictions. How-
ever, based on the nature of the data,
we often need to have a bit of under-
standing of the data, as well as to select
features and algorithms and to adjust

the evaluation criteria to optimise the
prediction accuracy. Algorithms refer to
the training methods, such as whether
it is a classification or clustering prob-
lem. Evaluation criteria means how you
define the threshold to make the predic-
tion. A ML workflow in this project will
be illustrated later.

Due to the quantity of data and vari-
ations of algorithms and criteria, ML in
this case would require a large amount
of computational time. However, this
computational process can be optimised
through parallelisation of independent
tasks. HyperLoom6 is a package devel-
oped by a team at IT4Innovations in
the Czech Republic. It is designed to
define and execute workflow pipelines
in large-scale distributed environments
and optimise the performance of the su-
percomputers through a simple API. In
this way, the computation time when
using ML will be greatly reduced. One
of the key steps in this process is to visu-
alise the communication between each
worker, which has been completed in
this project.

Methods

Existing ML code was submitted to the
Salomon supercomputer at IT4I. The
ML and HPC performance results were
sent back to the user. The ML pipeline
performed gridsearch combined with

cross-validation using the libSVM li-
brary - a support vector machine im-
plementation. The effect of the gamma
and the cost values on prediction accu-
racy were visualised by a Python code I
wrote using Bokeh.10 I also completed
the traffic visualisation using Bokeh10

as well as Graph-Tool7 and compiled to
the major HyperLoom testing code.

Results and Discussion

Machine Learning Pipeline
As shown in Figure 1, the ML pipeline in
this project had a total of 6 steps. Each
data set (e.g. setA) was selected based
on some categories from the data base
(the outer loop) and it went through
the ML pipeline via the cross-validation
process (the inner loop). The cross-
validation process divided each data set
into 20% for validation and 80% for
training. As one data set can be sepa-
rated into a total of 5 distinctive vali-
dation sets, this training/validation pro-
cess would be iterated for five times.
The advantage of cross-validation is
that all data would be validated as
well as participating in the training pro-
cess. For each iteration, the training set
would be further segmented to D1-D5,
each of which contained an 80/20 train-
ing/validation ratio. The data would
be used for training using training pa-
rameters (TP) 1-n. In this case, it was

40

Figure 1. ML pipeline workflow: S1: Select data set A according to requirements. S2. Segment data as set A1 and further segment the
training set as D1-D5. S3: Training and validation on segmented data set using TP1-TPn and identification of the best TP (highlighted in
green), based on accuracy. S4: Training and validation of the whole data set using the best TP. S6. Iterate S2-4 when set A is segmented
to A2-A5, known as cross validation. ST: training, V: validation, TP: training parameter, VAL: validation.

Figure 2.Prediction accuracy against gamma (left) and cost (right). The values of the gamma and the cost were picked based on
experimental experience.

the gamma and the cost. Both are pa-
rameters for a nonlinear support vector
machine (SVM) with a Gaussian radial
basis function kernel for classification
problems. SVMs are used for classifica-
tion and regression analysis in super-
vised learning models. They are nor-
mally associated with a number of al-
gorithms. Kernel methods are named
after Kernel functions, which deal with
high-dimensional, implicit featured sta-
tistical problems. After the TP with the
highest accuracy was identified, the D1-
D5 would be merged into the original
80% training set, trained again using
the best TP and followed by an over-
all validation. This method can greatly
reduce the computational cost.

The effect on accuracy of gamma
(left) and cost (right) was visualised us-

ing interactive diagrams as shown in
Figure 2. The outer loops were the data
set selected based on the features from
the database. The inner loop represents
the result from each cross-validation it-
eration. Normally, a high gamma leads
to high-bias (high accuracy) and low-
variance (high precision) models, but in
this case the gamma had no influence
on the accuracy. Hence all lines over-
lapped each other on Figure 2 (right).
On the other hand, the cost defines the
soft/hard margin in the classification
process. In this case, some certain cost
value is better than the rest. By visual-
ising the accuracy against training pa-
rameters, it is very easy to find the best
parameters for the overall training set.
HPC Performance Visualisation
The performance of the HPC system was

also monitored while running the ML.
Here, all ML pipelines were scheduled
using the HyperLoom package (Figure
3).

As can be seen from Figure 3, the
scheduler receives tasks from the client,
schedules them and sends them to
the server in an optimised order. The
server will then distribute them to differ-
ent workers. The workers communicate
with each other by sending the results
of its own task as the input file of tasks
of another worker. Finally, the server re-
ceives the individual results from the
worker and returns both the results and
the performance trace files to the client.

41

Figure 4.The visualization of traffic between workers and the server using: A. A network diagram - where edge width, data volume,
diamond arrows indicate the actual data volume is less than 1/200 of the maximum data volume (after rescaling) and W means workers..
B. An interactive heatmap using a log scale colour scheme - with bright yellow as the maximum.

Figure 3. The architecture of HyperLoom,
including a client, a server and several
workers. The interconnections are between
the client and the server, the server and the
workers and between each worker.

During the project, two ways were
developed to visualise the communi-
cation between the workers and the
user: A network diagram (Figure 4A)
and a heatmap (Figure 4B). Figure 4A
was constructed using Graph-Tool7 af-
ter comparing its presentation with Net-
workX8 in combination with Matplotlib9

or the Dot language. The network di-
agram generated by Graph-Tool7 was
of high quality and its coding was eas-
ier. Figure 4 shows the traffic between
each computational worker when a ML
pipeline is completed. It is clear that
W6 received the most results compared
to any other worker whereas W1 has
the highest export. Finally, the server
only received data from workers and
the amount was negligible. Figure 4B
tells the same story as 4A.

Conclusion

Two months are very short in terms
of delivering academic research, but

my time has been very productive. Al-
though my project hasn’t gone deeper
in one specific area, I have covered a
range of topics from machine learning,
HPC and data visualisation. I have un-
derstood how a general ML pipeline
works, and got to learn some theory
about ML, such as Vector Support Ma-
chines. I have also improved my coding
skills considerably.

Acknowledgements

The author would like to express her
appreciations to Jan Martinovič, Vo-
jtěch Cima and Stanislav Bohm for their
academic guidance, Lukas Vojacek for
his technical support and Karina Peša-
tová in IT4I for all her help in set-
tling in the Czech Republic for the past
two months. The author would also
like to thank Vladimir Chupakhin from
Johnsen & Johnsen for providing exper-
imental data for my project and finally
the PRACE program for the funding and
providing this opportunity.

References
1 Liu, J.; Patlewicz, G.; Williams, A.; Thomas, R. S.;

Shah, I. Chem. Res. Toxicol. (2017). Predicting Organ
Toxicity Using in Vitro Bioactivity Data and Chemical
Structure.

2 Sun, J.; Jeliazkova, N.; Chupakhin, V.; Golib-Dzib, J.-
F.; Engkvist, O.; Carlsson, L.; Wegner, J.; Ceulemans,
H.; Georgiev, I.; Jeliazkov, V.; Kochev, N.; Ashby, T. J.;
Chen, H. J. Cheminform. 9 (1), 17 ExCAPE-DB: An
Integrated Large Scale Dataset Facilitating Big Data
Analysis in Chemogenomics. (2017)

3 Wang, Y.; Suzek, T.; Zhang, J.; Wang, J.; He, S.;
Cheng, T.; Shoemaker, B. A.; Gindulyte, A.; Bryant, S.

H. Nucleic Acids Res. 42 (D1), D1075–D1082. (2014)
PubChem BioAssay: 2014 Update.

4 Gilson, M. K.; Liu, T.; Baitaluk, M.; Nicola, G.;
Hwang, L.; Chong, J. Nucleic Acids Res. 44 (D1),
D1045–D1053. BindingDB in 2015: A Public Database
for Medicinal Chemistry, Computational Chemistry
and Systems Pharmacology. (2016)

