
summerofhpc.prace-ri.eu

2018

A long hot summer is time for a break,
right? Not necessarily! PRACE Summer of
HPC 2018 reports by participants are here.

HPC in the
summer?
Leon Kos

There is no such thing as lazy
summer. At least not for the 23
participants and their mentors at 10
PRACE HPC sites.

S ummer of HPC is a PRACE programme that offers
university students the opportunity to spend two
months in the summer at HPC centres across Europe.
The students work using HPC resources on projects

that are related to PRACE work with the goal to produce a
visualisation or a video.

This year, training week was in Ostrava and it seems to
have been the best training week yet! From MPI to Vector-
ization and good food, the week was a blast! It was a great
start to Summer of HPC and set us up to have an amazing
summer!

At the end of the summer videos were created and are
available on Youtube as PRACE Summer of HPC 2018 pre-
sentations playlist. Together with the following articles inter-
esting code and results are available. Dozens of blog posts
were created as well.

At the end of the activity, every year two projects out
of the 23 participants are selected and awarded for their
outstanding performance. The winners of this year, Conor
O’Mara and Sukhminder Singh, presented their experience at
the award ceremony in Jülich Supercomputing Centre (JSC),
Germany.

Therefore, I invite you to look at the articles and visit the
web pages for details and experience the fun we had this
year.

What can I say at the end of this wonderful summer.
Really, autumn will be wonderful too. Don’t forget to smile!

Contents

1 Partitioning for the parallel solution of PDEs 3
2 Automatic Frequency Scaling 6
3 Resource Simulator for SoHPC 9
4 Get More Throughput Resize Me! 11
5 Lattice QCD simulations on GPUs 13
6 Vectorizing the Multigrid Solver 15
7 Band structure with MPI 17
8 Machine Learning from HPC perspective 19
9 Instant visualisation of CFD data with OpenFOAM 23
10 Visualising HPC System’s Power 26
11 Data streaming for IoT 29
12 Job Scheduling Simulator for HPC 33
13 Visualising Computations on a mini supercom-

puter 37
14 Simulating the effects of an oncogenic mutation 40
15 Portable ABySS Sequence Assembler 44
16 Graphene Models in HPC 47
17 Effects of GPU abuse on FMM performance 49
18 Scaling the Neural Net 52
19 Optimisation of quantum internet simulator 54
20 RHadoop on the trial of radiation clusters 57
21 Visualization of nuclear fusion HPC data 59

PRACE SoHPC2018 Coordinator
Leon Kos, University of Ljubljana
Phone: +386 4771 436 E-mail: leon.kos@lecad.fs.uni-lj.si

PRACE SoHPCMore Information
http://summerofhpc.prace-ri.eu Leon Kos

2

https://www.youtube.com/watch?v=Oh6OSMfxeEQ&list=PLhpKvYInDmFXUyp_pWBM-h1NCD6GEUfgp
https://www.youtube.com/watch?v=Oh6OSMfxeEQ&list=PLhpKvYInDmFXUyp_pWBM-h1NCD6GEUfgp
https://summerofhpc.prace-ri.eu/blogs-2018/
http://www.prace-ri.eu/prace-summer-of-hpc-2018-award-ceremony-at-julich-supercomputing-centre/
mailto:leon.kos@lecad.si
http://summerofhpc.prace-ri.eu

Testing different types of methods for mesh
partitioning for the solver of the parallel
PDE systems.

Partitioning
for the
parallel
solution of
PDEs
Wojciech Laskowski

The goal of the project is to compare
different mesh partitioning methods
for the iterative solver and measure
their performance with respect to
solver efficiency, parallel efficiency
and computational time.

The practical goal of the project
is to speed up Finite Element
Method simulations through
analysis of the iterative solver

performance. Only one, particular piece
of the big FEM engine is analysed: influ-
ence of the type of mesh partitioning on
the iterative strategy performance. The
project investigates one iterative solver
- the Deflated Conjugate Gradient, but
the methods can be also used for other
solvers that benefit from subdomain
division. In total, 3 different methods
have been tested. Comparison of those
methods and other results of the differ-
ent group number performance in large
parallel environment are visually pre-
sented at the end of the report.

Before we get to the point and take a
closer look at the methods, let’s make a

short introduction to FEM and iterative
solvers.

Background theory

The Finite Element Method (FEM), in
a nutshell is a numerical tool for solv-
ing a physical problem. How does it
work? It’s quite simple. First, we need
know the mathematical formulation of
the given problem, which is most likely
described by a Partial Differential Equa-
tion (PDE). Then, we can discretize the
PDE system on the problem’s geome-
try by splitting it to a couple (or a
greater number of) elements. The main
graphic nicely shows a discretized ge-
ometry (which is often called a mesh).
After we input some initial condition on

the boundaries, the problem is ready
to be solved. How can we solve it? Ev-
ery vertex of the mesh symbolises one
unknown of the linear system of equa-
tions, so we can gather all of the nodes
(unknowns) and put them in the very
popular formulation

Ax = b

where A is a matrix of size NxN and
the vectors x and b are size Nx1. N rep-
resents the number of nodes in the mesh
or unknowns in the equation system.

We could solve the equations using
some of the direct methods (e.g. very
popular LU factorisation), but for really
big systems it can take a very long time
to solve. Iterative solvers come in handy
in this situation. In short, an iterative

3

solver is a sequence of recurring matrix-
vector or matrix-matrix operations that
will lead to the final solution. Let’s take
a look at the equation:

xm+1 = xm +Br

By assembling a matrix B and some
initial guess xm, we can compute the
next approximation xm+1, which will
be closer to the desired solution. r =
b − Axm is a residual. Residual or its
norm is usually a very good indicator
on how far we are from the exact solu-
tion and is actually known as a stopping
criterion of the iterative strategy. The
figure below depicts how the residual
should behave with every iteration step
m.

1 1.5 2 2.5 3 3.5 4

iteration

10
-3

10
-2

10
-1

10
0

re
s
id

u
a
l

The solver

There are many iterative solvers for
different applications. During the sum-
mer, only one specific solver was investi-
gated - the Deflated Conjugate Gradient
(DCG). Without getting into details, the
DCG solver uses a coarse grid correction
to speed up the convergence process, i.e.
it solves a coarse system of equations
directly and uses it to dump the low fre-
quency errors on the fine grid (for de-
tailed description of the method see.1).
Coarse grid means the same PDE system,
on the same geometry, but with lower
accuracy. The mesh is divided into a
fewer number, but bigger elements. This
can be seen in the visualisation below,
where the grid on the right represents
an exemplary original mesh, and the
grid on the right is a coarse grid.

A coarse grid is chosen by the arbi-
trary number of groups the mesh is split

into. The greater the number of groups,
the finer the coarse grid becomes. For
example, if we divide the mesh into
a number of groups equal to the to-
tal number of elements, the coarse sys-
tem would become the same as a "nor-
mal" system and it would converge in
only 1 iteration, since we have already
provided a direct solution to our sys-
tem. Likewise, dividing the mesh using
only one group means using only one
element for the whole geometry. Simi-
larly, coarse grids of the same number
of groups can look completely differ-
ently through different splitting. There-
fore, we reach the main objective of the
project - investigating the role that the
quantity of groups and the division strat-
egy play in the solver.

Methods

In total, 3 methods have been tested.
The first method, purely base on ge-
ometry on the model is called Frontal
Approach. We start with a first node
of the first element and slowly assign
each node to one group. The algorithm
detects neighbours and put them in
the front - neighbouring nodes are first
in line to be assigned in the group.
When we are done with one element,
we go through neighbouring elements.
Once we reach the required number
of nodes per group, we simply close
the first group and proceed with the
algorithm, but now, we are picking the
nodes for our second group. This goes
on until all of the nodes are assigned
and groups filled. The graphic below
presents how the method works. Node
number 1 starts, and from there, the
first front of neighbouring elements is
detected.

1

I

II

III
IV

The second method is called Space
Filling Curve (SFC). It is also based on
the geometry of the model, but in a
slightly different way. To do SFC par-
titioning, we need to take a rectangular
grid, called "bin" and then, embed our
geometry into the bin. We can then fill
the bin with its own elements and tie
them to the original mesh elements. We
divide the elements on the new rect-

angular mesh. The idea of SFC is to
explicitly coarse all the two and three-
dimensional cases to 1D. We start at
an arbitrary point and go through all
the points, one by one, creating a con-
tinuous line throughout the mesh. The
rule of how elements are assigned to a
group is just the same as in the Frontal
Approach - once we fill out one group,
we carry on with the elements and start
another.

The last method, called Matrix Based
tries to reproduce the Frontal Approach
method, but without geometry. Instead,
we use the matrix, more precisely, one
very important property of the matrix
that connects elements to each other.
Each node has its own, unique num-
ber, which represents one row in the
linear system of equations. And each
entry in that row represents a connec-
tion between nodes. For example, if we
take node number 1, with neighbours
number 2, 4 and 5, it corresponds to
the first row of the matrix with entries
in the 1st, 2nd, 4th and 5th column of
the row. Assigning the nodes to a group
works exactly the same as in the Frontal
Approach - we start at node 1, go trough
neighbours, then through neighbours of
neighbours and so on until every single
group has a right number of nodes.

x
x

x
x

x
x

x
x

x
x

x

x
x

x

x

x x
x
x

x
x

x
x x x

x
x
x

x

x
x

x x
x

x

x
x

x x
x

1

2

3

5

4

6

1

2

3

5

4

6

x
x

1 2 3 54 6

7

9

8

10

11

12

13

14

16

15

7 8 9 1110 12 13 14 15 16

7
8

9

10

11

12

13

14

15

16

x x

x
x

x
x

x
x

x

x x

x

x

x

x
x

x

x

x
x x

x

x
x

x

x
x x x

x
x

x

x
x x x

x
x x x

x

x

Results

All of the methods were tested on a res-
piratory tract case, simulated by almost
18 million elements (the leading graph-
ics presents the case). The methods are
compared with respect to the number of
iterations needed to obtain the solution
within a chosen tolerance. It is worth
noting that number of iterations is not
the most important factor from the engi-
neering point of view. After all, the goal

4

0 500 1000 1500 2000 2500 3000 3500

of groups

2200

2400

2600

2800

3000

3200

3400

it
er

at
io

n
 c

o
u

n
t

frontal

matrix-based

SFC

Comparison of all 3 methods.

10
1

10
2

10
3

10
4

10
5

groups

10
0

10
1

10
2

10
3

T
o

ta
l

co
m

p
u

ta
ti

o
n

al
 t

im
e

o
f

th
e

so
lv

er
 [

s]

192 proc.

384 proc.

768 proc.

1536 proc.

0 200 400 600 800 1000 1200 1400 1600

of proc.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ar

al
le

l
ef

fi
ci

en
cy

24 gropus

48 gropus

192 gropus

384 gropus

768 gropus

1536 gropus

3072 gropus

6144 gropus

24576 gropus

98304 gropus

Efficiency plots of the Frontal Approach method.

of an iterative solver is to solve the prob-
lem fast, thus time would be the most
representative component of all. But on
the other hand, algorithmic scalability
directly represents theoretical features
of the solver, which is the essential part
from the developer perspective and it
has a direct impact on the time to solu-
tion as well. Additionally, if two meth-
ods are compared in the same environ-
ment (same solver "engine"), the num-
ber of iterations and time to solve are
strictly bounded to each other.

From the methods tested, the frontal
approach gives the best results. The to-
tal iteration number decreases faster
with respect to number of groups, which
is exactly the behaviour we wanted to
see. SFC is slightly slower, but still per-
forms quite well when compared to the
Matrix Based method.

Finally, let’s take a look at how
the Frontal method performs on vari-
ous number of processes. A computa-

tional time plot in respect to the groups
clearly indicates that the "sweet spot"
for fast computation is from 1000 to
10000 groups. Above that number, the
influence of parallel communication be-
comes too big. This can also be observed
on parallel efficiency plot. Lower group
numbers hold on to their efficiency, but
big numbers loose their efficiency al-
most immediately.

Outlook

The project may be a base for further
study on the topic. Making the same test
on different types of physical problems
and geometries would give more data to
analyse. Also, it is possible to enhance
the Matrix Based method, which per-
formed rather poorly in the test. Putting
some more enforcing conditions in or-
der to strengthen connection between
nodes would make the groups more co-

herent, which will very likely result in a
better convergence.

References
1 Rainald Löhner, Fernando Mut, Juan Raul Cebral, Ro-

main Aubry, Guillaume Houzeaux (2011). Deflated
preconditioned conjugate gradient solvers for the
pressure-Poisson equation: Extensions and improve-
ments

PRACE SoHPCProject Title
Adaptive multi-partitioning for the
parallel solution of PDEs

PRACE SoHPCSite
Barcelona Supercomputing Center,
Spain

PRACE SoHPCAuthors
Wojciech Laskowski, [Technical
University of Denmark,] Denmark

PRACE SoHPCMentor
Ricard Borrell and Guillaume
Houzeaux, BSC, Spain Wojciech Laskowski

PRACE SoHPCSoftware applied
Alya

PRACE SoHPCProject ID
1801

5

Automatic Frequency Scaling for Embedded
Co-processor Acceleration

Automatic
Frequency
Scaling
Zheqi Yu

The project will design and use artificial
intelligence methods to find the most
appropriate performance and energy ratio
in the hardware to contribute to the
planet’s energy saving.

This will be an optimisation at-
tempt for low-power hardware,
and efforts will be made for the
energy conservation and envi-

ronmental protection of the earth. The
narrow concept of energy saving is out-
dated. For hardware, lower power con-
sumption requires energy efficiency, be-
cause it will cause a program to run
slower and need more time to finish a
process. The goal is to find a balance be-
tween energy consumption and perfor-
mance, and then dynamically adjust the
frequency for different applications to
become more energy-efficient. Today’s
artificial intelligence computing is be-
coming more and more popular, and
it now has powerful analysis and logic
capabilities. We will use machine learn-
ing algorithms to analyse our dynamic
voltage frequency scaling data, obtained
from the Nvidia Jetson TX1 chip, for dif-
ferent applications. We will design an
operation mode that can balance the en-
ergy consumption and performance, to
dynamically adjust for different appli-
cations on the Nvidia Jetson TX1 chip,
thus finally completing the exploration
of chip energy saving. The algorithm
we designed will be validated on the
Nvidia Jetson TX1 board to find the best

performance and energy balance when
running different programs. This work
can be extended to different hardware
to help them achieve better energy sav-
ings without affecting performance.