5 Reaxys database. https://www.reaxys.com. (2016)

6 HyperLoom https://code.it4i.cz/ADAS/loom. (2017)

7 Peixoto, T. de P. Graph-Tool https://graph-
tool.skewed.de. (2017)

8 Hagberg, A.; Schult, D.; Swart, P. NetworkX.
https://networkx.github.io. (2017)

9 Hunter, J. D. Comput. Sci. Eng. 9 (3), 90–95.
https://matplotlib.org. (2007) Matplotlib: A 2D
Graphics Environment.

10 Bird, S.; Canavan, L.; Mari, M.; Paprocki,
M.; Rudiger, P.; Tang, C. ; Ven, V. B.; Bokeh
https://bokehplots.com/pages/team.html. (2017)

PRACE SoHPC Project Title
Performance visualization for
bioinformatics pipelines

PRACE SoHPC Site
IT4Innovations, Czech Republic

PRACE SoHPC Authors
Shukai Wang, Imperial College, UK

PRACE SoHPC Mentor
Jan Martinovič, IT4I, Czech Republic Shukai Wang’s photo

PRACE SoHPC Contact
Karina, Pešatová, IT4Innovations
Phone: +420 597329587
E-mail: karina.pesatova@vsb.cz

PRACE SoHPC Software applied
Python, Bokeh, Pandas, Scikit Learn, Graph-tool

PRACE SoHPC More Information
https://youtu.be/Bn32p-4PhW8

PRACE SoHPC Project ID
1715

42

Accelerating Quantum Monte Carlo simulations
for carbon nanotubes using Data Science

Cude colors
on a phine
grid
for SoHPC
Philippos Papaphilippou

The project aims to help eliminate the
simulation time of a Quantum Monte Carlo
simulator for carbon nanotubes by using
data science techniques. This was
achieved by creating an online
optimization algorithm that balances the
accuracy of the simulator for better
performance.

Simulations of Lattice QCD (Lat-
tice Quantum Chromodynam-
ics) are used to study and cal-
culate properties of strongly in-

teracting matter, as well as the quark-
gluon plasma - which are very difficult
to explore experimentally due to the ex-
tremely high temperatures required for
these interactions.1 The simulator we
are trying to optimise uses Quantum
Monte Carlo Calculations (which have
originally been used for LaticeQCD) to
study the electronic properties of car-
bon nanotubes.2

My main activity was to help elim-
inate the simulation time of the simu-
lator by using data science techniques.
The method I will describe here is inde-
pendent to the parallelisation and vec-
torisation of the code for fully exploiting
the computing resources. The code of
the simulator is already parallelised and

vectorised (perhaps not yet optimally),
but as we are going to see, some algo-
rithmic decisions can further accelerate
its execution.

Background Information

The simulator uses leapfrog integration
to integrate differential equations. The
equations that are used for the integra-
tion look like recurrence relations. This
means thats each next value is calcu-
lated using a previous value. Specifi-
cally, the smaller the time difference
t, the more accurate the integration is.
t is inversely proportional to the num-
ber of MD (Molecular Dynamics) steps
(Nmd). Therefore, the greater Nmd gets,
the more accurate the simulation is, but
also the more time it takes to finish. If
the value of Nmd is low, the acceptance

rate of the new trajectories is too low
to achieve results in reasonable time -
even on a supercomputer. If Nmd is too
high, the acceptance rate is 100% but it
introduces a significant time overhead.
The goal is to tune this parameter on
runtime to select the value that would
yield an acceptance rate close to 66%.

Building a model

The idea is to create a model of the rela-
tionship "Acceptance Rate versus Nmd"
each time a new data point comes in.
We can then select the best Nmd for the
next run. In Figure 1 we can see a set of
observations from an experiment.

43

50 100 150 200 250 300
Nmd

0.0

0.2

0.4

0.6

0.8

1.0

Ac
ce

pt
an

ce
 R
at
e

observations

Figure 1: Observations for different number
of MD steps

In computer science, when an al-
gorithm is processing data serially as
soon as it becomes available, it is called
an online algorithm. In our case, we
need such an online algorithm for tun-
ing Nmd - because each data point is ex-
pensive to produce and we do not have
the whole dataset from the beginning.
Also, we are not aware of the exact re-
lationship of the acceptance rate with
the other parameters, such as the lattice
size. We could do an exhaustive explo-
ration of the other parameters, but this
would take an unreasonable amount of
time for the same computing resources.
Of course, there are shortcuts to creat-
ing models when exploring a big design
space. But the dynamic approach makes
it less complicated and more general for
future experiments where new parame-
ters could be included, without knowing
their amount of orthogonality.

We need to tune the Acceptance rate
(the dependent variable) by manipulat-
ing the number of MD steps (the inde-
pendent variable), whose relationship
is unknown. Not only is it unknown, but
there are some other parameters, such
as the lattice size, that we know can
influence this relationship for different
simulations. Therefore, we concluded
that an online algorithm would make
things simpler, as the model would have
to be created from observations using
the same combination of all other pa-
rameters.

However, we are not completely un-
aware of the relationship we are looking
for. We already know that:

• The data almost has the shape of
a sigmoid function (S-shaped)

• The acceptance rate (dependant
variable) starts from 0.0 for few
steps and ends at 1.0 for a big
number of steps.

How about other approaches?
There are many ways to create a model,
such as regression by using a Muli-Layer
Perceptron (MLP) (an Artificial Neural
Network type). The problem with such
an approach is that neural networks are
very agnostic to the shape of the data
we would like to model. It can take
longer to train the network and it is
also prone to overfitting (the error of
the training data contributes to creating
an inaccurate model).

The biggest disadvantage of using
the neural network approach, is that
since it doesn’t take into consideration
what we already know about the shape,
it can give a model that fits the current
data well, but makes very bad new pre-
dictions (such as with overfitting). Imag-
ine the orange line of Figure 2 to be the
result of training an MLP, but for any
Nmd greater than 300 the acceptance
rate falls back to values near 0. This is
very possible with MLPs and with other
approaches, and it is unwanted. That is
the main reason for choosing to fit the
data to a specific function by using least
squares fitting instead.

Selecting a function for fitting

My code uses the scipy library which
implements the Levenberg-Marquardt
algorithm for the least squares function-
ality. To the user, it is very simple to tell
this algorithm what parameters need to
be found. From high school mathemat-
ics we already know that we can shift,
stretch or shrink the graph of a function
with a set of simple operations:

• If we want to move f(x) to the left
by a, we use f(x+a)

• If we want to shrink f(x) by b in
the x-axis, we use f(b*x)

• If we want to move f(x) up by c,
we use f(x)+c

• If we want to stretch f(x) by d in
the y-axis, we use d*f(x)

After we select the function, we can
give all these freedoms to the algorithm.
However, it would be very nice if we
could take some of them away. This
would make the fitting faster and in-
crease its accuracy for predicting new
data. In other words, by removing some
of these freedoms, we are instructing
the algorithm about the shape we are
expecting it to find.
Sigmoid
A mathematical function that has a spe-
cific S shape curve is named sigmoid.

My first selection for a function was the
logistic function 1/(1+exp(x)), which
ranges from 0 to 1.

Since we already know that the ac-
ceptance rate ranges from 0 to 1, then
we do not need the last two operations
described above. Our model then has
the form 1/(1+exp((x+a)*b)), which
is relatively accurate even if we only
have a few points (beginning of the sim-
ulations) and also fast to fit.

In Figure 2, we can see the result of
fitting the logistic function on the previ-
ous dataset.

0 100 200 300 400 500
Nmd

0.0

0.2

0.4

0.6

0.8

1.0

Ac
ce

pt
an

ce
 R
at
e

observations
1/(1+exp((x+a)*b))

Figure 2: Fitting a sigmoid function

Cumulative Distribution Function
As we can observe, using a sigmoid

function was a relatively good attempt.
However, we can see that the orange
line is more “pointy” than needed at the
top part of the figure and less “pointy”
than needed at the lower part. This is
due to the fact that the sigmoid func-
tion is symmetric. The task was to look
for functions that look like a sigmoid
function but allow for a degree of asym-
metry. The solution was to use the Cu-
mulative Distribution Function (CDF)
of the skew normal distribution.

The CDF gives the area under the
Probability Density Function (PDF) and
it has the shape we are looking for. The
skew normal distribution allows skew-
ness which can make the model fit our
data better. In Figure 3, you can see a
comparison of the normal distribution
and the skew normal distribution.

As we can see, by manipulating the
alpha parameter, we can change the
shape of the PDF of the distribution and
consequently the shape of the CDF as
well. Of course, as the selection of the
function was done visually, it does not
necessarily mean that the physics gives
a skew normal distribution form to the
data, but it seems to suit our cases well.
In the following figure, we can see a

44

Figure 3: Comparison of the Probability Distribution Function (PDF) and the Cumulative Distribution Function (CDF) for the normal and
skew normal distributions.

demonstration of the different CDFs we
can obtain by varying the alpha param-
eter.

This “trick” gave a quick and accu-
rate methodology for creating a rela-
tively good model, even with a couple
of observations. Another way of increas-
ing the stability of the model was to
insert two artificial points - one on each
side, which would most likely be valid,
such as f(0)=0.0 and f(600)=1.0. In
this way we could get a seemingly valid
shape for even one observation - good
enough at least to allow the online algo-
rithm to select a meaningful new Nmd,
closer to the optimal.

Vizualisation of the algorithm

You can watch the video presentation by
clicking on following link: 1716 Philip-
pos Papaphilippou, Cude colors on a
phine grid. At the 3:56 timestamp, you
can see the resulting visualisation of the
tuning in action.

The video visualization demon-
strates the two states in which my auto
tuner is at during tuning. At the first
state, the Nmd is constant and a num-
ber of trajectories are calculated. This
is continued until the confidence inter-
val3 gets sufficiently small for increased
accuracy in measurements. At the sec-
ond state, the fitting tooks place, (for a
negligible time compared to the simula-
tion time) and the new Nmd is selected
according to the created model. This
continues for multiple iterations until
the end conditions are met.

In addition, there is a series of blog
posts at the SoHPC website, where I
have illustrated some of the above ma-
terial using animated images.

Discussion & Conclusion

The tuning algorithm was shown to
work relatively well with some exam-
ple runs for different lattices. For ex-
ample, at one case, the predicted Nmd
for acceptance rate 66% was around
40, while the default Nmd was 500.
This gave a speedup of over 10 times,
although for more realistic parameter
combinations the speedup was less.

There is still some work to be done
to improve this algorithm. First, the ac-
ceptance rate is being calculated as a
percentage of the accepted trajectories
- just like the way frequency of heads
is calculated when flipping a coin. Us-
ing the resulting proportion, the confi-
dence interval is calculated using the
Wald formula for a binomial propor-
tion.3 Instead of this, we can use the
average of the acceptance probabilities
(as given by the simulator) for greater
accuracy and therefore less tuning time.
We could also investigate other stopping
conditions, or alternative fitting param-
eters, such as different loss functions,
or even an equation to fit that derives
from physics properties.

Regarding the simulator itself, there
is still room for performance improve-
ment by perfecting its vectorization.
During the beginning of my stay here
at Juelich I did some interesting vector-
ization exercises - some of which you

can find in the blog’s link above. I did
not have much time for a second task,
to further optimize the current imple-
mentation, but I learnt a lot during the
initial hands-on activity and can easily
apply it in other problems in the future,
as well to identify bottlenecks in perfor-
mance.

References
1 M. Creutz Simulating quarks Computers in Science

Engineering, March/April 2004, p. 80 (IEEE CS and
AIP, 2004).

2 Luu, Thomas and Lähde, Timo A (2016) Quantum
Monte Carlo calculations for carbon nanotubes. Physi-
cal Review B, 93(15), p.155106.

3 Vollset, S.E., 1993. Confidence intervals for a binomial
proportion. Statistics in medicine, 12(9), pp.809-824.

PRACE SoHPC Project Title
Cude colors on a phine grid

PRACE SoHPC Site
Forschungszentrum Juelich, Germany

PRACE SoHPC Authors
Philippos Papaphilippou,
Forschungszentrum Juelich, Germany

PRACE SoHPC Mentor
Dr. Dr. Stefan Krieg,
Forschungszentrum Juelich, Germany

Philippos Papaphilip-
pou

PRACE SoHPC Contact
Philippos Papaphilippou, Forschungszentrum Juelich,
Germany
Phone: +44 7729024513
E-mail: p.p.cy@ieee.org

PRACE SoHPC Software applied
scipy, gnuplot, FFMPEG, internal software

PRACE SoHPC More Information
www.philippos.info

PRACE SoHPC Acknowledgement
Apart from my SoHPC mentor Dr. Krieg, Prof. Thomas
Luu of Forschungszentrum Juelich, Germany also
provided insightful feedback.

PRACE SoHPC Project ID
1716

45

Fast Multipole Method based solver for 1/r potentials
using highly portable HIP framework for GPGPUs

Portable GPU
code for FMM
Antti Mikkonen

Fast Multipole Method (FMM) enables fast and
accurate n-body simulations. With GPGPUs it
is possible to compute FMM solutions utilizing
the cheapest FLOPSs available. Portability of
the source code enables usage of the
algorithm on all current GPGPU platforms.

Simulating the dynamics of
molecules, plasma or solar sys-
tems require solving gravita-
tional or electric forces between

particles. This is called the n-body prob-
lem and its solution requires a nu-
merical approach. With Fast Multipole
Method, it is possible to reduce the com-
putational complexity of n-body prob-
lem from quadratic to linear. Quadratic
complexity means that doubling the
amount of particles will increase the
computation time fourfold, while with
linear complexity doubling the particle
amount results in twice as long compu-
tation. The importance of complexity re-
duction becomes evident when dealing
with millions of particles - an amount
which is necessary for accurate simula-
tions.

After solving the forces between par-
ticles, it is possible to iterate the dy-
namical simulation with one time step.
Simulations usually require hundreds
of thousands of time steps for the de-
sired behaviour to occur, and a fast
computation of forces is required. Thus,
this becomes a high-performance com-
putation problem. Graphical processing
units (GPUs) provide an ideal approach
to this problem. The problem doesn’t
require much memory and consists of
many parts which are possible to com-
pute using a Single Instruction Multiple
Data (SIMD) approach - a quality in

which GPUs excel.
Currently there are two major

GPU manufacturers, Nvidia and AMD.
Their GPUs are different in architec-
ture and the functionality they offer
for GPGPU applications vary greatly
- so a separate codebase is required
for both Nvidia and AMD GPUs. Cre-
ating and maintaining two different
source codes is time-consuming and
is prone to errors. A new approach
to this dilemma is AMD’s open-source
library Heterogeneous-Compute Inter-
face for Portability (HIP). Utilizing the
HIP framework, it is possible to decide
on which hardware you want to run
your code during compile-time. The pri-
mary objective of the HIP framework is
to enable hardware-unaware develop-
ment of GPU code - so the programmer
may focus on the algorithm and not the
implementation.

In the Fast Multipole Method, the
computation area, which includes all
the point masses, is divided into small
subregions. Then it is possible to con-
sider the inter-particle interactions in
two classes: the near-field forces and
far-field forces. A particle’s near-field
consists of its own region and neigh-
bouring regions and far-field is con-
versely everywhere else. The speed of
the FMM, results from the fact that the
further away the far-field particles are
from our particle of interest, the greater

amount of interactions are combined
into a single operation.

After the division, the far-field ef-
fects of each region is approximated
using a multipole expansion of the po-
tential function. A multipole is a linear
combination of functions called spheri-
cal harmonics with complex coefficients.
The featured image of the article is a
visualisation of a multipole. With multi-
poles, you only need a handful of num-
bers to describe the potential function
everywhere in the far-field. Since the
multipole expansion is linear, you can
create the combined field of several mul-
tipoles by adding up their effects. The
multipoles are added up from smaller
subregions to larger ones and these re-
gions are then organised into an octree.
A visualization of this tree is on the left
side of following figure. This is an an-
other source for the speedup for the
FMM.