Dynamic Voltage Frequency
Scaling (DVFS)

Dynamic Voltage Frequency Regulation
is an emerging and generally popular
approach to improve the energy effi-
ciency of computing systems. It uses
a frequency regulator to adjust the
voltage and frequency levels used to
complete the current task. But the
mechanisms used to control frequency
changes are too linear, which leads to
inefficient energy consumption across
the system [1]. On low-power embed-
ded system platform such as the NVIDIA
Jetson TX1, this problem becomes more
and more prominent. More frequency
options will cause an enormous num-
ber of CPU and GPU frequency combi-
nations, which makes it impossible to
conduct a brute force search for optimal
points for energy [2].

Methodology

The method of this project are mainly
divided into three parts:

• Part One: Use own power monitor
functions to collect the running
data of applications, and use the
profiling method to analyse the
internal operations of the corre-
sponding application.

• Part Two: Use the Kmeans al-
gorithm from unsupervised ma-
chine learning to classify the col-
lected frequency and energy con-
sumption data to obtain positive
and negative samples as a train-
ing dataset (positive samples are
the optimal balance between fre-
quency and energy consumption).

• Part Three: Use the previously ex-
tracted dataset to train a random
forest algorithm and get the classi-
fier. After we capture the new pro-
gram frequency information into
the random forest algorithm, it
will output whether the current
running frequency is the optimal
setting of the program for optimal
frequency and energy consump-
tion balance. We can use this re-
sult as a credential that decides

6

to modify or maintain the current
frequency.

Kmeans unsupervised learning for
dataset classification
The Kmeans algorithm is a process for
repeating centre points of a multiple
class dataset, also called the centre
point of class as a centroid, and then
re-dividing its containing classes to the
average position [3]. The cluster data
is divided into N sets of independent
data. The sample is such that the vari-
ances between the N sets of clusters are
equal, mathematically described as min-
imising inertia or the sum of squares
within the cluster. N is the hyperpa-
rameter calculated by the algorithm,
indicating the number of classes. The
Kmeans algorithm can automatically al-
locate samples to different classes, but
cannot decide whether to divide them
into several classes. N must be a posi-
tive integer smaller than the number of
samples in the training set. Sometimes
the number of classes is specified by the
content of the question. Therefore, the
disadvantage of this algorithm is that
it is necessary to determine the num-
ber of classes (N) for the data cluster in
advance.

Due to our power monitor function,
we can capture the following informa-
tion in the hardware: timestamp (ms),
total power (W), GPU power (W), CPU
power (W), CPU0 freq (kHz), CPU1
freq (kHz), CPU2 freq (kHz), CPU3 freq
(kHz), GPU freq (kHz). We chose 4 CPU
frequencies and 13 GPU frequencies in
the test and fixed the 4 CPU cores in
the same frequency to avoid model er-
rors for different energy consumption
of different frequency.

Finally, we set the N parameter of
the Kmeans algorithm to 13 by the GPU
frequency steps, and each cluster class
results are shown in the following: First,
we manually extract the average loca-
tion class as a positive dataset, and then
choose the first and last class as a neg-
ative dataset as training data for the
Random Forest algorithm.
Random Forest as a classifier to estimate
currently frequency
Random forest is a non-traditional ma-

chine learning algorithm and is a classi-
fier that uses multiple decision trees to
train and predict samples. Each decision
tree processes a subset of training sam-
ples. In the training phase, the features
are filtered by the node splitting of the
decision tree, and the samples are sub-
divided until the subset of each training

sample is correctly classified [4].
For each decision tree, the train-

ing subset uses a back-sampled method
from the whole training set, which
means that some samples in the whole
training set may appear in the training
subset of a decision tree multiple times,
or may never appear in the training sub-
set of a decision tree. When training
nodes of each decision tree, the fea-
tures used are randomly extracted from
whole features by a given proportion. In
the test phase, the samples are classified
directly based on the trained features,
so the test speed is faster (by compari-
son that training slower than test).

Because of the fixed point calcula-
tion request of random forests, we need
to classify different values as a differ-
ent hierarchy before the frequency and
energy data are input into the random
forest algorithm. For example, the CPU
and GPU are divided into 4 and 13 lev-
els based on their different frequency
steps. In this way, the algorithm will
eventually get 52 different CPU and
GPU frequency combinations. In the test
phase, the classifier will judge whether
the newly collected frequency combina-
tion output is suitable for the current
program based on the trained data.

Results

We use the power monitor function to
collect hardware information of Stream
Compaction (SC). It performs a filtering,
which is a data manipulation primitive
that removes elements from an array,
keeping those satisfying a certain predi-
cate [5].

Figure 1 is the original data we
collected on the energy consumption
and frequency information for the pro-
gram. The table drawn by the data
shows a linear relationship, which can-
not distinguish datasets as positive and
negative samples.

Figure 1: Line chart for original collected
power monitor data

Figure 2 shows the classification
information obtained after clustering
analysis by Kmeans algorithm. We used

N=13 for classification to get the range
and corresponding samples of each
class.

Figure 2: Kmeans algorithm for cluster anal-
ysis of 13 classes

Figure 3 shows the result of the new
power monitor information input as a
test after the random forest training. "-"
means the wrong frequency selection of
application. "+" represents the current
frequency combination is good, which
ensures the program running at the bal-
ance point of optimal performance and
energy consumption.

Figure 3: Random Forest algorithm to eval-
uate frequency state and output

Discussion & Conclusion

The current work has been able to judge
the current frequency of the matching
application, which can help the hard-
ware to better select the appropriate
frequency to a processing program, and
finally to ensure energy-saving that the
hardware can complete the task with
the best energy consumption. We chose
sufficient frequency steps to collect data,
and then find the best balance point
after getting their frequency combina-
tion. In the future, we will combine the
completed random forest algorithm on

7

the power monitor function and give
the kernel control permission to dynam-
ically carry out frequency scaling, so it
can get the balance between the opti-
mal energy consumption and frequency
of the current task faster. This can help
for the improvement of unknown new
programs that can be used for profil-
ing data to analyse the internal oper-
ational relevance of the program. The
existing training data to predict and ad-
just the frequency of new procedures
can be used to achieve intelligent and
comprehensive energy-saving purposes.

References
1 K. Rao, J. Wang, S. Yalamanchili, Y. Wardi, and Y.

Handong, (2017). Application-Specific Performance-
Aware Energy Optimization on Android Mobile De-
vices.

2 Baruah, T., Sun, Y., Dong, S., Kaeli, D. and Rubin,
(2018). Airavat: Improving Energy Efficiency of Het-
erogeneous Applications.

3 Celebi, M.E., Kingravi, H.A. and Vela, P.A., (2013). A
comparative study of efficient initialization methods
for the k-means clustering algorithm.

4 Mendoza, M.R., da Fonseca, G.C., Loss-Morais, G.,
Alves, R., Margis, R. and Bazzan, A.L., (2013). RFMir-
Target: predicting human microRNA target genes with
a random forest classifier.

5 Gómez-Luna, J., El Hajj, I., Chang, L.W., García-
Floreszx, V., de Gonzalo, S.G., Jablin, T.B., Pena, A.J.
and Hwu, W.M., (2017). Chai: collaborative heteroge-
neous applications for integrated-architectures.

PRACE SoHPCProject Title
Automatic Frequency Scaling for
Embedded Co-processor Acceleration

PRACE SoHPCSite
Barcelona Supercomputing Centre,
Spain

PRACE SoHPCAuthors
Zheqi Yu, [University of
Wolverhampton,] UK

PRACE SoHPCMentor
Antonio J. Pena, BSC, Spain Zheqi Yu

PRACE SoHPCContact
Zheqi, Yu, University of Wolverhampton
Phone: +44 754 749 5720
E-mail: z.yu@wlv.ac.uk

PRACE SoHPCSoftware applied
Microsoft Visual Studio

PRACE SoHPCAcknowledgement
Filippo Mantovani, BSC, Spain
Marc Jorda, BSC, Spain

PRACE SoHPCProject ID
1802

8

HPC on a single-core machine. Is it possible ?

Resource
Simulator for
SoHPC
Klajdi Bodurri

The purpose of this project is exploring malleability in HPC by developing a simulator
that executes a workload. By tuning different reconfiguration policies, we can
determine the best configuration for fulfilling a given target without running the
workload on an actual system.

In HPC facilities, many applications
run concurrently and compete for
the same resources. Applications
request for resources from the re-

source manager in order to run. From
this, we can understand that the re-
source manager plays a vital role in
global throughput of the system and
resource utilisation. The resource man-
ager fulfills the requests of the appli-
cations by following a specific policy.
Therefore, by changing the policy, we
can see a total different behaviour in
the throughput, resource utilisation and
even in the total execution time of the
system.

We should explain first what an ap-
plication is. An application in our case,
is nothing more than a piece of code
which executes a computation. Appli-
cations also have some characteristics.
One of these is malleability. Malleabil-
ity is the ability to dynamically change
the number of computational entities in
an application. Accordingly, we can un-
derstand that even if an application re-
quests an amount of resources that can-
not be delivered by the resource man-
ager, the application can still run with
less resources instead of remaining idle.
The trade-off here is that the application
will run slower.

Consequently, the resource manager
is very important for the distribution of

resources to applications. What if the re-
source manager could exploit also mal-
leability of applications by using a spe-
cific policy for malleability? This is ex-
actly what this project is about. Giving a
workload (malleable and non-malleable
applications) as input to the simulator
and by trying different reconfiguration
policies of the resource manager, we can
determine the best configuration with-
out even running the workload in any
HPC facility. We can even test different
policies in a single-core system.

Implementation

From now on, we will refer to applica-
tions as jobs and when we say resources,
we mean computational entities (CPUs
or GPUs). To better understand the im-
plementation, let’s break the applica-
tion into states. Each application has
3 states:

• Submit state. In this state, the job
asks for resources from resource
manager (’submit’ its request) and
waits for the resources. The job
can ask for a specific number of
resources or can give the oppor-
tunity to the resource manager
to decide based on the minimum
and maximum resources the job
needs to run.

• Init state. In this state, the job has
some resources for itself, so it has
to initialise those resources for the
computation to start. This state is
for simulating this initialisation.

• Reconfiguration state. This state
is the heart of the simulation and
is nothing more than a loop that
runs n times based on the itera-
tions the job needs to complete
the computation. The configura-
tion state can be broken into 2
pieces. The first one is the simula-
tion of the computation time per
iteration. The second one is every
time period the job asks from the
resource manager an action:

– Action EXPAND: The re-
source manager decides to
increase the number of re-
sources for a job.

– Action SHRINK: The re-
source manager decides to
decrease the number of re-
sources for a job.

– Action NONE: The number
of resources for a job remain
the same.

Since the computation is dis-
tributed among the computa-
tional entities (resources), if the

9

(1) The workflow of a job (2) Architecture of the simulator

job decides to shrink or to expand,
it has to send data over the net-
work in order for the computation
to continue. For more information,
please see Figure 1.

Architecture of the simulator

The simulator has 3 modules. The first
one is called sim module and it is in
charge of initialising the simulator by
reading 2 configuration files. These two
files keep the information of the infras-
tructure of the HPC facility that we
want to simulate and of course the infor-
mation of the workload. After reading
these 2 files, the sim module creates the
jobs.

The second module is called
JobEvent which describes the func-
tionality of a job. As described earlier,
each job has 3 states. Submit, Init and
Reconfiguration. The Submit and Re-
configuration states are connected with
the third and final module which is the
Resource Manager.

The Resource Manager is in charge
of handling the requests of the jobs by
providing 3 functionalities. The func-
tionalities are Allocation, Deallocation
and Reallocation of the resources. The
malleability policy is hidden in the Re-
allocation functionality (Figure 2).

An Example

Now that we know how the simulator
works, we can understand its purpose
by an example. Let’s assume that we
have a workload of 100 jobs. We want
to determine which configuration pol-
icy is the best for the current workload.
The simulator supports 2 policies at the
moment.

The output by running the workload
with the one of the two policies.

• Total execution time: 4356 sec-
onds.

• Maximum throughput: 16

• Average throughput: 15

The output by running the workload
with the other policy.

• Total execution time: 4994 sec-
onds.

• Maximum throughput: 4

• Average throughput: 3

Conclusion

In conclusion, for someone who wants
to see the behaviour of a policy that
exploits malleability or even compare

different policies, it is faster and easier
to get results from the simulator than
running the policies in the HPC system
directly. In the above example, it took
30 seconds to see which policy is bet-
ter for a given workload. In an actual
system, it would have taken 2-3 hours.

References
1 Sergio Iserte, Rafael Mayo, Enrique S. Quintana-Orti,

Vicenç Beltran, Antonio J. Peña. Efficient Scalable
Computing through Flexible Applications and Adap-
tive Workloads.

PRACE SoHPCProject Title
Dynamic management of resources
simulator

PRACE SoHPCSite
Universitat Jaume I, Castelló de la
Plana, Spain

PRACE SoHPCAuthors
Klajdi Bodurri, [University of Thessaly,]
Greece

PRACE SoHPCMentor
Sergio Iserte, Universitat Jaume I,
Spain

PRACE SoHPCContact
Klajdi, Bodurri, University of Thessaly
Phone: +30 698 2946 137
E-mail: klajdibodurri@gmail.com

PRACE SoHPCSoftware applied
Python2.7 SimPy

PRACE SoHPCMore Information
http://simpy.readthedocs.io/en/latest/

PRACE SoHPCProject ID
1803

10

A case of study: LAMMPS Malleable

Get More
Throughput
Resize Me!
Sukhminder Singh

Malleable jobs can enhance the
throughput of supercomputing clusters and
reduce the turn-around time. In this study,
we show the complexity and benefits of
converting a popular molecular dynamics
code LAMMPS to make it malleable.