The Fast Multipole Method con-
sists of five distinct steps. In the first
four steps, the far-field forces are com-
puted, and in the last one the near-field
ones are computed. The first step is
to compute the multipole expansions
in the smallest subregions. In the sec-
ond one, the multipoles are added up
from smaller regions to bigger ones. The
third step is to transform the effects of
the multipoles into local effects in the
same subregion size category. This third

46

2 10 18 26 34 42 50
0
5

10
15
20
25
30
35
40
45
50

Multipole amount p

tim
e

pe
r

ex
pa

ns
io

n
(µ

s)

R9 Fury, double
R9 Fury, single
Tesla K40m, double
Tesla K40m, single

2 10 18 26 34 42 50
0
5

10
15
20
25
30
35
40
45
50

Multipole amount p
tim

e
pe

r
ex

pa
ns

io
n

(µ
s)

iterative, double
iterative, single
classical, double
classical, single

Left: A two-dimensional Fast Multipole Method tree. Three different size levels are displayed. The near-field subregions are transparent,
the far-field subregions are displayed in dark blue and non-interacting subregions in light blue. Top right: Computation time comparsion
between Tesla K40m and Radeon R9 Fury GPUs with varying multipole counts in both single and double precision floating point numbers.
Bottom right: Computation time comparison between the classical rotation operation and the iterative rotation operation with varying
multipole counts on Tesla K40m GPU in both single and double precision floating point numbers.

step is called Multipole2Local, and it is
the most computationally intesive part
of the algorithm. The fourth step is to
add up these local far-field effects from
all size levels and this yields us the far-
field potential function, from which it
is easy to compute the forces. The final
step is to classically compute the near-
field forces for each particle pair.

I implemented this Multipole2Local
(M2L) part of the algorithm on AMD’s
Radeon R9 Fury and Nvidia’s Tesla
K40m graphics cards. The implemen-
tation was done using the HIP frame-
work. The HIP C++ library contains
general GPGPU-related functions which
are converted by the HIPCC compiler
package to more device-specific code.
This extra layer of code abstraction re-
sults in a more portable code, but with
fewer features. Only features which are
found on both platforms can be used
in HIP. However, it is also possible to
write device-specific code with appro-
priate preprocessor macros.

The traditional algorithm for Mul-
tipole2Local has a time complexity of
O(p4). This means that the runtime of
the algorithm is proportional to the
fourth power of the multipole amount
p. As such, the algorithm gets increas-

ingly slower and slower with more mul-
tipoles. This can partly be fixed by in-
troducing a multipole rotation into the
algorithm. Adding more functionality
to an already complicated code doesn’t
sound too useful performance-wise. But
this time it’s possible to reduce the to-
tal time complexity depending on the
multipole number to O(p3). Thus the
rotation-based M2L operation, can in
theorty be at most 50 times faster than
the original code.

GPUs, as high-performance comput-
ing units, may execute many threads
in parallel, while having comparatively
little memory. Thus a computation bot-
tleneck may be created when thousands
of threads are reading and writing data
at the same time. Because of this, it
might be beneficial to compute needed
data on the thread itself to avoid read-
ing slow memory. This is underlined by
the fact that on a GPU, computation is
cheap, but reading memory is expen-
sive. I also implemented this method of
approach on Tesla K40m.

The computation time comparison
may be seen on the right side of the
figure. The benchmarking was done by
computing the M2L operation for 4096
multipole expansions in parallel. In the

top graph, we see that both GPUs run
the code quite similarly with small val-
ues of p, but the Tesla K40m experiences
a sudden extra delay around p = 32.
This is due to the fact that only 32
threads may be computed fast using
SIMD methodology on an Nvidia GPU
processor and this can be avoided with
different implementations. On the bot-
tom graph, it is interesting to notice that
the iterative approach is significantly
faster - but only when using single pre-
cision floating point numbers.

In summary, HIP provides a simple
way to create portable GPU code and
its learning curve is near non-existent if
you’re coming from Nvidia’s CUDA lan-
guage. However, since the framework is
in development, the more complex GPU
features aren’t available yet.
PRACE SoHPC Project Title
Hip, hip, hooray! Get your 2-for-1 GPU
deal now.

PRACE SoHPC Site
JSC, Germany

PRACE SoHPC Authors
Antti Mikkonen, University of Eastern
Finland, Finland

PRACE SoHPC Mentor
Andreas Beckmann, JSC, Germany Antti Mikkonen

PRACE SoHPC Project ID
1717

47

Optimising performance of ocean simulations by
porting them to run on parallel architectures

Accelerating
climate
kernels
for SoHPC
Konstantinos Koukas

Climate research depends on performing
simulations over hundred-thousand-year
time scales - requiring high performance
computing capabilities in order to advance
the field. This project manages to boost
the performance of ocean simulation
models by utilising all available processor
cores, as well as porting a pressure solver
to run on GPUs.

Climate research serves the crit-
ical goal of advancing our un-
derstanding and projections of
climate behaviour by develop-

ing global climate models. These are
used to simulate conditions over long
periods of time - including factors such
as the atmosphere, oceans and the sun.
Evidently, a task of such complexity
is computationally intensive and relies
on the use of supercomputing facilities.
This is why climate models estimate
trends - rather than events, and their
results are less detailed in comparison
to similar models used for weather fore-
casting. Thus, climate models no longer
scale as computers are getting bigger.
Instead, climate research depends on
extending the length of a simulation
into hundreds of thousands of years -
creating the need for faster computers

in order to advance the field.
A number of ocean simulation mod-

els are implemented in the Versatile
Ocean Simulation (Veros) framework.
Written in pure Python, it aims to be
the Swiss Army knife of ocean mod-
elling. However, choosing a dynamically
typed and interpreted language leads to
heavy computational cost. Overcoming
this gap is accomplished through the
use of Bohrium - a framework that acts
as a high performance alternative for
the scientific computing library NumPy,
which takes care of all the parallelism
in the background. However, Bohrium
carries a significant computational over-
head, making custom optimisation es-
sential.

To enable massively accelerated
ocean simulations, I decided to com-
bine the power of handmade paral-

lel code with the automatic capabili-
ties of Bohrium. To this end, I identi-
fied the most time-consuming parts of
the framework and optimised them us-
ing Cython. Also, I took advantage of
Cython’s OpenMP support to enable par-
allel processing, and ported a pressure
solver to run on GPUs - leaving the rest
of the framework to be optionally opti-
mised by Bohrium.

Profiling

Profiling showed that most time is
spent in Thermodynamics and specifi-
cally, isoneutral mixing methods. These
parts were optimised using the follow-
ing methods.

48

Comparison between NumPy, Cython and Cython with the OpenCL solver.

Static Types

Cython enables the developer to com-
bine the productivity, expressiveness
and mature ecosystem of Python with
the bare-metal performance of C/C++.
Static type declarations allow the com-
piler to produce more efficient C code.
In particular, low-level numerical loops
in Python tend to be slow. Although
NumPy operations can replace many
of these cases, the best way to express
many computations is through loop-
ing. Using Cython, these computational
loops can have C performance. Finally,
Cython allows Python to interface na-
tively with existing C, C++ and Fortran
code, as well as to disable safety checks
using compiler directives. Overall, it
provides a productivity and runtime
speedup with minimal amount of effort.
In order to take advantage of the above
benefits, I added explicit types, turned
certain numerical operations into loops
and disabled both indexing and division
checks.

Typed Memoryviews

I decided to exploit another Cython
feature: Typed memoryviews. They al-
low efficient access to memory buffers,
without any Python overhead. Indexing
on memoryviews is automatically trans-
lated to a memory address. They can
handle NumPy, C and Cython arrays. In
my case, NumPy indexing was mostly
replaced by the faster memoryview al-
ternative.

OpenMP

Cython supports native parallelism via
OpenMP. In a parallel loop, OpenMP
starts a group (pool) of threads and dis-
tributes the work among them. Such a
loop can only be used when the Global
Interpreter Lock (GIL) is released. Luck-
ily, the memoryview interface does not
usually require the GIL. Thus, it is an
ideal choice for indexing inside the par-
allel loop. Every computational loop
was transformed into a parallel version
with a constant number of threads - the
number of which depends on the archi-
tecture.

ViennaCL

Veros solves a pressure equation us-
ing the Biconjugate Gradient Stabi-
lized (BiCGSTAB) iterative method.
This solver, along with other linear al-
gebra operations are implemented in
the ViennaCL library. ViennaCL is an
open-source linear algebra library im-
plemented in C++ and supports CUDA,
OpenCL and OpenMP. In order to exe-
cute the solver on the GPU, I created
a C++ method that uses the ViennaCL
interface. Cython passes the input ma-
trices to C++ where they are recon-
structed and copied to the GPU. The
solver runs on the GPU and the result
vector is copied back to CPU memory.
Finally, it is sent back to Cython without
any copies. This procedure was imple-
mented using both CUDA and OpenCL.

Results

As shown in the respective charts,
Cython with OpenMP provided a 1.48x

speedup over the original NumPy ver-
sion. In the case where the pressure
solver runs on the GPU, only a minor
improvement is observed. Bohrium was
not used in the benchmarks because
of its large overhead for the examined
setup sizes.

Conclusion

Clearly, handmade optimisation accel-
erated ocean simulations compared to
pure NumPy, when the number of el-
ements is below a certain threshold
and Bohrium is not beneficial. However,
even in larger cases, parts that Bohrium
fails to speed up could benefit from such
a custom tuning process. You can watch
a visual explanation of the project in its
presentation video.

PRACE SoHPC Project Title
Accelerating climate kernels

PRACE SoHPC Site
Niels Bohr Institute, Denmark

PRACE SoHPC Authors
Konstantinos Koukas, Department of
Informatics and Telecommunications
of the University of Athens, Greece

PRACE SoHPC Mentor
Mads Ruben Burgdorff Kristensen,
Niels Bohr Institute, Denmark Konstantinos Koukas

PRACE SoHPC Contact
Brian Vinter, Niels Bohr Institute
Phone: +45 35 32 14 21
E-mail: vinter@nbi.ku.dk

PRACE SoHPC Software applied
Veros, Cython, ViennaCL

PRACE SoHPC More Information
http://veros.readthedocs.io/
http://cython.org/
http://viennacl.sourceforge.net/

PRACE SoHPC Acknowledgement
PRACE

PRACE SoHPC Project ID
1718

49

Generalising object tracking algorithms to time
sequences of 3D voxel data

Tracing in 4D
data
for SoHPC
Alessandro Marzo

Europe has several synchrotron facilities
which can produce enormous datasets -
especially the medical beam lines. They
collect 3D volumes at a frequency that
produce 3D movies. The analysis of this
data typically involves tracing one or more
objects in 3D over time. Existing
algorithms are typically implemented in
Matlab and do not scale to the new data
rates. Thus, the aim of the project is to
obtain a single algorithm implemented in a
High Performance version.

The problem of object tracking
is well studied for two dimen-
sional videos, and the academic
literature offers lots of different

algorithms for many different situations.
The same cannot be said for three di-
mensional data. Existing implementa-
tions of 3D object tracking algorithms
are scarce and typically implemented
in programming languages that do not
perform well as the data grows. This is
what’s happening as medical and scien-
tific research needs to study phenomena
in more detail. The aim of my project
is to overcome this problem by realis-
ing an optimised and parallelised im-
plementation of a 3D object tracking
algorithm.

What is 4D data?

By 4D data we mean 3D movies, but
not the kind you can watch in a cinema.
3D films in cinemas are not really 3D,
but they use stereoscopic photography
to give an illusion of depth. This means
that the movie is recorded from two
different horizontal positions to get a
stereoscopic image pair. These two two-
dimensional images are then presented
separately to the left and right eye of
the viewer to give the perception of 3D
depth when they are combined in the
brain.

3D movies mentioned in this article,
maintain full information about depth.
Each 3D volume is represented using
voxels. Voxels are the 3D version of pix-

els in a 2D image. If you think of pixels
as pieces of a cardboard puzzle, voxels
would be like LEGO. Because of this,
voxels require more disk space and are
more computationally intensive to anal-
yse and process. Each frame can take up
to 15 GB and just two frames are equal
to an entire Blu-ray disc! This is why we
need high performance computing.

Starting the project

Fortunately for me, as I started studying
the various 2D algorithm versions, I no-
ticed that the math used could be easily
generalised to three dimensions with-
out modifying most of the steps of the
algorithms. This was quite a promising
start. The next step was using existing

50

implementations of 2D algorithms as a
starting point towards generalising to
3D volumes. This required looking into
the OpenCV library.

As I started diving into the OpenCV
implementation code, I quickly realised
that it was too optimised for me to
make something useful out of it. Op-
timisation often introduces complexity
in the code which in return makes it
harder to understand. Let’s remember
that the OpenCV project began 18 years
ago and the main contributors were a
group of Russian optimisation experts
who worked at Intel. And they also had
18 years to optimise it even more!

So I needed to start from scratch,
reinvent the wheel and make my own
implementations of the algorithms.

The approach

Python is the most straightforward
choice to complete the project in a short
time frame. Python is a modern pro-
gramming language that enables fast
prototyping of algorithms because it is
easy to learn and use. Furthermore, it
offers a lot of specialised packages for
scientific computing and visualisation.

But this was not the only rea-
son to choose Python. We can also
use Bohrium - a framework that acts
as a high performance alternative for
the scientific computing library numpy.
Bohrium takes care of all the parallelism
in the background, so we can concen-
trate on writing nice, readable code,
that will be capable of running on multi-
core CPU and GPU without modifica-
tions.

In the end, these advantages al-
lowed me to implement and compare
the accuracy and performance of two
different object tracking algorithms: Me-
dianflow and Kernelized Correlation Fil-
ters (KCF).

Medianflow
Medianflow1 is the first algorithm I

chose to generalise to 4D data. It is
mainly based on one simple idea: the
algorithm should be able to track the
object regardless of the direction of
time-flow. We first identify objects us-
ing a grid of points and then we eval-
uate them with a measure called the
Forward-Backward error, so we can only
use the best points for tracking. The con-
cept is well explained by Fig 1.

Point 1 is visible in both images and
the tracker is able to track it correctly.
Tracking this point forward and back-

ward results in identical trajectories.

Figure 1: Forward-backward consistency as-
sumption.

On the other hand, Point 2 is oc-
cluded in the second image and the
tracker localises a different point. Track-
ing this point backward, the tracker
finds a different location than the orig-
inal one. In the algorithm, the discrep-
ancies between these forward and back-
ward trajectories are measured. If they
differ significantly, the forward trajec-
tory is considered as incorrect. This
Forward-Backward error penalises these
inconsistent trajectories and enables the
algorithm to reliably detect tracking fail-
ures and select reliable trajectories in
video sequences.

Figure 2: Red points are correctly tracked
and the ones chosen to update the bounding
box for the next frame.

The points are tracked using an old-
style computer vision algorithm such
as the Lucas-Kanade feature tracker.2

This is based on sparse optical flow es-
timation. The concept of optical flow
is quite old and it extends outside the
field of Computer Vision - but in this ar-

ticle you can think of optical flow as the
displacement of one point between two
frames. This algorithm works by solving
the optical flow equation 1 using the
least square principle.

∇IT · ~V = −It (1)

As you may have noticed, this equa-
tion is valid for both two and three di-
mensions, so we can generalise this al-
gorithm to 3D volumes without any set-
backs.

Kernelized Correlation FIlters
The second algorithm I chose to im-

plement is KCF.3 While MedianFlow
is based on old computer vision tech-
niques, KCF is inspired by new statisti-
cal machine learning methods. It works
by building a discriminative linear clas-
sifier (which some people would call
artificial intelligence) tasked with dis-
tinguishing between the target and the
surrounding environment. This method
is called ‘Tracking by detection’. The
classifier is typically trained with trans-
lated and scaled sample patches to learn
a representation of the target. It then
learns to predict the presence or ab-
sence of the target in an image patch.
This can be very computationally expen-
sive:

• In the training phase, the classifier
is trained online with samples col-
lected during tracking. Unfortu-
nately, the potentially large num-
ber of samples becomes a com-
putational burden, which directly
conflicts with real-time tracking
requirements. On the other hand,
limiting the samples may sacrifice
performance and accuracy.