Job malleability is a term being
used in HPC which has the poten-
tial to increase the productivity of
a cluster. The primary motivation

for high-end supercomputers is applica-
tions requiring thousands of compute
cores, with data structures distributed
across a large aggregate memory, and
with relatively high inter-process com-
munication requirements. One draw-
back of the existing cluster schedulers
is that they are ‘static’, i.e., once a job
is allocated a set of nodes, it contin-
ues to use them until execution is fin-
ished. A malleable application can dy-
namically adapt its parallelism to the
number of processes it has been allo-
cated to, depending upon the cluster
workload. Having malleable jobs run-
ning on a supercomputer cluster, is ex-
pected to increase the throughput of
the cluster as well as decrease the turn-
around time of the submitted jobs.

This project aims to study the
particular case of using DMRlib, a
Dynamic Management of Resources
library, to generate a malleable
version of LAMMPS (Large-scale
Atomic/Molecular Massively Parallel
Simulator).

Overview of LAMMPS code

LAMMPS works by decomposing the do-
main and distributes the information
of particles among all the processes.
Neighbour lists are used for efficient
computation of the forces. The infor-
mation related to the particles such as
positions, velocities, masses, etc. are
stored in structures of arrays form. The
code comes with an in-built checkpoint-
restart functionality for fault tolerance.

DMRlib applied to LAMMPS

A dynamic reconfiguration system relies
on resource management system (RMS)
which inspects the global status of the
cluster and takes decisions regarding
the resizing actions. The RMS is aware
of the queue of pending jobs and the
current utilisation of the cluster. At the
beginning of each integration iteration,
the application calls the function macro
DMR_RECONFIG which then informs
the RMS that resizing can be performed.
The RMS then responds whether a resiz-
ing action, either expand or shrink, can
be taken. If there is an action, then new
processes are spawned with the desired
size. User defined functions are called to

create a new instance of LAMMPS and
transfer the data. If there is no action,
then the application continues with the
iteration with the same number of pro-
cesses. The minimum, maximum and
preferred number of processes are spec-
ified in the beginning of the simulation.

Dynamic Resizing using File-
Based Check-pointing

The already available file-based
checkpoint-restart functionality in
LAMMPS makes the implementation
quite simple. If a resize action needs
to be taken, then all the processes
write their restart data on disk. A new
LAMMPS instance is created with the
newly spawned processes, which then
reads the restart files and continues
executing the simulation from where it
was stopped in the old processes. This
way, there is no need to take care about
data management as everything is done
internally by LAMMPS.

11

Dynamic Resizing Using MPI
Data Transfers

Another way of doing the dynamic
reconfiguration is by transferring the
data of particles between the parent
group and the child group of processes
through an MPI inter-communicator.
Additional functions were added in
LAMMPS to send the data from the old
processes and receive the data in the
newly spawned processes. Since there
is uncertainty in knowing the exact rank
to which a particle belongs in the new
processes, a redistribution of particles is
carried out after receiving all the data.
New neighbour lists are created and
the simulation continues from the point
where it was stopped in the old pro-
cesses.

Rank 1

Rank 2

Rank 3

Rank 1

Rank 2

Rank 3

DMR Intercomm
Rank 4

Rank 5

Rank 6

MPI_Send

MPI_Send

MPI_Send

MPI_Recv

MPI_Recv

MPI_Recv

Parent Processes Child Processes

Rank 1

Rank 2

Rank 3

Rank 4

Rank 5

Rank 6

Child Processes

MPI_COMM_WORLD

Figure 1: Flow chart describing data transfers from the parent processes to the child
processes through an inter-communicator and then redistributing the data to correct
processes.

Experimental Results

Experiments were done to compare
the timings of MPI based dynamic re-
configurations to the file-based check-
pointing.

0 10 20 30 40 50 60

8 - 16
4 - 16

2 - 16

4 - 8
2 - 8

1 - 16

1 - 8
2 - 4

1 - 4
1 - 2

Checkpoint/Restart Malleable LAMMPS

Figure 2: Reconfiguration times for job ex-
pansion with 10,976,000 atoms.

0

5

10

15

20

25

30

32000 256000 864000 2048000 4000000 6912000 10976000R
ec

o
n

fi
gu

ra
ti

o
n

 T
im

e
(s

ec
)

Number of Atoms

Malleable LAMMPS Checkpoint/Restart

Figure 3: Reconfiguration times for job ex-
pansion from 4 to 8 processes with different
number of particles.

Workload experiments were per-
formed using the Marenostrum IV clus-
ter at the Barcelona Supercomputing
Center (BSC). Two workloads with 100
jobs each, one having rigid LAMMPS
jobs and another having malleable
LAMMPS jobs, were submitted on two

sets of partitions with 32 and 40 nodes.
The minimum, maximum and preferred
number of nodes for a malleable job
were set to 1, 16 and 4 respectively. The
size of the problem was chosen to be
16k atoms and the simulations were
run for 100 iterations. All 48 threads
in a node were utilised using the inbuilt
USER-OMP package in LAMMPS.

2200

1565

0 500 1000 1500 2000 2500

Rigid

Flexible

Execution time (sec)

Figure 4: Workload times with cluster size
of 32 nodes.

2200

1317

0 500 1000 1500 2000 2500

Rigid

Flexible

Execution time (sec)

Figure 5: Workload times with cluster size
of 40 nodes.

The rigid jobs were initiated with
16 processes and the flexible ones with
variable number of processes from 1 to
16, depending upon the available nodes.
The execution times for the workloads
can be seen in Figure 4 and 5, providing
speedups of 1.40 and 1.67 respectively.

Extension for Fault Tolerance

The malleable version of LAMMPS can
be extended to tolerate failures of the
allocated nodes. There may be a num-
ber of reasons for a node to fail during
the execution of a job. In some cases,
the job scheduler can predict whether a
node is going to fail in the next couple
of minutes. In that case, a malleable job
can shrink by one node allowing itself
to continue running on the cluster with-
out needing to be manually restarted by
the user.

References
1 Sergio Iserte, Rafael Mayo, Enrique S. Quintana-Ortí,

Vicenç Beltran, Antonio J. Peña (2018), DMR API:
Improving cluster productivity by turning applications
into malleable study.

PRACE SoHPCProject Title
Get more throughput, resize me! A
case of study: LAMMPS malleable

PRACE SoHPCSite
Jaume I University, Spain

PRACE SoHPCAuthors
Sukhminder Singh,
[Friedrich-Alexander-Universität
Erlangen-Nürnberg,] Germany

PRACE SoHPCMentor
Sergio Iserte, Jaume I University,
Spain Sukhminder Singh

PRACE SoHPCContact
Sukhminder Singh, Friedrich-Alexander-Universität
Erlangen-Nürnberg
Phone: +49 15259651811
E-mail: sukhminder.singh@fau.de

PRACE SoHPCSoftware applied
LAMMPS, DMRLIB

PRACE SoHPCMore Information
lammps.sandia.gov

PRACE SoHPCAcknowledgement
The author would like to acknowledge the invaluable
support of the project mentor Sergio Iserte and the
researchers of Jaume I University, Spain.

PRACE SoHPCProject ID
1804

12

QCD can explain the force, that keeps nucleons
together. Simulations are done on a lattice and
greatly benefit from being carried out on GPUs.

Lattice QCD
simulations
on GPUs
Marius Neumann

uu

dp

e

n
p

n

g

e e
Quantum
Chromo
Dynamics

Lattice Quantum Chromodynamics can describe and predict experimental results
from particle physics in the low energy regime, where analytical methods fail. In this
project, LQCD simulations will be put on GPUs and run on high performance clusters.

Quantum Chromodynamics
(QCD) is the theory of the
strong nuclear force, which
binds quarks together to form

nucleons. Thus, knowledge of QCD is
crucial to our understanding of heavy
ion collision experiments in particle ac-
celerators and the hunt for dark matter
by looking into possible interactions
between quarks and dark matter.

Unfortunately, in the low energy
regime, QCD cannot be easily calcu-
lated asanalytical methods like pertur-
bation theory do not work. So simu-
lations must be used. This is done on
a four dimensional space time lattice
of billions degrees of freedom, which
means that lattice QCD (LQCD) is a job
for supercomputing.

Now here comes the gaming indus-
try to give us a little boost. They have

optimised GPUs to handle 3×3 rotation
matrices really fast. And QCD too is de-
scribed by 3×3 matrices, so some tricks
made for 3D graphics acceleration may
be used, too!

To run the simulation, Noether, CaS-
ToRCs new GPU server was used for
building, (lots of) debugging and finally
for implementing features (like calcu-
lating the trajectory of thermalisation

Figure 1: Of the total amount of matter that we know to exist, we
can only see 4%. Thus, we simply call the rest "dark" matter and
energy. The nuclear quark content1 is a useful quantity, that can
be used in the hunt for dark matter.

steps of the gauge
configuration, the
most expensive part
of the calculation)
to also be able to
run on GPUs.

After the tra-
jectory of gauge
configurations has
been calculated, a
variety of measure-
ments can be made,
allowing us to pre-
dict crazy things
like the masses of

some strange particles!
In this work to be honest, we will re-

main a little bit less crazy and measure
only the pion mass as a check of plausi-
bility. Pions occur naturally, for example
when cosmic rays hit the atmosphere.

Metropolis algorithm

To measure an observable in a quantum
field theory (like QCD), we must evalu-

ate a certain nifty path integral. In case
of the QCD action, this cannot be solved
analytically.

So what should we do now? Well,
take out your dice and start gambling,
because this integral can be solved by
Monte-Carlo integration! What we do
now is to start with a grid of random
numbers and let them propagate accord-
ing to Euler-Lagrange, until the action
stabilises and we can consider the con-
figuration as "thermalised". After each
step, we randomly decide based on the
total energy difference, with a probabil-
ity of

p = min
[
1, e−∆H

]
(1)

whether to accept or ditch the new con-
figuration. Oh, and before each step, we
throw the whole thing in a heatbath, to
avoid any local minima.

The total set of accepted and ther-
malised configuration is called a trajec-
tory and can be used for further mea-
surements.

Hasenbusch trick

So how do we speed up the calculation
of the trajectory? Well, by looking at the
most expensive part of course! In this
case, this is the inversion of the Dirac
Matrix D, which is done by a conjugate
gradient (CG) algorithm. CG converges
fastest for Matrices with large eigenval-
ues, which D unfortunately does not

13

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12 14

speedup

#GPUs

83*24 lattice
243*48 lattice
323*64 lattice

serial code
ideal speedup

Figure 2: Speedup compared to serial code for three differently sized
lattices. Notice bad performance and even dip at small lattice and
good performance for larger lattices.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 5 10 15 20 25

Pion correlator
(not normalised)

t

mπ = 261(6) MeV

fit with Ae-mt

Figure 3: Unnormalised pion correlators. Only half of the time slices
are shown since periodic boundary conditions apply.

have. So we have to apply a little trick
here:

|detD|2 = det
(
D†D + µ2

)

×det
(
1 + µ2

(
D†D

)−1
)−1 (2)

Now this looks like quite a pedan-
tic way to calculate the square of a de-
terminant. But if we assume the small-
est eigenvalue of D to be 10−4 and
set µ to about 10−3, then (2) becomes
something like 10−8 = 10−6 · 10−2. And
since this has larger eigenvalues, GC can
solve it faster, despite there being two
determinants to calculate now! More-
over, it splits up the forces which min-
imises the integeration error and en-
hance the acceptance. And of course,
you can add more than one term.

Tuning the integrator

Now that we have the Hasenbusch
terms (we choose to implement two of
them, so we get three in total), we can
start tuning the two parameters µ1 and
µ2 as well as the overall number of in-
tegration steps N that is used to solve
the Euler-Lagrange Equations.

So when we say that we are tuning
the integrator, we mean that we are try-
ing to find the optimal set of parameters,
that results in the most accepted trajec-
tories per time. This has to be done for
each lattice size to be measured.

Scaling

If we look at some speedup plots (2),
we can notice quite fast, that any at-
tempt of parallelising the code is point-
less for small configurations. In the case

of larger volumes instead, the speedup
appears to be quite good!

The little dip at 8 GPUs on the small-
est configuration can be explained by
the need for a second MPI dimension
here, since 24 can still be divided by 8
but this does not result in an even num-
ber, which is mandatory for the code
to work. For more obvious reasons, the
largest lattice cannot be run on twelve
GPUs.

This is quite unfortunate, since
the speedup benefits compared to the
medium configuration only start kicking
in at eight GPUs.

Pion correlator

One of the easiest things to calculate
and thus a popular plausibility check in
lattice QCD is the pion mass. To get this,
the euclidean correlator

C(x, t) = 〈P (0)P (x, t)〉
≈ Ae−mt

(3)

has to be calculated.
To extract the mass, we can now

perform a simple fit, which results in
261(6) MeV. As you may notice, this
is larger than the physical pion mass
at 140 MeV. But this is fine since we
were using nonphysical quark masses
(25.7 MeV instead of∼ 3.5 MeV for light
quarks) to begin with.

Equation (3) is only approximate,
since exited states also contribute, but
are strongly suppressed and only have
a reasonable effect on the first few time
slices.

Conclusion

The implementation of the Hasenbusch
for GPUs was successful (thanks to

Jacob for his QUDA version, edits to
QUDA were not done by myself) and ap-
pears to work properly. If further time
would have been available, the heatbath
could also have been carried out on the
GPU.

For me, it was a valuable experience
to have worked with clover fermions,
twisted mass and production code, as
I only had prior experience with mea-
surements of staggered fermions.