• In the detection phase, similar to
other algorithms, the classifier is
tested on many candidate patches
to find the most likely location.
This is also very computationally
expensive and we encounter the
same problems as before.

KCF solves this by using some nice
mathematical properties in both train-
ing and detection. The first mathemati-
cal tool that KCF employs is the Fourier
transform - taking advantage of the con-
volution theorem. This states that the
convolution of two patches is equiva-
lent to an element-wise product in the
Fourier domain. So, formulating the ob-
jective in the Fourier domain can allow
us to specify the desired output of a

51

Figure 3: Top: Tomographic reconstruction of a system that is a constriction through which a liquid foam is flowing. Bottom: Tracking
results visualisation shown for the last frame of the volume sequence. The algorithm worked since it is still tracking the bubble in the last
frame.

linear classifier for several translated
image patches at once.

This isn’t the only benefit of the
Fourier transform because interestingly,
as we add more samples, the problem
acquires a circulant structure. A circu-
lant block matrix is a matrix that con-
tains all possible translations of the im-
age along its dimension. These matrices
contain a lot of redundant data, but only
the first row is actually needed to gener-
ate the matrix. These matrices also have
a really amazing mathematical property
as they are all made diagonal by the
Discrete Fourier Transform (DFT) - re-
gardless of the generating image. So,
by working in the Fourier domain, we
can avoid the expensive computation of
matrix multiplications because all these
matrices are diagonal and all operations
can be done element-wise on their diag-
onal elements.

Using these nice properties, we
can reduce the computational cost
from O(n3) to nearly linear O(n log n),
bounded by the DFT. The O(n3) com-
plexity comes from the Ridge regression
formula 2 that we need to solve to learn
a representation of the target:

w = (XTX + λI)−1XT y (2)

In other words, the goal of training
is to find a function f(z) = wT z that
minimises the square error over sam-
ples (which are the rows of the circu-
lant block matrix) and their regression
targets yi. This means finding the pa-
rameters w.

There is still one last step we can do
to improve the algorithm. We can use
the “kernel trick” to allow more power-
ful non-linear regression functions f(z).
This means moving the problem to a dif-
ferent set of variables (the dual space)
where the optimisation problem is still
linear. On the downside, this usually
means that evaluating f(z) typically
grows in complexity with the number of
samples. But we can also use all pre-
viously discussed properties with the
kernelised version of Ridge Regression
and obtain non-linear filters that are as
fast as linear correlation filters - both to
train and evaluate.

Results and Conclusions

The algorithms are tested and the re-
sults are shown for the data in Fig 3.
The reason I implemented two algo-
rithms is because while the 3D gener-
alisation of Medianflow worked with
a good tracking accuracy, its execution
time was problematic. Selecting a more
advanced and modern tracking algo-
rithm like KCF improved the perfor-
mance - achieving a ×100 speedup of
the program with the same tracking ac-
curacy. This didn’t leave me a lot of time
to dedicate to the parallelisation of the
algorithm. Using Bohrium with Medi-
anflow had positive results, achieving a
×8 speedup in certain parts of the algo-
rithm. But further work is needed with
KCF.

Nevertheless, this area of computer
vision, the field which deals with these

kinds of problems, is still at its begin-
ning. Only in the last few years has this
problem even come up and the compu-
tation required by the generalised al-
gorithms is only now possible thanks
to modern hardware capabilities. So it
was very exciting for me to work on this
challenging project!

References
1 Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas.

Forward-backward error: Automatic detection of
tracking failures. In Pattern Recognition (ICPR), 2010
20th International Conference on, pages 2756–2759.
IEEE, 2010.

2 Lucas, Bruce D., and Takeo Kanade. “An iterative
image registration technique with an application to
stereo vision.” (1981): 674-679.

3 Henriques, João F., et al. “High-speed tracking
with kernelized correlation filters.” IEEE Transactions
on Pattern Analysis and Machine Intelligence 37.3
(2015): 583-596.

PRACE SoHPC Project Title
Tracing in 4D data

PRACE SoHPC Site
Niels Bohr Institute, Denmark

PRACE SoHPC Author/Contact
Alessandro Marzo, University of
Bologna, Italy

PRACE SoHPC Mentor
Brian Vinter, UCPH, Denmark Alessandro Marzo

PRACE SoHPC Software applied
Bohrium

PRACE SoHPC More Information
bohrium.readthedocs.io

PRACE SoHPC Acknowledgement
I would like to thank my project mentors Brian Vinter
and Mads R. B. Kristensen for all the advice and
support they gave me. I would also like to thank all the
staff at NBI and PRACE.

PRACE SoHPC Project ID
1719

52

A parallel implementation of the algorithm for the
non-negative matrix trifactorization

Matrix Trifac-
torization
Jan Packhäuser

The aim of the Multitype Symmetric Non-negative Matrix Tri-Factorization (MSNNMTF) is to extract
information contained in multitype relational data sets, e.g. networks, that include both intertype and
intratype relationships. The large-scaled real data need to be arranged by efficient methods. Therefore,
this report explains a parallelised implementation of MSNNMTF based on two approaches using either
a fixed point method or a projected gradient method. Applications of the MSNNMTF can be found in
lots of fields, such as data science or biology.

In order to evaluate a multiple net-
work alignment one has to simulta-
neously decompose each network
matrix Ri into the product of three

matrix factors of lower dimensions. This
can be seen as a minimisation problem
in the following way:

min
N∑
i=1

||Ri −GSGT ||2

s.t. G ≥ 0, S = ST ,

whereRi ∈ Rn x n are squared network
matrices, Si ∈ Rk x k are also squared
matrices containing specific information
about the network i and G ∈ Rn x k is
shared across all single decompositions
and contains common information of all
networks. Throughout the whole report
|| · || denotes the Frobenius norm.

In Figure 1, the idea of the approach
is illustrated.

Figure 1: Idea of MSNNMTF

To solve this optimisation problem, we
first derive the Karush-Kuhn-Tucker

(KKT) conditions (see figure 2), and
apply iterative methods on the first or-
der condition. These iterative methods
will be the fixed point method on the
one hand and the projected gradient
method on the other hand. The follow-
ing four equations are the so called
KKT-conditions:

N∑
i=1

(
−2(RT

i GSi +RiGS
T
i) + 2(GSiG

TGST
i +GST

i G
TGSi)

)
− β = 0 (1)

GTRiG−GTGSiG
TG = 0 (2)

β,G ≥ 0 (3)

〈β,G〉 = 0 (4)

Figure 2: KKT-conditions

where β ∈ Rn x k is the dual variable
with regard to constraint G ≥ 0. We
assume that the matrices Ri are sym-
metric (these are not very restrictive
assumptions since the underlaying net-
works are undirected), therefore Si are
symmetric, too. The KKT conditions 1
to 2 imply that the Lagrangian function
is set to zero and conditions 3 to 4 are
called complementary conditions.

Which iterative methods could
be applied?

Fixed point method
Similar to,1 one can derive the follow-
ing update rules for the fixed point
method.

Si = (GTG)−1(GTRiG)(GTG)−1

Gij = Gij

√∑
i((RiGSi)

+
ij+(G(SiGTGSi)−)ij)

∑
i((RiGSi)

−
ij+(G(SiGTGSi)+)ij)

This results in the algorithm you can see
in Figure 3.
Projected gradient method
An alternative way to solve () is by alter-
nating G and {Si}. More precisely, we
solve the optimisation problem for fixed
G in variables {Si} and then the other
way around. This well-known nonlinear
optimisation approach is called Black
coordinate descent, see.2 The optimisa-
tion problem to compute {Si} for fixed
G is an unconstrained convex problem,
and due to convexity, we compute the

53

Fixed Point Method to solve ()

INPUT: Ri, k,G,MAXITER
count = 0
while count < MAXITER
for i = 1, . . . , N
Update Si

end (for)
Compute factor that is needed to update G
Update G
count ++
end (while)

Figure 3: Pseudocode to solve MSNNMTF with fixed point method

optimal solution using the following for-
mula:

Si = (GTG)−1(GTRiG)(G
TG)−1

The formula arises when setting the gra-
dient of the objective function to 0:

Instead, we have a non-convex con-
strained optimisation problem for fixed
{Si} with the constraint G ≥ 0. This
can be approximately solved using a
projected gradient method as suggested
in.3 Note, that the gradient of the objec-
tive function is

∇GF (G) = 4
N∑
i=1

(−RiGSi +GSiG
TGSi).

Hence, we obtain the following algo-
rithm (see Figure 4), to solve ().
Computing the step size α, one has to
consider f(α) = F (G + α · ∇GF (G))
and determine α ∈ [−1, 0.5] yielding
the smallest value of f. Calculating the
optimal α is expensive. Therefore, we
follow the approach to discretise the
interval [−1, 0.5] with a certain acute-
ness and take the best choice of α out
of this discrete interval. This results in
an imprecise output, but can be com-
puted much faster and can even be par-
allelised.

Implementation

The goal of this report is to present
a C++ parallel version of an existing
MATLAB code, which was developed
during my Summer of HPC project.
The steps that define the complexity
of the algorithm require solving two
systems of linear equations in a row for
each iteration, and each level i in both
methods. It is also pretty expensive
to compute the update factor for the
fixed point method where many matrix
multiplications are required. For the

projected gradient method, we have to
compute the gradient first before we
can update our G.
These steps can be easily parallelised
- splitting up parts of the whole com-
putation and either building the up-
date factors or the gradient within the
for-loop that computes Si. So, we ac-
cumulate everything in the for-loop
that can be calculated there and since
these calculations are independent,
we will assimilate them concurrently
using OpenMP. After this basic step,
the main potential of parallelisation is
already exploited for the fixed point
method. However, for the Projected
gradient method the computation of
the different discrete interval α can
still be parallelised. In a second step
we can think about how we could im-
prove the code further. Many matrix
multiplications are present which can
be parallelised.

The code is written in C++ using exter-
nal linear algebra libraries. The Eigen-
library is utilised throughout the whole
code. Not only to handle both sparse
matrices and dense matrices but also to
solve systems of linear equations.
A few challenges
Some time was spent to detect the right
linear algebra library. We decided to use
the Eigen-library because it is quite easy
and because it is uses efficient libraries
as backends itself - such as BLAS and
LAPACK. We know, that to gain perfor-
mance then it is best to avoid libraries
that are so called user-friendly, but one
must take into account that code also
needs to be legible for people who are
not familiar with programming.
First improvements
We experienced first improvements

once we used the Eigen library correctly.
This means that we used the correct ma-

trix formats throughout the code but es-
sentially we had to resolve aliasing per-
formance problems which are assumed
by the Eigen’s library at matrix multi-
plications by default. Specifically, alias-
ing means that the Eigen’s library evalu-
ates the product in a temporary matrix
which is assigned to the actual matrix
afterwards. This is necessary for a few
cases, but mostly we can abolish this
effort. This yields a considerable perfor-
mance improvement when processing
huge matrices.
More improvements
We used available Intel compiler li-

cences and this benefited us quite a lot
to use it and all compiler flags that come
along with it. We could even achieve
more performance utilising the Intel-
MKL while we combined it with the
Eigen-library. This works particularly
when you enable BLAS and LAPACK
as backends for the matrix multipli-
cations and decompositions. We also
linked it with OpenBLAS which is an
open-source optimized version of BLAS.
The Eigen-library automatically detects
that it can use the optimised version
instead of its customary version. From
now on, all matrix multiplications that
mainly occur inside for-loops were par-
allelised as well.

RESULTS

Comparison of RSE

In this section, we investigate the differ-
ence in convergency for both the FPM
and PGM. For this purpose, we generate
random sparse matrices Ri with a den-
sity of 5% and compute the final RSE
after 1000 iterations for different inner
dimensions k. In table 1 we present
numerical results that we obtained.

54

Projected Gradient Method to solve ()

INPUT: Ri, k,G,MAXITER
count = 0
while count < MAXITER
for i = 1, . . . , N
Update Si

end (for)
Compute step size α and gradient ∇GF (G)
Update G with G = G+ α · ∇GF (G)
G = max(G,0)
count ++
end (while)

Figure 4: Pseudocode to solve MSNNMTF with projected gradient method

n k RSE FPM RSE PGM
1000 5 0.945899 0.945645
1000 10 0.943787 0.940385
1000 20 0.939502 0.929871
1000 50 0.926201 0.897076
1000 100 0.894461 0.841111
1000 500 0.610505 0.400760
1000 999 0.001531 0.001531

Table 1: The table compares FPM and PGM.
It shows the value of RSE after 1000 itera-
tions for a fixed dimension n of 1000 and
for different dimensions k.

Figure 5: This figure compares the value of
RSE for both methods FPM and PGM at each
iteration.

Figure 5 shows that the fixed point
method converges much slower than
the projected gradient method.

Benchmark comparison

In this section we provide two different
benchmarks where we want to investi-
gate the impact of the different dimen-
sions. Firstly, we fix k = 20, N = 4 and
run the code for different dimensions n
while we measure the execution time.
Secondly, we fix n = 2000, N = 4 and

run the code for different dimensions
k. The results are visualised in the fol-
lowing figure in a double logarithmic
manner. In both cases the maximum
number of iterations was 500.

Figure 6: This figure shows the execution
time for both methods FPM and PGM for
different dimensions k.

Figure 7: This figure shows the execution
time for both methods FPM and PGM for
different dimensions n.

Of course, we also want to compare the
execution time between the C++ code
and the MATLAB code.

Figure 8: This figure shows the execution
time for the method FPM and compares the
C++- with the MATLAB-implementation.

Figure 9: This figure shows the execution
time for the method PGM and compares the
C++- with the MATLAB-implementation.

Conclusions

The approach to solve the Matrix-
Trifactorization with either the fixed
point method or the projected gradient
method work out quite well. However,
we have to point out that the FPM
converges much slower and sometimes
it does not even come as close to the
solution as the PGM. For reasons of
accuracy, we highly recommend the
usage of PGM instead of the FPM.

55

Figure 10: Multilayered networks
On the other side, we have to state that
the FPM iterates much faster than the
PGM as one can see in Figure 7. In
fact, we can read a linear dependency
out of the figure since the execution
time is plotted in a double logarithmic
manner and the shape of the graphs are
linear. More precisely, the difference in
the y-axis intercept reveals the factor
of speed gain whereas the gradient of
both lines point out the degree of the
polynomials. Therefore, FPM iterates
about 5 to 6 times faster than PGM for
an increasing dimension n (see Figure
7). Overall, the question of how one
can benefit from FPM arises. In practice,
it is a well-known approach in many
applications to use fixed point methods
as a preprocessor in order to find better
starting values.
Apart from that, we investigate, based
on the execution time, how much faster
the C++ implementation is compared
to the MATLAB-implementation for
both methods. In figures 8 and 9 we
can see that there is a huge difference.
Generally, the MATLAB-implementation
is about 20 times slower for FPM and
about 35 times slower for PGM. How-
ever, these results also depend on the
hardware. At LECAD we make use
of 24 cores of Intel Xeon E5-2680V3
processors with a clock rate of 2,5 GHz.

Future research

Of course, it would be interesting to pro-
cess the extracted information further
to the point of multilayered network
matrices (see Figure 10).

Different methods with more po-
tential

In the future, it would be interesting to
work on even more approaches to solve
the optimisation problem that occurs
in . There are methods that are more
eligible to be parallelised. Here, e.g., we
did not see the potential of using more
than one node. So, it could be possible
to implement hybrid implementations
for a few methods.

More constraints

Also, one could add more constraints to
the optimisation problem that occurs in
. We actually only took non-negativity
constraints for G into account but in
practice it is also often important to
force non-negativity for the matrices Si,
where the network related information
is saved.

More characteristics

In further investigations one could also
consider orthogonality constraints on

the matrix G.