References
1 Alexandrou, Constantia (2016). Direct Evaluation of

the Quark Content of Nucleons from Lattice QCD at
the Physical Point

PRACE SoHPCProject Title
Enabling lattice QCD simulations on
GPUs

PRACE SoHPCSite
Cyprus Institute, CaSToRC, Cyprus

PRACE SoHPCAuthors
Marius Neumann, Germany

PRACE SoHPCMentors
Constantia Alexandrou, CaSToRC,
The Cyprus Institute
Giannis Koutsou, CaSToRC, The
Cyprus Institute
Jacob Finkenrath, CaSToRC, The
Cyprus Institute Marius Neumann

PRACE SoHPCContact
Marius Neumann, Bielefeld University
Phone: +49-521-106-5315
E-mail: neumann@physik.uni-bielefeld.de

PRACE SoHPCSoftware applied
QUDA, tmLQCD

PRACE SoHPCMore Information
lattice.github.io/quda
github.com/etmc/tmLQCD

PRACE SoHPCAcknowledgement
I would like to thank PRACE and the Cyprus institute
for making this summer possible, as well as Constantia
Alexandrou and Giannis Koutsou for giving me an
opportunity to work on this interesting topic. And
finally, many thanks to Jacob Finkenrath for seizing a
notable amount of time to make sure everything goes
well.

PRACE SoHPCProject ID
1805

14

Speeding up the multigrid solver by exploiting
vector registers and solving for different
right-hand side vectors at the same time

Vectorizing
the Multigrid
Solver
Marc Illa

During the last decade, physicists have performed lattice QCD simulations at the
physical values of quark masses. This is possible thanks to, among others, multigrid
methods, which are state-of-the-art solvers of linear systems.

Nature is governed by four fun-
damental interactions: grav-
ity, electromagnetism, the
weak interaction and the

strong interaction. The one that we are
interested in is the strong interaction,
which is described by the theory of
Quantum Chromodynamics (or QCD).

QCD describes the interaction be-
tween quarks and gluons and it tries
to explain a wide range of phenomena:
from the collisions taking place at LHC
(very high energy, around the TeV scale)
to how the protons and neutrons are
squeezed together to form the nucleus
of the atoms (very small energy, around
the MeV scale). The problem is that,
while for the first case we can manage
to understand the process using pen and
paper, for the second one it is very dif-
ficult, since all our mathematical tools
break down at this energy regime.

This obstacle has not stopped physi-
cists from making predictions at this
scale, even though they can no longer
be from first principles and depend on
experimental data. If we want to use
QCD directly to compute (for example)
how the mass of the proton emerges
from the interaction between the quarks
and the gluons, the only way to do it
is by using computers. Or, to be more
precise, supercomputers.

To do that, we need to program QCD
on a computer. This has been known

for nearly half a century (first described
by Nobel Prize winner Kenneth G. Wil-
son1): lattice QCD. It has the word lat-
tice in it because what we do is discre-
tise space-time in a 4-dimensional grid,
placing the quarks on the nodes of this
lattice and the gluons on the links.

But why is it so computationally de-
manding? We have to evaluate a path
integral, or in other words, we have
to compute every possible path that a
quark can take from one point of the
lattice to each and every other.

This is done by solving the following
linear system:

Dx = b , (1)

where D contains all the information
about the interaction between quarks
and gluons (called the Dirac matrix), x
is what we are trying to get (called the
quark propagator), and b is the right-
hand side (rhs) vector, which tells us
where we put the quark on the lattice
(called the source).

Naively, one would have the tempta-
tion to solve this problem by just doing
x = D−1b. But if I tell you that the Dirac
matrix is usually a 108×108 matrix with
a lot of elements equal to zero, com-
puting the inverse is not an easy task
(almost impossible). Moreover, Eq. (1)
needs to be solved many times, with
both varying the Dirac matrix and the
source, to get enough statistics and be

able to extract the desired observable.
Therefore, it is crucial that we use

a method that can handle this type of
systems. One state-of-the-art method is
the multigrid solver.

The multigrid solver

The multigrid solver can be thought of
as a combination of different algorithms
with the main purpose of speeding up
the convergence of iterative methods,
and the way it achieves it is by project-
ing the initial system into a smaller one,
which should be faster to solve (see fig-
ure at the top).

Without going into too much detail,
the solver proceeds as follows:

i) From (1) to (2) in the figure, we
apply the smoother. The smoother
is a linear solver which acts on the
full system performing only few it-
erations.

ii) From (2) to (3) we restrict the
linear system into a coarser one,
which if small enough we solve di-
rectly, otherwise we perform again
step i) and ii) on the coarse system.

iii) From (3) to (4) we prolongate the
solution and check for convergence.
If we didn’t converge we start from
i) again.

15

1 2 4 8 16 32

number of rhs vectors

0

1

2

3

4
ti

m
e

(s
)

normal vectorized

1 2 4 8 16 32

number of rhs vectors

1.0

1.5

2.0

sp
ee

d-
up

Figure 1: Time it takes for GMRES to solve Eq. (1), comparing the normal and vectorised method, with a plot of the speed-up acquired.

The algorithm that is considered
here is the adaptation of DD-αAMG2

for twisted mass fermions,3 written in C
language, where it creates 3 levels (the
original lattice and two coarser lattices),
and it uses a modified version of the
generalised minimal residual method
(FGMRES) as the iterative solver.

Vectorisation

Until now I have just explained the sec-
ond part of the title, but what does "vec-
torising" mean?

When coding, it is very common to
see the following loop:

for(i=0; i<n; i++)
c[i] = a[i] + b[i];

One would think that the CPU does
each operation of the loop at a time, i.e.
first computes c[0], then c[1], etc.
But modern CPUs are much more intel-
ligent.

Since CPUs are not getting any faster
(their internal clocks can’t go faster or
they would burn up), what engineers
have come up with is to increase the
number of bits that CPUs can process at
a time (these are called registers). If in-
stead of having registers of 64 bits and
processing one double precision float
variable (single instruction single data,
or SISD), we can have registers of 128
bits (or even bigger) and process two
variables at a time (single instruction
multiple data, or SIMD).

There are two ways of vectorising a
code: an explicit and implicit way. The
explicit way implies the use of special
functions named "intrinsic" and defined
by the constructor of the CPU. The prob-
lem of an explicit way is that the func-
tion changes depending on the register
length and the CPU architecture.

The implicit way, the one we have
chosen, requires to write the code in
such a way that the compiler can vec-
torise it by its own; i.e. replacing stan-
dard operations with the intrinsic func-
tions suitable for the CPU we are using.

Modern compilers can also tell us when
a loop has been or has not been vec-
torised and the reasons. Thanks to it
we can make the right modifications for
helping the compiler.

Results

So, what was my project about? The
original goal was to vectorise the whole
multigrid algorithm so that instead of
solving the linear system for one right-
hand-side vector, it could do it for 2 or
more vectors at the same time (similar
idea to what is done in4).

First, we had to change how we ini-
tialised all the vectors in the code, and
instead of them being just arrays, we
promoted them to a structure, which
has the advantage of being able to store
more than one kind of data type. Then,
rather than just having the array, we
also stored how many vectors there are,
their size, how they are organised (their
layout), etc.

As you can imagine, making this
type of changes implied going through
the rest of the code (+35000 lines of
code!), where in some cases a simple
find/replace worked, but other times
we had to go through line by line. Dur-
ing this process, I got to understand the
code structure and proceed faster with
the next steps.

When we finished with this phase,
we began playing with the number of
vectors, looking where we could place
the loops which would have to be vec-
torised. We started from the simpler
case: the linear solver in the fine level
(GMRES), changing the structure of the
Dirac operator and the solver itself. Un-
fortunately, we didn’t have time to vec-
torise the full multigrid, but this to-
gether with the previous step is 70%
of the work needed.

The results are presented in Fig 1.
On the left side, there is the time it
takes to get the solution of the linear
system using the normal solver or the

vectorised solver, as we increase num-
ber of rhs vectors (we used a very small
lattice of size 44). And on the right side,
there is the speed-up we obtain by vec-
torising.

As we increase the number of rhs
vectors, we reach a value of 2, which
is the ideal speed-up. The reason we
don’t get it right away is because the
compiler puts a lot of “if statements” to
make sure that it uses the right amount
of data inside the registers, or that it
doesn’t overwrite some elements which
would change the final result, and they
clearly slow it down.

The next step would be to solve this
handicap, and then get the whole multi-
grid solver vectorised.

References
1 K. G. Wilson. Confinement of Quarks. Phys. Rev. D 10,

(1974) 2445.

2 A. Frommer, K. Kahl, S. Krieg, B. Leder,
and M. Rottmann. Adaptive Aggregation-
Based Domain Decomposition Multigrid for
the Lattice Wilson–Dirac Operator. SIAM J.
Sci. Comput., 36(4), A1581-A1608. https:
//github.com/DDalphaAMG/DDalphaAMG

3 C. Alexandrou, S. Bacchio, J. Finkenrath, A. From-
mer, K. Kahl and M. Rottmann. Adaptive Aggregation-
based Domain Decomposition Multigrid for Twisted
Mass Fermions. Phys. Rev. D 94, (2016) 114509.
https://github.com/sbacchio/DDalphaAMG

4 S. Durr, Three Dirac operators on two archi-
tectures with one piece of code and no hassle,
arXiv:1808.05506 [hep-lat].

PRACE SoHPCProject Title
Vectorizing the Multigrid Solver

PRACE SoHPCSite
CaSToRC, The Cyprus Institute,
Cyrpus

PRACE SoHPCAuthors
Marc Illa, University of Barcelona,
Spain

PRACE SoHPCMentor
Giannis Koutsou, CaSToRC, The
Cyprus Institute, Cyrpus Marc Illa

PRACE SoHPCAcknowledgement
I would like to thank my mentors, Giannis Koutsou, but
also Simone Bacchio and Jacob Finkerath, for their
invaluable help and guidance, and Stelios Erotokritou
for his support during my stay in Cyprus.

PRACE SoHPCProject ID
1806

16

Electronic structure of nanotubes by utilising the
helical symmetry properties: Code parallelisation

Band
structure
with MPI
George Nikoulis

The calculation of the band structure of large systems is a time consuming job.
Therefore the use of MPI to parallelise this work is necessary to provide a fast and
efficient way for its calculation.

This work is the paralleli-
sation of a subroutine of
the SOLID2000 program.
SOLID2000 is a simulation

program for systems that have sym-
metry in three dimensions, such as
crystals. The code is written mostly in
FORTRAN77 and FORTRAN95.

The project is to parallelise the calcu-
lation of the band structure using MPI,
which is basically the energy of the elec-
trons inside the solid. Such solutions are
impossible to find analytically for real
world systems, that is why we have to
use numerical methods to sample part
of our solution.

The finer (dense) our sampling is,
the better our plot will be, and more
calculation time is required. For every
sample we make, we have to solve an
NxN matrix, i.e to find its eigenvalues.

Those eigenvalues are the solution we
desire, i.e the energy of the electrons,
and the matrix is called the Hamilto-
nian matrix which describes the whole
energy of our system. This is composed
of the potential energy and the kinetic
energy. Normally the size of the matrix
is infinite so it is up to “cut” the matrix.

The time required to calculate the
eigenvalues scales as N3, and therefore
we want our matrix to be as small as
possible but not too small because the
accuracy of our results will be very low.
The strategy that we followed to para-

Figure 1: Nanotube from Boron and Magnesium

llelize the band structure is
to assign every sample to a
procedure up until all the
sample points are done.

That has been done by
a message that the master
will send to all the slaves to
signal that the band struc-
ture calculation is about
to start and each proce-
dure will calculate its sam-
ple points. The work is dis-
tributed equally throughout

the procedures in order to have the max-
imum efficiency and create an equally
distributed workload. At the end of the
calculation, the slaves must send their
samples to the master so the master can
write the band structure in a file.

Helical symmetry

The code also utilises helical symmetry,
which is a special symmetry that nan-
otubes have. We can understand the he-
lical symmetry properties if we take a
small part of the nanotube, that is called
unit cell, and duplicate it like a helical
spiral. If we do that, we will end up
creating the whole nanotube. This trick
can decrease the computational cost of
the band structure and we can avoid a
big part of unnecessary work.

Difficulties

The difficulties come from the fact that
we had to work with a program that
consists of hundreds of files and thou-
sands of lines of code. Of course we
worked with a certain part of the code,
but in order to understand the code that
we had to parallelise, we had to study
several files of the code to have a good
overview and then start implementing
the MPI coding of the band structure.

Another hard thing to overcome was
that we were working on had several de-
pendencies with other files and subrou-
tines that we had to take into account or
else the program wouldn’t work prop-
erly. For this reason, we had to built

17

some part of the code from scratch to
take care of those dependencies and
make the program run smoothly.

One more problem emerges from
the way that the problem itself is built.
In the end of all the parallel work, we
need all the data to be written in a cer-
tain order in an output file. Although
the problem sounds easy, is was not that
trivial. While the program is running,
there is not any rule that specifies which
core will take comptute part of the cal-
culation. Therefore storing the data in
order is not straight forward. To solve
this problem we had to make use of the
MPI_ANY_SOURCE and use the tag to
control the right order of the data.

Results and Benchmark

Testing on the code showed that
it works properly by changing the
number of cores. We benchmarked
the code using all the resources
that we could from the Aurel clus-
ter of Bratislava, up to 1024 cores.

Figure 2: This is the benchmark of the band structure that we parallelised in this project.

The results show that the speed up
is almost linear for the system that we
used, i.e the system in the Figure 1.
The code scales even better if we use
a larger system. For time purposes, to
have the results on time, we used this
system over a bigger one.

Discussion

For the final result of the code, we have
a parallel version of the band structure
calculation. The efficiency of the code
is very good and it is even better as the
system grows larger. This product aims
to treat large nanotubes where the cal-
culations are very time demanding.

Work for the future would be to par-
allelise other parts of the code as well,
which are also heavy on calculations,
or to improve and optimise parts of the
code that can be optimised.

Personal experience

The journey with the PRACE Summer of
HPC was a unique opportunity to learn
new and useful thing about program-
ming. For me, as a computational physi-
cist, that I know more in the fields of
physics rather than in the programming,
it was perfect to enrich my program-
ming abilities, not only for MPI but in
so many different elements. I will not
refer to all of them, because the are so

many, but a good example is that I fa-
miliarised myself with many different
interfaces, programs and tools which
they will be useful for me in the future.

Conclusion

The final product of this project is a par-
allel version of the band structure cal-
culation for nanotubes by making use
of the helical symmetry to further im-
prove the performance of the code. The
code uses MPI (Message Passing Inter-
face) for the communications between
the procedures in a smart way, to store
the data in the correct order and take
care of the dependencies that the calcu-
lation has, with other part of the pro-
gram.

The band structure calculation, op-
timises its resources very well (Figure
2). The larger our system (nanotube) is,
the bigger will be the benefit that we
will see from the MPI implementation.
The program can treat smaller systems
without any problem, but we gave em-
phasis to large systems, which are very
time demanding. The code can use as
many cores as we want, as long as we
have a big enough system to make use
of them.

Figure 3: Carbon nanotube which we made
the first runs of the program.

I don’t believe there is a particular
reason that I should win over my other
colleagues. Everyone did a great job for
the time that was given to us.

PRACE SoHPCProject Title
Electronic structure of nanotubes by
utilising the helical symmetry
properties: The code parallelisation

PRACE SoHPCSite
SAS, Bratislava

PRACE SoHPCAuthors
George Nikoulis, AUTH, Greece

PRACE SoHPCMentor
Prof. Dr. Jozef Noga, DrSc.,
Comenius University, Bratislava George Nikoulis

18

Comparison of HPC tools and JVM-based
frameworks in terms of Machine Learning
process performance on Big Data.

Machine
Learning
from HPC
perspective
Enes Cankiri

When processing ”Big Data”, the first technologies of choice are the JVM-based frame-
works, such as Apache Hadoop or Spark. Motivation behind this project is to show that
HPC libraries, such as MPI or GPI-2, are at least as good or better than JVM based
frameworks. We have implemented two machine learning algorithms, K-Means and
Decision Tree, in order to compare the JVM and HPC approaches.

Processing Big Data is a prob-
lem by itself. Running Machine
Learning algorithms on large
data sets requires lots of com-

puting time. Although runtime is impor-
tant, JVM-based technologies are more
popular than HPC libraries because of
other reasons (runtime resilience, de-
velopers’ comfort, debugging etc.), but
we will focus on comparing the perfor-
mance exclusively.
Big Data

Basically, Big Data have 3 properties:
velocity, variety and volume. Datasets
that only have large amount of samples
and/or features, are not necessarily Big
Data. Imagine you are receiving many
emails every day. You would be happy if
a computer program could mark them
as spam, important, work-related, other
etc. for you, and you can check them
in the desired order. Emails are com-
ing constantly (velocity) from different
senders with different type of attach-
ments (variety) and you are receiving a
lots of them (volume), so it is possible
to say that you have a Big Data and you
need to cluster your data.
Machine Learning

Humans learn from experience, but
machines learn from patterns. Machine
Learning is a way to ’learn’ from rela-
tionships between descriptive features
of samples. There are different ways to
learn from samples and different ways
to find relationships between features.
Learning from Big Data requires more
computational power and this is where
HPC comes in. We have used two differ-
ent ways to learn (K-Means and Deci-
sion Tree) from samples and compared
implementations of these algorithms by
using different technologies.

Methods

MPI and GASPI
Basically, HPC is optimised com-

puting in parallel environment, and
the instances of the computer program
running on multiple nodes need to
communicate. There are some stan-
dards for the HPC communication,
such as the Message Passing Interface
(MPI) and/or Global Address Space Pro-
gramming Interface (GASPI). MPI is a
well known standard, but GASPI has

some additional advantages. We have
used a MPICH implementation for MPI
and GPI-2 for GASPI. GPI-2 focuses
on fault tolerance and efficient com-
munication by providing non-blocking
one-sided communication. This non-
blocking, asynchronous approach al-
lows overlapping of computation and
communication.

For example, iterative algorithms
typically need to synchronize all ranks
at the end of each iteration. Every it-
eration thus has computation and com-
munication phases, and during the col-
lective communication all processes
need to stop and wait for others to
send/receive the data. This barrier re-
sults in idling, thus wasting of computer
time.

Figure 1: Phases for iterative algorithm

19

Data Dependency Driven
In our approach we attempted to

make the iterative algorithm asyn-
chronous, without having explicit barri-
ers and collective communications. Do-
ing so, we tried to maximise the overlap
of computation and communications for
better computer time utilisation.

Figure 2: Phases with Data Dependency
Driven approach and overlapping

Collective communication barriers
are needed to make sure ranks are ready
for the next iteration. If there is no gen-
eral data dependency between ranks,
each rank needs to know neighbours
are ready. Thus, we can avoid collec-
tive communications. GPI-2 is focused
on efficient communication by doing
non-blocking one-sided communication
which makes GPI-2 a perfect fit for this
approach.
Apache Spark

Apache Spark is an open source,
general purpose data processing frame-
work. It has good relationships with
HDFS and APIs in several popular lan-
guguages (Scala, Java, Python and R)
make Spark good and user friendly for
processing framework for Big Data. ML-
lib is a scalable machine learning library
that utilizes Spark’s API. PySpark ex-
poses that model with Python, we have
used PySpark for convenience in this
work.
K-Means

K-Means is a basic clustering algo-
rithm. Its task is to find similarities be-
tween unlabelled samples and group
samples into K different clusters. Each
sample is clustered to its nearest "cen-
troid", so we have K centroid points dur-
ing the program execution and at the
end. The basic steps of the K-Means al-
gorithm are:

1. Start with choosing K (random)
centroids

2. Group all samples based on the
distance to the nearest centroid

3. Finding mean of each group and
create new centroids

4. Monitor the centroids change,
and if the change is less than a
threshold go step 5, else go to step
2

5. Data is labeled, finish

Every step can be implemented dif-
ferently, for example we can choose K
initial centroids from our sample, or we
can generate random features. Also, dis-
tance and mean function should be dif-
ferent for numerical data or categorical
data.
Data Dependency Driven approach for
K-Means

We decided to spend some time on
developing Data Dependency Driven ap-
proach for K-Means. K-Means have gen-
eral data dependency to find next cen-
troids, which means we can’t directly
apply a data dependency approach on
this problem. We need to reduce this
problem into a local data dependent
problem, where all ranks should have
different centroids to avoid synchroniza-
tion phase. Every iteration will converge
centroids to the center of groups, but
the biggest problem is sample distribu-
tions. Centroids won’t converge to the
same positions as each rank will have
a different distribution. We can group
centroids of neighbour ranks with local
centroids. So, it will form a chain com-
munication, and after some point all
ranks will converge to similar centroids.
Decision Trees

Decision Tree is the name of a struc-
ture where nodes have two types: de-
cision or rule. Decision nodes are leafs
and they come with a label. Rule nodes
asks questions and branch according to
an answer. There are several algorithms
to build decision trees. The most impor-
tant challenge in decision trees is choos-
ing rules in the most optimum way.

• ID3 (Iterative Dichotomiser 3)
uses Entropy and Information
gain as the metric, it chooses an
attribute for each rule node, and
each category for that attribute
makes a new branch.

• CART (Classification And Regres-
sion Trees) uses Gini Index as
metric, it chooses a question that
can be answered with yes or no.
This leads to binary tree, same
attribute can be used again as a
rule.

We have chosen the CART algorithm
for our implementation, because it is
used in the Spark MLlib implementa-
tion as well. Binary trees are also im-
plemented much easier in the C lan-
guage. Gini Index requires many proba-
bility calculations over samples. So, the

CART algorithm can be scaled by iterat-
ing over scattered samples.

Results

Let us start with analysis of the K-Means
results. The K-Means run time can be
split into three parts: File I/O and shar-
ing i.e. reading the file with samples by
rank 0 and sharing to other ranks, main
job main iteration procedure, and the
"rest", which is the overhead of memory
allocation, starting/stopping of parallel
environment, etc.

Figure 3: K-Means MPI and GASPI imple-
mentation with different sizes compared to
serial code

The problem is dominated by iter-
ating over samples. So, scalability de-
pends on sample count per rank, so
we can get the same efficiency from
each rank. If we have a bigger sample
size, we need to increase the rank count
with the same sample count for every
rank, thus we’ll get same efficiency. This
makes this problem weakly scalable.
GASPI segment allocations takes more
time than C memory allocations. The
difference in "rest" part can be seen in
Figure 3.

20

Figure 4: MPI vs GASPI vs HYBRID with 4
ranks

There is a strange result in Figure 3,
GASPI has more than 4 times speedup
with 2 ranks. How that can be possi-
ble? We found out that distance calcula-
tions in K-Means was the reason for this
discrepancy. Both implementations use
exactly the same function for this pur-
pose. The only difference was memory
accesses, MPI uses memory allocated
by ’malloc’ and GASPI uses GPI-2 seg-
ments. When we tried a hybrid code,
using GASPI segments and MPI com-
munication, GPI-2 segments had faster
access time as can be seen in Figure 4.

Let’s add PySpark and C-code serial
K-means implementations to these re-
sults for full comparison. The PySpark
code was nearly as slow as the serial
one, see Test Environment section.

Figure 5: K-Means, Serial (single rank) vs
others with 4 ranks

We also have a Data Dependency
Driven approach with GASPI and a run-
time comparison can be seen in Figure
6, where we can see that a Data Depen-
dency Driven approach could be faster.
This though actually depends on the dis-

tribution of data, as It may differ be-
tween datasets.

Figure 6: Data Dependency Driver approach
comparison

Let’s continue with benchmarks on
the Decision Tree algorithm. First, the
serial and GASPI results are compared
in Figure 6. Unfortunately, there was
not enough time for finalisisng the MPI
implementation.

Figure 7: Decision Tree serial vs GASPI with
different rank sizes

There is less memory access in Deci-
sion Trees compared to K-Means, so we
do not see the "segment effect" in these
results. Scalability of the Decision Tree
implementation is limited by the fact,
that it is iterative, just like K-Means. So,
we need to keep sample count per rank
while increasing the number of ranks
to solve a larger problem with the same
efficiency, which means implementation
is weakly scalable.

Figure 8: Decition Tree, Serial (single rank)
vs others with 4 ranks

When we compare serial C-code to
GASPI and PySpark runs with 4 ranks,
GASPI/GPI-2 implementation is clearly
faster again.

Test Environment
All tests uses ethernet connection,

with infiniband installation GASPI runs
could be faster.
GCC version: 6.3.0
GPI-2 version: 1.3.0
MPICH version: 3.2.1
Spark/PySpark version: 2.3.1
Hadoop version: 2.7
Operating System: Debian 9.2
Processor: Intel i5-7300HQ with 4 cores

Discussion & Conclusion

The performance benchmarks clearly
demonstrates that the C/C++ compiled
codes are more efficient compared to
the JVM. However, if the development
time, debugging options, etc. are con-
sidered, the Apache Spark is clearly the
option of choice. Finally, the JVM-based
technologies and HPC tools have their
advantages and disadvantages, but the
GPI-2 (or MPI) is a more efficient tool
for processing big data, if the run time
efficiency matters.

PRACE SoHPCProject Title
Machine Learning from HPC
Perspective

PRACE SoHPCSite
Computing Centre of the Slovak
Academy of Sciences, Slovakia

PRACE SoHPCAuthors
Enes Cankiri, DEU, Turkey

PRACE SoHPCMentor
Michal Pitonak, CCSAS, Slovakia Enes Cankiri

21

PRACE SoHPCContact
Lukas, Demovic, CCSAS
E-mail: lukas.demovic@savba.sk

PRACE SoHPCSoftware applied

GPI-2

PRACE SoHPCMore Information
GPI-2 Github Repository www.gpi-site.com/gpi2/

PRACE SoHPCAcknowledgement

Write any requested acknowledgements or thanks here.
Mentors should be asked for them too.

PRACE SoHPCProject ID
1808

22

Ever seen a postprocessing result, before
completion of the run? You’ve come just to
the right place.

Instant
visualisation of
CFD data with
OpenFOAM
Atul Singh

CFD simulations are both memory as well as
communication intensive. The situation is even
grimmer when supercomputers are involved as
they anyways require more communication
between processors. For such a task, In-Situ
visualisation offers a huge incentive as it saves
a lot of memory space, by generating the
visualisation while the simulation is running.
This project aims to combine these In-Situ
capabilities of Paraview with CFD capabilities of
OpenFOAM, which is also an opensource
software. Hence empowering a wide range of
researchers i.e from students to companies in
their CFD research.

The image seen above is not a
Vincent Van Gogh painting, but
is a only a small result of the
ginormous visualisation capa-

bilities our modern day supercomputers
have (so can this be termed as Mod-
ern Art?). The image, shows free fall
of breaking of square section of water,
(say, dam) under the infuelence of grav-
ity, obstructed by a small protrusion at
the bottom, at 0.5 s of the flow.

Why bother with CFD?

Consider a flight taking off from an air-
port. Why do you think, the next one
waits a little bit after the previous one
is already long gone in the air?. The
answer is simple. The previous flight
has left a huge whirlpool of air be-
hind it, strong enough to make the next
plane wait in line. A following good
question would be how does one know
when these whirlpools of air will dimin-
ish?, or rather, how weak of a whirlpool
strength, would be good enough for the
next plane to take off?

Questions like these underline the
importance of CFD studies. Knowing
the answers of which could lead to a
correct take off time for your next flight.
Well that is of course, if Airport support
staff doesn’t harass you with something
else.

The three pillars
In short, one could just think of CFD
simulations, or rather simulations in
general, as tools that provides the
means, which the complexities of the-
ories and experiments aren’t able to.
And this is obviously not limited to
Aerospace applications as can be seen
in Fig 1.2 These range from, but not
limited to, Automotive, Health research,
HVAC, Chemical processing, Sports, Ma-
rine applications, Power generation, etc.