Starting values

Since we have already noticed that the
behaviour of convergency and hence,
also the results, depend on the chosen
starting values for the matrixG it makes
sense to improve the choice of starting
points. Until now, we fill the starting
point matrix G purely random as we
make use of random number genera-
tors following an uniform distribution.
A more advanced approach could, for in-
stance, be to generate the starting point
matrix based on the solution of the sin-
gular value decomposition of the aver-
age network matrix.

References
20 Figueredo, A. J. and Wolf, P. S. A. (2009).

1 Fei Wang, Tao Li, and Changshui Zhang. Semi-
supervised clustering via matrix factorization. In SDM,
pages 1–12. SIAM,2008.

2 Dimitri P. Bertsekas. Nonlinear Programming. Athena
Scientific, Belmont, MA, 1999.

3 Chih-Jen Lin. Projected gradient methods for non-
negative matrix factorization. Neural computation,
19(10):2756–2779, 2007.

4 Janez Povh. Unpublished paper on nonnegative ma-
trix factorization. 2017.

PRACE SoHPCProject Title
A parallel algorithm for non-negative
matrix trifactorization

PRACE SoHPCSite
University of Ljubljana, Faculty of
mechanical engineering, Laboratory
LECAD, Slovenia

PRACE SoHPCAuthors
Jan Packhäuser, University of Ulm,
Germany

PRACE SoHPCMentor
Janez Povh, LECAD, Faculty of
mechanical engineering, University of
Ljubljana, Slovenia

Jan Packhäuser

PRACE SoHPCContact
Dr. Leon Kos, University of Ljubljana
E-mail: leon.kos@lecad.fs.uni-lj.si

PRACE SoHPCSoftware applied
C++, MATLAB, OpenBLAS, OpenMP, Eigen

PRACE SoHPCMore Information
HPC Prelog

PRACE SoHPCAcknowledgement
I would like to thank PRACE and the organisational
team of summer of HPC for this great summer
experience. Also, I want to express my gratitude to my
mentor Prof. Dr. Janez Povh and the summer of HPC
coordinator Dr. Leon Kos for giving me the opportunity
to learn and discover.

PRACE SoHPCProject ID
1720

56

A Python based utility for automating the
CAD defeaturing process

CAD Data
Extraction
for CFD
Paras Kumar

Geometry cleanup or defeaturing (i.e.,removal of unnecessary feature details like fillets,
chamfers, holes etc.) is an inevitable yet quite cumbersome sub-task of the CAD-CFD
process chain. This is usually carried out manually and is thus time consuming. The
project aims at developing a PythonOCC based utility to automate the process of CAD
data extraction.

Studying the flow of fluids can
help unravel the mystery be-
hind various physical phenom-
ena. Examples include flow of

air, water and blood around an aero-
plane, a ship and our blood vessels re-
spectively. On account of their math-
ematical and computational complex-
ity, problems of fluid mechanics al-
most invariably require the use of nu-
merical techniques for their solution.
The field of study dealing with numer-
ical solutions to fluid flow problems is
Computational Fluid Dynamics.

What is CAD?

Computer Aided Design is the techni-
cal discipline involving the application
of computers or supercomputers to the
design of products - ranging from your
cell phone to the wings of an aircraft.
This is much more viable, not only eco-
nomically but also in terms of time and
effort - when compared to the tradi-
tional approach of testing with physi-
cal prototypes. The CAD model also re-
ferred to as CAD Data or simply CAD,
contains the geometric details (amongst
others) of the product and is created
using CAD modelling software such as
SOLIDWORKS or OpenCASCADE.

CAD-CFD Process Chain

CAD data serves as starting point for
various computer based design valida-
tion techniques - known otherwise as
"simulation techniques including CFD".
The next step is CAD data extraction,
which involves removal of unwanted
features. This prepares the CAD data
for further processing. This is followed
by mesh generation and setting up the
simulation case by specifying the initial
and boundary conditions, system prop-
erties, solvers and control parameters to
be used for result output. All this, is col-
lectively termed as pre-processing and
transforms the problem into an equa-
tion system which is then solved to get
the results. The flow diagram in Figure 1
summarises the different steps involved
in a CFD analysis.

Figure 1: Usual CAD-CFD Process Chain

A SMALL Problem

As mentioned above, CAD data supplied
by the designer almost invariably con-
tains small details which are unneces-
sary for simulation. These include:

1. Small parts such as nuts, bolts,
screws

2. Intricate feature details such
Holes, Fillets, Chamfers

Including this data in numerical simu-
lations could lead to much complex or
even incorrect numerical models.

Geometry cleanup or defeaturing,
refers to the removal of these unwanted
intricate details and is one of the trick-
iest sub tasks in the process-chain. If
handled manually, this could be quite
cumbersome and time consuming.

57

Figure 2: Modified CAD-CFD Process Chain, with Geometry Cleanup Utility included

Proposed Solution
To ease and automate the process of de-
featuring, a utility (piece of software)
based on the Python programming lan-
guage has been developed. For deal-
ing with geometry, PythonOCC i.e., a
Python based implementation of the
OpenCASCADE library has been em-
ployed. The insertion of this utility into
the CAD-CFD process chain results in
the modified process chain as depicted
in Figure 2.

The Geometry Cleanup Utility

Figure 3: Defeaturing schematic description
of a plate as done within the Utility

The utility in its present state provides
the user with the following functionali-
ties:

1. Removal of small parts with vol-
ume below a specified threshold

2. Removal of holes with radii less
than a specified value

3. Removal of fillets (edge fillets
only) with radii less than a speci-
fied value

The process is explained in a schematic
manner for the example of a plate as
depicted in Figure 3.

Classification of Fillets

Fillet is a rounding of the sharp edges
of a component. For the purpose of de-
featuring, a classification based on the
rounding done at the end of the edge
forming the fillet has been employed.

The classes currently handled by the
utility include:

1. Isolated Edge Fillet - IEF

2. Single Connected Edge Fillet -
SCEF

3. Double connected Edge Fillet -
DCEF

Figure 4: Different types of fillets (IEF,
SCEF, DCEF)

Different types of fillets along with
the corresponding defeatured models
are shown in Figure 4 and Figure 5.

Figure 5: Defeatured model for different
types of fillets (IEF, SCEF, DCEF)

References

1 PythonOCC Documentation https://github.
com/tpaviot/pythonocc

2 Opencascade Reference Manual https:
//www.opencascade.com/doc/occt-6.9.
0/refman/html/index.html

PRACE SoHPC Project Title
CAD Data Extraction for CFD
Simulation

PRACE SoHPC Site
University of Ljubljana, Slovenia

PRACE SoHPC Authors
Paras Kumar, [University of
Erlangen-Nuremberg,] Germany

PRACE SoHPC Mentor
Dr. Marijo Telenta, LECAD Lab,
Univeristy of Ljubljana, Slovenia Paras Kumar

PRACE SoHPC Contact
Paras Kumar, University of Erlangen-Nuremberg
Phone: +49 176 37797745
E-mail: paras.kumar@fau.de

PRACE SoHPC Software applied
PythonOCC, Pycharm

PRACE SoHPC More Information
www.pythonocc.org, www.jetbrains.com/pycharm/,

PRACE SoHPC Acknowledgement
Heartfelt thanks to Dr. Marijo Telenta and Dr. Leon Kos
(site coordinator) for their continuous support and
guidance during the project tenure.

PRACE SoHPC Project ID
1721

58

 www.summerofhpc.prace-ri.eu

	(MC)2MI for matrix computations
	Learning to move crowds
	Bridging the gap between HPC and Big Data
	Modelling Nanotubes in Parallel
	Visualising HPC System's Load
	Viewing the Mediterranean Sea
	Python based Well-Log Correlation application
	Weather forecasting for SoHPC
	HPC Usage Data
	Climate Change Visualising
	Metadata Extraction from Climate Simulations
	El Niño around the world
	Radiosity in Computer Graphics
	Skeletal Motion Tracking
	Go! Data Visualisation
	Cude colors on phine grid
	Portable GPU code for FMM
	Accelerating climate kernels for SoHPC
	Tracing in 4D data for SoHPC
	Matrix Trifactorization
	CAD data extraction for CFD Simulation