Why is HPC involved?

When we talk about CFD simulations,
they are usually a set of very long equa-
tions that are run to obtain some vari-
ables of interest, say pressure, or veloc-
ity for instance. These equations could
be thought of as similar long equations
that you would enter in a calculator
to calculate, lets say some variable ’x’.
Only slightly more complex, sometimes
coupled, and quite often dependent on
a previous iteration.
The calculators do it on a very small
scale, while supercomputers do it on
a think-as-big-as-you-possibly-could, gi-
normous scale. Think not only CFD sim-
ulations, but even those involving the
supernova explosions and galaxy stud-
ies are performed with the help of Su-
percomputers. Surely they must be use-
ful. Very very useful.

The handshake between the
two
So now, we know CFD are basically a set
of calculations, which HPC helps them

23

Figure 1: Some applications of CFD

calculate. The way this is done, is by
employing one of the oldest trick in the
book, for whatever the problem may be.
"Divide and Rule". Lets see how.

The divisions3

The structured lines that you see above
in this building like structure is called
a mesh. The square or regular shaped
volumes formed by these intersecting
lines are called cells. These cells are the
exact places where our defined equa-
tions for a variable of importance will
run. The greater the number of cells,
the more accurate approximations sim-
ulations will give (the denser region in
the above picture). Hence, we simply
divide the problem into cells, and rule
it with whatever equations we want to
solve.

So what’s the catch?

Well, its time, another oldest ally in the
book. How?, Lets just say the divisions
or cells that you see from the previ-
ous image are in order of millions, and
this is quite often commonplace in a
CFD study, and add to the the fact that
you are running a very complex mathe-
matical equation on each of these cells,
which have several unknown variables.
It is bound to be time consuming to get
to your results.

And when you do, you need this "post-

processing" software known as Paraview
that helps you see and observe the be-
haviour of the variable you wanted to
study. Not to mention, loading the data
to this software after your simulation
completes in 3 days (say) will also be
a slow process, because there will be
loads of data and any software of course
has limitations. Which is a traditional
way of post processing or rather visual-
ising the results.

What do we do then?

This is where my project comes to play.
Want to observe only pressure, then use
only pressure as a variable and not any-
thing else. Seems logical, right? Don’t
observe all the variables, when you only
need a couple of them. This is exactly
what we do inside OpenFOAM (the soft-
ware responsible for having those long
CFD equations and solvers).

Paraview Catalyst is one such library
that takes care of such a handshake be-
tween OpenFOAM and Paraview, while
the OpenFOAM solver is running. The
way Catalyst works, is, lets say if you
have only pressure to visualise, then,
catalyst lets you define only pressure as
a variable.

Now if we are to combine OpenFOAM
with Paraview to instantly visualise our
results, it would make sense if we only
took a part of features that Paraview
has to provide, and not the complete
software. Which is exactly what we do.
Paraview has something called filters,
that helps you "filter" out only specific
information from the complete results
that your simulations produced. But
in Catalyst however, we in a way cus-
tomize Paraview according to our spe-

cific needs. If, lets say, you only want
to see a slice of the geometry, which
shows velocity flow in 2D, you can only
select those two parameters. You can
then generate a python script using the
Paraview-GUI, and define the parame-
ters that saves the image in a seperate
folder.

Why is this helpful?

For one, It makes complete sense to use
only those filters that are necessary for
your results, compared to everything
that Paraview has to offer. What this
does is it saves memory, as every proces-
sor involved will be running the Open-
FOAM solver. Having a smaller version
of Paraview can make the visualisation
code just like one more added calcu-
lation for OpenFOAM. Which is much
more feasible. This is exactly what hap-
pens when we have included a function
object as an interface in OpenFOAM to
use Paraview.

Let’s test it

There are basically two steps involved

• The Script obtained from Par-
aview GUI5

• The catalyst file added with the
above script

The first step after you have decided
onto what visualisation would you want
to see is fairly simple. All you need to do
is load the Catalyst plugin. This gives a
wizard of sorts that helps you generate
a script specific to all the filters that you
used.
The second step involves, adding a func-
tion object to OpenFOAM files, that tells
it to process the above generated script

24

Left: The snapshot when catalyst is running with OpenFOAM. Top Right: Simplified injector tested with Catalyst,showing 2D slice of
volume fraction.3 Bottom Right: Injector with iso surface for the same volume fraction3

within its framework. An example can
be seen from this github repository.4

And finally

The images seen above are the first
hand results when Catalyst is being
run. It can be seen when the simula-
tions is running, the pipeline browser
of Paraview (the place with the small-
est blue rectangle are in above picture)
has loaded the data that is defined in
the script. So it is quite appealing to see
the visualisation along with the running
CFD simulation.

The script also defines a seperate folder
where all the images can be saved.
These images are helpful when one
wants to make a small movie illustrat-
ing how the flow develops during the
course of the flow,6 as is often the case
for a CFD simulation. Remember, this
was not possible before Catalyst.

Although Catalyst is a brilliantly em-
ployed solution, it is still under devel-

opment. The current testing done at
CINECA Supercomputing center, under
this project was the first instance where
it was tested with an Exascale Open-
FOAM case.

Of course, the current edition of Cata-
lyst is not without its limitations and
the documentation regarding building a
custom Catalyst edition, specific to dif-
ferent needs, is still missing. It is also
not a trivial task to build and recompile
everytime an addition has been made
to Catalyst. So there remains lots and
lots of scope for improvement.

References

1 Anderson, J. (2010). Computational fluid dynamics.
New York, NY: McGraw-Hill.

2 https://www.iitk.ac.in/tkic/workshop/FEM/ppt/
Introduction

3 Edelbauer, W. (2017). Numerical Simulation
of cavitating injector flow and liquid spray
break-up by combination of Eulerian-Eulerian
and Volume-of-Fluid methods. Available at:
http://www.elsevier.com/locate/compfluid [Accessed
31 Aug. 2018].

4 https://github.com/Atulsingh92/SouCase-
OpenFoam/blob/master/system/catalyst

5 Paraview Catalyst User Guide

6 https://www.youtube.com/watch?v=r-
u9NJc-pJIlist=PLhpKvYInDmFXUyp_pWBM-
h1NCD6GEUfgpindex=9

PRACE SoHPCProject Title
In Situ visualization of CFD data using
OpenFOAM.

PRACE SoHPCSite
Cineca Supercomputing Center, Italy

PRACE SoHPCAuthor
Atul Singh, University of Rostock,
Germany. contact:
atulsingh92@outlook.com

PRACE SoHPCMentor
Dr Fedrico Piscaglia Politecnico di
Milano, Italy Atul Singh

PRACE SoHPCSoftware applied
OpenFOAM 5.0, Paraview 5.5.1, Catalyst, Blender 2.79,
Audacity.

PRACE SoHPCMore Information
SummerofHPC website , Paraview website

PRACE SoHPCAcknowledgement
Sincere thanks to Dr Fedrico Piscaglia and Special
thanks to Simone Bna. Honorable thanks also to Paola
Alberigo, Francesca Delli Ponti, Giuseppa Muscianisi,
Massimiliano Guarassi, Luigi Calori, Ivan Spisso,
Christiano Padrin and Luis Sanchez. Default thanks to
my Parents.

PRACE SoHPCProject ID
1809

25

Web Visualisation of Energy Load of a HPC System

Visualising
HPC System’s
Power
Nazmiye Arslan

Energy efficiency is one of the timeliest
problems in managing HPC facilities. The web
page which was already developed includes
some statistics about the jobs running in the
selected system and a 3D view of the energy
load and other observables of the GALILEO
cluster. In this project we aim to realise a web
interface to plot the energy efficiency
observables of the D.A.V.I.D.E. cluster based
on a POWER8 + Nvidia GPUs architecture.

D.A.V.I.D.E is a cluster com-
prised of 45 computer nodes,
1 admin node and 1 lo-
gin/master node. Each com-

pute node hosts 2 IBM POWER8+ pro-
cessors, 4 NVIDIA Pascal P100 SMX2
GPUs, and innovative technologies such
as the monitoring framework and the
liquid cooling components.2

Figure 1: D.A.V.I.D.E. Architecture

The general structure of the moni-
toring framework based on D.A.V.I.D.E
is shown in Figure 1. The following sec-

tions provide a more detailed descrip-
tion of the components of Examon (a
framework for analysis for data collec-
tion, storage, and exascale clusters).2

The problems in HPC system man-
agement for energy efficiency include
many technical issues such as web visu-
alization, interaction with HPC systems
and timers, large data analysis, virtual
machine manipulations and authenti-
cation protocols. In the framework of
SoHPC 2017, a web interface was al-
ready developed that will show the re-
quired observables.

In this project, the aim was to de-
velop the capacity of this web tool and
adapt it to the Tier-0 Marconi cluster
and KNL architecture. At the same time,
it is aimed to implement a web inter-
face to draw the energy efficiency obser-
vations of D.A.V.I.D.E. This tool could
help HPC system administrators to opti-
mise the energy consumption and per-
formance of their machines and to avoid

unexpected fault and anomalies of the
machines.

In the race for more performance,
super computers become limited in
Power and Energy. Until recent years,
every new supercomputer in the world
points to an increase in power consump-
tion.1

Figure 2: TOP500-GREEN500

Then so, The Power is important in
HPC system due to be an important cost,
limit today super computers capacity
and performance.

26

Figure 3: EXAMON-D.A.V.I.D.E.-Config

As seen in Figure 3, D.A.V.I.D.E.
uses three complex database platforms
for monitoring. Examon is the current
framework for data collection, storage
and analysis for exascale clusters, and
these are described in,2

Sensor Collectors are low level com-
ponents that read the data from several
sensors. These are used by the MQTT
Protocol. The specific sensors include
IPMI, AMESTER, BBB and other collec-
tors.

Storage Layer is composed of:

1- Grafana, which supports
KairosDB as data source by means
of a plugin and allows to visualise every
stored metric.

2- Cassandra is the backend of
KairosDB and it is where the fine-grain
and aggregate metrics are physically
stored.

3- KairosDB is a single service con-
tainer that provides an instance of the
KairosDB.

Methods

The current monitoring metrics are
shown and one can see the job power
monitoring over the last 7 days. Figure
4 shows the running grafana dashboard.

Figure 4: Jobs on Grafana-Dynamically Web
Page

More meaningful values and objec-
tive viewing of job power consump-
tion and its components are needed.
Thus, the Snapshot Dashboard was de-
veloped.

Figure 5: The project scheduler

The main method is to connect to
the Cassandra database and to get all
data about a specific job. Then to con-
nect to the Kairos Database that consists
of more meaningful data than Cassan-
dra. Finally, he general dashboard for a
job is generated using information from
the Cassandra data source.

The project was developed on
Python as requests, json, Cassan-
dra, ConfigParser, Webbrowser main li-
braries of python.

The snapshot dashboard was de-
signed using four rows.The first row is
to see general information of the job as
a text graph. The second row is to see
all total power of each metric for the job
in the form of a pie chart. The third row
displays the total power of each metric
for the each node which runs for a job.
The last row shows the total power for
each node for each metric.All informa-
tion can be seen on the dashboard.
Grafana

Grafana has a HTTP API for the
dashboard and the dashboard is cre-
ated, updated and deleted with using
get, post, delete python library requests
after it connects to the Grafana server.
The dashboard uses json libraries to
modify and submit any new dashboard
views for a job using grafana.py func-
tions - as shown in Figure 6.

Figure 6: Get Grafana Dashboard and Cre-
ate

Cassandra

Cassandra aggregates information
with the purpose of long-term storage
and there are 2 types of aggregated
data:2

1- Job-aggregated information 2-
Node information

It contains three distinct tables to
store the physical information gener-

ated by the IPMI, BBB and OCC sen-
sors;2

Figure 7: Cassandra Tables

The format of the data is taken from
CassandraDB for the IPMI and OCC ta-
ble. The BBB table contains total instan-
taneous power for the job.

Combining Data and Calculating Partial
Total Power

Figure 8 shows the Json template
dictionary created and for every new
dashboard job used to collect all gen-
eral power information.

Figure 8: Template Json Dict

The node information about each
job is taken from CassandraDB and aver-
age power is calculated. This template
with node job information is used to
create job visualisation on the Grafana
dashboard.

27

Figure 9: The Python Code That To Show
General Information for First Row on Job
Dashboard

In Figure 9, the general information
of the job is determined.

Figure 10: The Python Code That To Cal-
culate Total Power for Second Row on Job
Dashboard

In Figure 10, the second row on the
job dashboard displays the total power
breakdown with each metric.

Figure 11: The Python Code That To Cal-
culate Total Power for Third Row on Job
Dashboard

In Figure 11, the third row on the
job dashboard visualises total power
with each node metric.

Figure 12: The Python Code That To Cal-
culate Total Power for Second Row on Job
Dashboard

In Figure 12, the last row on the
job dashboard displays the total node
power calculated and added for each
metric.

Results

The Job dashboard is created automati-
cally from the python script by provid-
ing the job ID. The job can then be fol-
lowed from the dashboard view objec-
tively. Results of the dashboard, are as
shown in Figure 13-14-15-16-17.

Figure 13: First Row on Job Dashboard

Figure 14: Second Row on Job Dashboard

Figure 15: Third Row on Job Dashboard

Figure 16: Last Row on Job Dashboard

Figure 17: General View of Job Dashboard

Discussion & Conclusion

The Grafana Web Visualisation was de-
veloped successfully. The performance
and power monitoring of super comput-
ers are more meaningful and objectively.
HPC system administrators at CINECA
will use this visualising to optimise en-
ergy consumption and components and
to avoid unexpected faults.

References
1 Bartolini, Andrea, et al. "The D.A.V.I.D.E. Big-Data-

Powered Fine-Grain Power and Performance Monitor-
ing Support" 2018.

2 PRACE-3IP PCP For the award of a Pre-Commercial
Procurement contract concerning R&D services on
“Whole System Design for Energy Efficient HPC”
SCHEDULE B - DELIVERABLES FOR PHASE III, 2017.

PRACE SoHPC Project Title
Web visualization of Energy load of an
HPC system

PRACE SoHPC Site
CINECA, Italy

PRACE SoHPC Authors
Nazmiye Arslan, DEU,Turkey

PRACE SoHPC Mentor
Dr. Andrea Bartolini, UNIBO, Italy Nazmiye Arslan

PRACE SoHPC Software applied
Grafana, Python Cassandra KairosDB

PRACE SoHPC Acknowledgement
I would like to thank my site mentors at CINECA, who
has hosted me on this project, and the project mentors
who supported me.

PRACE SoHPC Project ID
1810

28

An alert system analysing data from
environmental sensors

Data
streaming
for IoT
Jakub Mojsiejuk

The EMB project aims to highlight
latest data engineering
techniques. Multiple
environmental sensors scattered
around the UK send various types
of data such as groundwater
levels, water pH or seismic data
that require high-efficiency online
streaming and anomaly detection.

The amount of data produced by
IoT devices apparently grows
exponentially.1 As a result, cur-
rent machines cannot keep up

with processing of the data. Therefore,
data scientists, engineers and software
developers must come up with even
more effective streamlining architec-
tures to compensate for the lack of
power. The term "data architecture"
reaches beyond the standard program-
ming concepts and might describe a
bulk, a suite of compatible solutions
that combined together create a reliable
platform for processing, analysing and
visualising data. Despite this appearing
oddly ambiguous, this is a true nature of
modern data solutions. They are highly
modular, tailor-made to fit a particular
solution and can include machine learn-
ing models, resilient NoSQL databases
or parallel processing pipelines. There
is a great selection of open source soft-
ware released and developed under
Apache licence, including Spark, Kafka,

Cassandra or Avro that are used in the
project described in this article.

In the particular example of the en-
vironmental monitoring baseline (EMB)
project, it provides a robust platform
for analysing data which is of an upper-
most concern. Many sensors suffer from
an occasional failure, for instance, due
to the low battery levels or a hardware
fault. Such events introduce anomalies
into the data sets and some of them
could trigger a false alarm. As a basic
example, water pH might have become
unusually high not due to some pollu-
tion in the river but because one of the
sensors operates on a low voltage for
some long period of time.

Therefore, we need a multi-layered
platform that ensures the following:
Fault-tolerance
When some major error occurs during
the processing, the architecture should
not crumble, but handle it gracefully
and proceed with the analysis.
Robustness against anomalies

Singular anomalies or null data points
cannot obscure the operation or affect
the result of analysis.
Persistence
All of the processed data, as well as the
raw data must be stored persistently,
so that the accumulated database can
serve as a learning material for other
analysis algorithms.
High reproducibility
High degree of modularity enables the
architecture to be containerised. Pro-
viding containerised applications assists
in security, easy automation and repro-
ducibility of results.
Easy scalability
A high-throughput architecture must be
a scalable one. It has to operate at a
standard rate, regardless of the num-
ber of data sources. Whether it is 10 or
1000 environmental sensors, the data
flow must be swift, quickly processed
and reliably stored.

29

Methods and software used

A great advantage of modern data ar-
chitectures is their modularity which
roughly means that instead of one huge
and monumental bulk of code, we des-
ignate the particular software function-
alities to the highly specialised services
and applications. We can develop soft-
ware in the most efficient frameworks
for these specialised services. From both
the design standpoint and the devel-
opment approach, modularity provides
much needed flexibility and workload
division. It also allows for convenience
when explaining the resulting frame-
work, because we can describe each of
the components separately, without ref-
erence to the actual data abstraction
and all relations will still make sense.
We will go through the most important
constituents of the system, laying out
its role and significance in the bigger
picture.
Apache Kafka
Kafka is the heart of many systems.

At its base, it is a communicating ser-
vice - some applications send messages
and other receive them. However, the
way Kafka is constructed allows for a
faultless communication between ser-
vices. You can think of Kafka as a typ-
ical messenger application like, for ex-
ample, WhatsApp. We have producers
that put serialised, binary messages into
topics, the equivalents of the conversa-
tion channels and consumers, that re-
trieve the data from those topics. The
Zookeeper server, an integral part of ev-
ery Kafka communicating system, pro-
vides the synchronisation of messages
and settings across the applications.
Why is Kafka is so indispensable for our
architecture? Imagine that we need to
write different parts of our software in
different languages, frameworks, tech-
nologies, even sometimes for different
operating systems - all of that to pro-
vide the aforementioned modularity. En-
vision further, that it needs to operate at
the same time, be fault-tolerant at high
rate of data transmission. Keeping in
mind, the different standards for each of
the used technologies, that is a textbook
software engineer’s nightmare. Thus,
by using a specialised service, with a
standardised, widely supported, almost
language-agnostic, customised messag-
ing like Kafka we have just saved our-
selves much time and most importantly
- our sanity.
Apache Avro schemas
In order to enhance Kafka’s perfor-

mance, we use Avro schemas. Schemas
serve as an additional protection against
invalid data formats. Since we will put
our environmental readouts into the
database, the proper database format of
the data has to be ensured. For example,
we would not like to have time stamp
to be null, because in the later stage,
querying the data from the database
using time aggregation will not return
all results due to ill-formatted values.
For similar reasons, we need to know
what structures represent the data that
is currently being fed into a given Kafka
topic - pure Kafka messaging happens
solely via serialised, binary strings - no
mention of integers, floats or boolean.
Therefore, schemas serve as structures
that hint the Kafka Consumers on how
to interpret the binary data that has
been fetched from the topics.
Cassandra database
We use a distributed, no-SQL database
to persistently store the environmental
data. The Cassandra project, although
still very early at the maturity timeline,
possesses a valuable advantages such as:
multinode data storage which comes in
handy for delocalised EMB databases
in the future, quick atomic read/write
that ensures that all writes and reads
happen almost as transactions - when
one process reads the data and the sec-
ond modifies it, such a situation will not
cause undefined behaviour as it some-
times happens in other no-SQL database
architectures.
Singularity containers
For the last several years, container
services have been gradually gaining
on significance. They combine both
the usability of the virtual machines
while maintaining lightweight distribu-
tions and a quick setup-up time. Such
an impressive performance have been
achieved thanks to the introduction of
c-groups to the Linux base kernel fea-
tures. In a nutshell, there was a way
of separating the resources of the host
machines programatically, without emu-
lating the guest operating system. Con-
tainers run the container daemon that
acts as a membrane for container appli-
cations to communicate with the host
kernel. There is a very pronounced dif-
ference between Docker and Singular-
ity containers. While Docker is currently
the most popular container service, for
HPC applications we use Singularity in-
stead and there is a number of reasons
why Singularity has an advantage over
Docker in such a context. Usually, the
standard resource allocation on HPC

happens not via virtualisation but via
direct assignment of these resources
which means that the user maintains
the user permissions he/she had on the
login node. In other words, there is no
elevation in user capabilities when the
resources are assigned and hence many
struggle to use the full potential of the
data architectures on HPCs. This is a
serious problem since most services re-
quire root privileges to run. Docker is
designed to run from an administrator
context - as it is a natural way of pro-
viding production environments. Here
comes the great feature of Singularity
- containers do not run with root privi-
leges but can stilluse external applica-
tions that were run from the context
external to the container’s namespace.
Furthermore, Singularity enables access
to shared networking context or the
root file system of the host OS. On the
other hand, in Docker we have to spec-
ify the exposed ports and isolate the
disk volumes in advance and even then
they will exist exclusively in the con-
tainer context i.e. we won’t be able to
reference them outside the container or
communicate with the host applications.
So how do we actually use the contain-
ers? We define something we call a Sin-
gularity file, equivalent to Dockerfiles
in Docker. In that file we simply define
our container by specifying: the system,
installed applications, environment vari-
ables and procedures for pre- and post-
installation setup.
Spark
Spark is a framework for large-scale

processing. It enables parallel code exe-
cution and provides libraries to handle
large chunks of data. In the EMB project
we have decided to write the Spark code
in Scala language that exhibits the func-
tional nature of parallel processing. Par-
ticularly, we have implemented a SH-
ESD algorithm using Spark.

SH-ESD

Anomaly detection is a really important
topic in real time data analysis. Coming
up with a robust algorithm that is not
heavily solution specific is an extremely
difficult task. It is actually quite interest-
ing to investigate a plausible algorithm
development and reasoning. Standard
real time-data analysis requires the time
windows to operate - since we want to
predict the future or learn about the cur-
rent state in a greater detail, we need
to have a reasonable model - that has
at least some noise removed. Then we

30

Comparison between Docker and Singularity. While Docker is easier to set up, Singularity allows for greater integration with host system
resources. However, the future of containers is container orchestration, and currently Singularity does not support any orchestration at
all.

might apply 3σ rule to filter the outliers.
One way to do so is using the running
average. As we move in time, we use n
values to calculate the current one - and
it is easily expressed mathematically:

z(t) =
1

n

n−1∑

k=0

x(t− k)

Fair enough, but we can equally easily
imagine, that even in the simplest case
- an extreme value in our data set ap-
proaching infinity completely obstructs
the result. We expect the moving av-
erage to reflect a pattern in our data,
filtering some of the white noise. There-
fore, a more robust technique is used,
namely PEWMA that stands for Proba-
bilistic Exponentially Weighted Moving
Average and basically can be written as
let Pt = Pr(x = x(t)|x(t) ∼ X)

z(t) =





z(t) = x(t), t = 1

z(t) = (1− βPt)x(t)

+(βPt)z(t− 1), t > 1

It roughly means that the current value
of the average is dependent on the

present value but also on the last one
- all of that mixed with the weighted
probability (assuming that x(t) can be
modelled by some X distribution). But
then again, despite the modification of
the original moving average, we are not
able to provide a reliable smoothing -
for example, a luxurious assumption
that x(t) ∼ X is unlikely to take place.
However, last year, engineers at Twit-
ter have developed an advanced model
called SH-ESD for detecting anomalies
in any type of real-time data.3 SH-ESD
stands for Seasonal Hybrid Extreme Stu-
dentized Deviate and the name pretty
much says it all. The approach assumes
hypothesis testing. As in standard statis-
tical test we have null and alternative
hypothesis:
H0: no anomalies in the data set
H1: k anomalies in the data set
and to reject the null hypothesis we
will use the t-student test. In each itera-
tion, we check for anomalies, asking the
statistics to reject the hypothesis for the
anomaly i = k, k − 1, ..., 1. Like in clas-
sical t-student test, our value of lambda
is expressed as λ ∼ f(n, k, tp,n−k−1) -

so very much with each iteration there
is a greater chance of the next anomaly
being not rejected since we decrease the
degrees of freedom thus increasing the
value of λ. We compare λ against crit-
ical value Ck = maxk|xk−xmean|

s where
s is variance. If λ > Ck then the null
hypothesis is said be rejected. Now, all
of that above is the ESD part of the algo-
rithm. There is also a problem of mean
robustness - as mentioned in the mov-
ing average discussion above. We can re-
place the mean with MAD which stands
for Median Absolute Deviation (MAD)
- for it happens that median is much
more robust than the standard mean
in tolerating extreme values, providing
we have more non-extreme values than
we have extreme values (speaking pre-
cisely, at least 49 percent more). Simple
definition of MAD:

MAD = mediani(|Xi−medianj(Xj)|)

Whatsmore we can further estimate
standard deviation using mad:

σ = b×MAD

31

The schema registry provides an appropriate schema for Kafka Consumer to interpret data

where b = 1.4826. Hence, from now on,
we use MAD instead of mean. Standard
deviation estimate is of additional use,
if we want to put an extra constraint
on anomalies by utilising 3σ rule and
also as a terminating condition to guard
against false detection of monotonous
data patterns. (A hint: replace s, xmean

in Ck for σ and mad). We have all nec-
essary steps to reproduce the SH-ESD
algorithm - for this particular algorithm
we have to assume that the data model
is additive i.e.

X = S + T +R

and also that there is fewer that n
2 − 1

anomalies in the data set where n is
the number of data points. To decom-
pose the series into its constituents we
use STL which is Seasonal-Trend Lowess
and it is an algorithm that employs the
use of lowess - local regression with k-
means algorithm to extract trend and
seasonality. For more details on models
and STL go to the notebook study here.2

Then for each step (number of steps
equals the number of expected anoma-
lies), we extract the seasonal element
(hence seasonal in the name), compute
the median of the data, then compute
the residual by Rx = X−Sx−Xmedian.

Finally, we perform the hypothesis test-
ing on Rx using the ESD statistics that
we have derived above. Notice how
Xmedian serves as a sort of trend re-
moval. And that’s all when it comes
to SH-ESD. Despite being complicated,
which rarely works in the algorithm
world, SH-ESD is extremely effective
and robust - hence its widespread use
for the big data analysis.
Discussion & Conclusion
Concluding the above outline, it can be
intimidating when faced with a chal-
lenge of designing an effective pro-
cessing framework. However, there are
some tools available that will come
handy regardless of the particular use
case. Naturally, there is no good data-
agnostic system, so a lot of thought has
to be put in visualisation, analysis and
synthesising the data sets. This is also
the case with EMB project - all sorts
of different data types require different
management approaches. Future work
can therefore focus on integrating a
data analysis and visualisation system
as a separate module in the framework.
Acknowledgements

I would like express gratitude to
the whole EPCC staff, with special
thanks for Dr Amy Krause and Dr Rosa

Filgueira for supervising the project.
Special thanks go to British Geological
Survey for putting the environmental
data for public usage.

References
3 J. Hochenbaum, O. S. Vallis, and A. Kejariwal, ‘Auto-

matic Anomaly Detection in the Cloud Via Statistical
Learning’, arXiv:1704.07706 [cs], Apr. 2017.

2 https://github.com/LemurPwned/emb_environment/
blob/master/SH-EHD.ipynb

1 Stack, T. Cisco blog: Internet of Things
(IoT) Data Continues to Explode Exponen-
tially. Who Is Using That Data and How?
https://blogs.cisco.com/datacenter/internet-of-
things-iot-data-continues-to-explode-exponentially-
who-is-using-that-data-and-how

PRACE SoHPCProject Title
Official title of the project

PRACE SoHPCSite
University of Edinburgh, Scotland

PRACE SoHPCAuthors
Jakub Mojsiejuk, AGH University of
Science and Technology, Poland

PRACE SoHPCMentor
Amy Krause, University of Edinburgh,
Scotland Jakub Mojsiejuk

PRACE SoHPCContact
Jakub, Mojsiejuk, AGH University of Science and
Technology, Poland
E-mail: jakubmj@student.agh.edu.pl

PRACE SoHPCProject ID
1811

32

Job Scheduling Simulator for a HPC system,
with an in depth look at the algorithms

Job
Scheduling
Simulator
for HPC
Conor O’Mara

The study of how jobs get allocated to
different nodes could maximise the
usage of HPC resources. This project
explores this by testing different job
scheduling algorithms.

fig2
A diagram of jobs running on a HPC machine, with certain
nodes left vacant while others performing multiple jobs. Note
how the diagram highlights the time spent Reading and
Writing, this can be reduced by using NNVRAM if the same
nodes are used again. This is one of the topics of investigation
of this project.

Introduction

High Performance Computers
consist of many nodes which
themselves consist of many
processors. When a person

wants to do some work on a HPC sys-
tem they are allocated some nodes on
which they can run their code for what-
ever their purposes may be, a person
may be given 8 nodes typically. To give
some scale about the capacity of the
HPC system called ‘Archer’ at EPCC, it
has 4920 nodes on which users can run
simulations, calculations or whatever
their desire may be. Each node has
24 processors, so that’s over 100,000
processors.
There are lots of jobs running on Archer
all the time, and also lots of requests for
nodes to be allocated. So it is of vital
importance to study how these nodes
are allocated to different users so that
we minimise the number of inactive
nodes during a time slot and maximise
the number of jobs performed.
Different users may request different

numbers of nodes (depending on the
size of their project) and different
lengths of time for how long they will
need them. Suppose Alice requests
100 nodes for 8 hours and then Bob
requests 10 nodes for 2 hours. If we
were to operate on a first-come first
serve basis (a very näive approach),
then both Alice and Bob must wait for
the 100 nodes to become free before
Alice can run her jobs and then Bob can
run his. However, suppose 20 nodes
were free the whole time and Alice
must wait more than 2 hours before
100 nodes are free to begin her job. A
more efficient algorithm would allow
Bob to skip Alice in the queue and let
him perform his job on these nodes that
she can’t use. He will not be delaying
the time at which she begins her jobs as
she will still be waiting for the other 80
of the 100 nodes to become free when
Bob is finished. This is a very simple
two job example to demonstrate how
we can have 2 different job scheduling
algorithms. Clearly the second algo-
rithm will reduce the overall time to

perform the two jobs in this situation.
This algorithm is called backfilling but
I will explain this in detail later. So in
summary, the HPC simulator enables
the study of behaviour inherent in a
HPC system without using up precious
node time.

HPC Simulator

In this project, we use a HPC system
simulator to test different job algo-
rithms. Why so? HPC systems are ex-
pensive and in high demand. So in or-
der to avoid using up precious nodes re-
sources, a simulator of a HPC has been
developed. The goal of the project is
to use the simulator to test different
job scheduling algorithms to assign jobs
to nodes so that we can maximise the
number of jobs completed on the HPC
system in a certain time period. Equiva-
lently, this also means to minimise the
time for which nodes are left vacant in
the same time period.

33

Figure 1: Design on the simulator and the main three modules and how they connect to the queues, archives and models.

Simulator design

The HPC simulator uses multi-
dimensional arrays to represent the
nodes and if they are busy or vacant as
a function of time. This diagram con-
veys a nice way to visualise this. Every
Job is specified by its id, size, arrival
time, requested time to run, application
name, application arguments, queue
name and arguments related to job
scheduling.
Currently, we use a fixed runtime for
each job trace, and cannot simulate in-
formation on execution such as length,
disk IO operations, size of input and
output data, all of which help deter-
mine job execution time on the given
resources. Rather here, each job has a
fixed runtime, however in future the
simulation of job execution would be
an important addition.

There are 3 main modules to the
simulator;

• Job Submission
• Job Scheduling
• Job Execution

Job Submission
The job submission module contains

the workload models and workload
archives. Testing different synthetic
workloads gives a more rigorous ap-

proach analysing algorithms. We will
discuss this more in the next section.
Job Scheduling
The job scheduling module contains

the job scheduling and task mapping
algorithms. Task mapping determines
which compute nodes to run jobs on.
The scheduling algorithms are run in a
separation simulation process.
Job Execution
Finally, the job execution module con-
tains the simulator’s communication
and computation models. Finished jobs
are placed among all finished jobs for
statistics collection.

Workload Models

Our job submission module is served
by parallel workload archives from logs
of job traces on ARCHER. Furthermore,
more variety for testing different algo-
rithms can be gained by using workload
models. For example, one could have a
synthetic workload with an exponential
distribution for job inter-arrival time
a normal distribution for job size and
runtime. This would cause an initial
bottleneck.
Another example, plotted below is one
of the first such models published by
Calzarosaa Serrazi (1985). The job ar-
rival process is a function of the time of

the day. The dip that occurs in this plot
mimics the lunch time break in the day.
The formula looks to have been gener-
ated by multiparameter regression. But
this model is underspecified, it does not
give job runtimes or specify the number
of nodes for each job. Many current
models do, and come with written code.

Job Scheduling Algorithms

Initially the simulator only had the
first-come-first-serve(FCFS) algorithm.
In this project we strive for better per-
formance, so let’s look at some other
algorithms. First off, we have a slight
adaption on FCFS, with a best fit which
goes to the next job in the queue if the
head of the queue can’t run because
of lack of resources. Next, we have
shortest/longest job first (SJF/LJF). The
score-based priority algorithm sorts jobs
according to scores where we incorpo-
rate a fair share scheduling weight to
adjust score based on the total num-
ber of compute nodes requested by the
user, the number of jobs they are run-
ning, their recent history and the frac-
tion of their jobs completed. Next, we
have multi-queue priority which incor-
porates numerous queues with different

34

Figure 2: Plot of the function from Calzarossa Serrazi’s paper that mimics job-interarrival time. Here time has been normalised by the 12
hours of the day and the origin has been translated to be at the midday which explains why time goes negative. The two drop in the plot
mimic overnight inactivity and a drop around lunchtime.

levels of priority and there are certain
conditions required to be in each queue.
Finally, we have backfilling. Here we
opportunistically run low priority jobs
when insufficient resources are avail-
able for high priority jobs. That’s our
list of job scheduling algorithms which
sort the order of the job waiting queue.
The scheduling algorithm runs on job
events such as when a job starts, fin-
ishes, aborts or arrives and if there are
no events in the past 10 seconds it runs
anyway.

Table 1: Table of algorithms

List of Algorithms

Job Scheduling Task Mapping

FCFS w/ best fit Random
Shortest Job first Round-robin
Score based priority Dual-End
Backfilling Cartesian Split

Task Mapping Algorithms

The task mapping algorithms deter-
mine which compute nodes to run
the job on. The goal is to minimise
the communication overhead and re-
duce cross-job interference. Random
mapping is considered the worst case
scenario. Round-robin keeps the nodes
in an ordered list and when a job
ends the node is appended to the list.

Over time the fragmentation of the list
becomes significant and the communi-
cation overhead drastically increases.
For Dual-End we set a threshold value
for time which groups every job into
short or long. Short jobs search for un-
occupied nodes from one end of the list,
long jobs search the other end. Carte-
sian Splitting is a type of topological
ordering algorithm which is much more
complicated than the previous three
and takes into account the network
design of ordering the nodes.

Backfilling Algorithm

The backfilling algorithm works like so:
Each job has a priority value P (J) with
the wait queue being ordered in terms
of highest priority. The job of the highest
priority P (J1) gets the resource reser-
vation but this is cancelled when a job
with higher priority arrives that exceeds
that of P (J1) if it is still in the queue
and hasn’t been submitted yet.
The backfilling algorithm calculates the
priority of each job J by calculating
a score for 5 heuristics and summing
them up. They are:

• Minimal requirements

• Ageing

• Deadline

• Licenses

• Wait minimisation

Minimal Requirements
Minimal requirement specifies details

like the number of nodes and the num-
ber of software licenses on a machine.
Ageing
This heuristic is introduced to avoid

job starvation. It works as in the below
formula where age_factor is a multi-
plicative constant of choice.

P (J)+ = age_factor × age(J)

age(J) = wall_clock−submit_time(J)

Deadline
The goal is to maximise te number

of jobs terminated by their own spec-
ified deadlines. A threshold value is set
for the difference between the deadline
the time it takes to complete the job.
When the difference goes below this,
the heuristic is calculated like so.
Licenses
License heuristics gives a higher score
to jobs requiring critical resources on
nodes such as NVRAM which hasn’t
been implemented yet.
Wait Minimisation
Minimises the wait time for jobs with

the shortest execution times by a boost
value, which is the backfilling compo-
nent of this algorithm. In the below
formula ex_exec(T) is each job’s spe-
cific execution time and min_ex_t is the

35

Figure 3: Visualisation of the simulator on Vampir. You can see jobs running in green and vacant nodes in white. The nodes are a function
of time in this plot.

minimum of all the jobs in the schedul-
ing queue. The user sets the value of
priority_boost_value.

P (J)+ = priority_boost_value× min_ex_t
ex_exec(J)

Conclusions & Future Work

We covered a study of some job schedul-
ing and task mapping algorithms and
had a comprehensive look at the back-
filling algorithm. Some of them have
been implemented into the simulator,
however due to time restraints there
has been no experimentation or test-
ing of their performances. This would
be quite a significant task as it is en-
visaged lots of different parameters in
the backfilling algorithm would have to
be tweaked depending on the workload
model used.

Some possible routes of future work
are to:

• Create a visualisation for the sim-
ulator.

• Create experiments to test and
analyse the performance of the al-
gorithms.

• Incorporate using NVRAM (Non-
volatile random access memory)

technology into the algorithm.
NVRAM is a new technology that
retains its information when the
power is switched off, this will re-
duce time spent writing and read-
ing on the nodes. The algorithm
would have to be adapted through
such that jobs dependent on previ-
ous jobs’ results are allocated the
same nodes in order to make use
of NVRAM. This would be imple-
mented thorugh the use of a li-
cense heuristic where we would
just make a license heuristic for
jobs dependent on previous jobs
and so that they could use the
same nodes, perhaps the original
job could would have a less re-
strictive license but once it has
been assigned a node then sub-
sequent jobs that are dependent
on it would have to be assigned
the license of that node. (this is
just how I would imagine it, it has
not been implemented).

References
1 Dimitriadou, Karatza (2010). Job Scheduling in a Dis-

tributed System Using Backfilling with Inaccurate Run-
time Computations

2 A.D.Techiouba,L.Ricci (2008) Backfilling Strategies
for scheduling streams of jobs on computational farms

3 M.Abu Obaida, J.Liu (2017) Simulation of HPC job
scheduling and large-scale parallel workloads

4 H.Rajaei,M. Dadfar (2006) Comparison of backfilling
algorithms for job scheduling in distributed memory
parallel system

PRACE SoHPCProject Title
Scheduling on Novel and Advanced
Hardware

PRACE SoHPCSite
EPCC, Scotland

PRACE SoHPCAuthors
Conor O’Mara, [Trinity College Dublin]
Ireland

PRACE SoHPCMentor
Dr.Nick Johnson, EPCC, Scotland

Conor O’Mara

PRACE SoHPCContact
Conor, O’Mara, Trinity College Dublin
E-mail: omarac@tcd.ie

PRACE SoHPCSoftware applied
NEXTGENIO, Paraver, OTF2

PRACE SoHPCMore Information
http://www.nextgenio.eu/

PRACE SoHPCAcknowledgement
I’d like to thank my supervisor Dr. Nick Johnson for all
the guidance through the two months, EPCC and the
NEXTGENIO group for the use of their facilities and
their friendliness. PRACE for giving me a place on the
Summer of HPC programme. Many thanks to Leon Kos,
Ben Morse and Stelios Erotokritou for all their work
with the training week, editing blog posts, emails and
the weekly web calls. Goodbye and thanks for reading.

PRACE SoHPCProject ID
1812

36

Parallel Computing Demonstrations on Wee Archie

Visualising
Computations
on a mini
supercomputer
Eva Havelková

In this project new demonstrations for a mini
supercomputer, Wee Archie, were developed to
show explicitly how parallel programs run. These
animations use LED lights connected to each node
of the cluster and provide a real-time visualisation
of parallel computations and communication within
the cluster.

Wee Archie, a suitcase-sized Raspberry Pi based cluster.

The rapid development of infor-
mation technology in the past
decades has brought about a
great hunger for experts in the

field of supercomputing not only in
academia but also among commercial
companies. To attract new talent to
this field we need to raise awareness
about supercomputers among students
early in their childhood to ensure this
progress continues in the future.

To bring the world of supercomput-
ers closer to students and the public,
Edinburgh Parallel Computing Center

(EPCC) developed a small suitcase-sized
supercomputer. It is built out of 18 Rasp-
berry Pi nodes and it was named Wee
Archie after the UK national supercom-
puter Archer. Wee Archie is taken to
schools and science festivals to demon-
strate what a supercomputer looks like
and it has become extremely popular
especially among kids of all ages.

A variety of programs
have been developed to
be run on Wee Archie,
however, they do not
specifically demonstrate
how parallel programs
work. Therefore, in this
project we focused on de-
veloping new programs
that employ the LED
lights connected to each

Raspberry Pi node on Wee Archie to
provide real-time visualisation of par-
allel computations and communication
within the cluster.

Entertain and educate

Having kids as the target audience for
education is a challenging task. The
goal is not only to teach them some-
thing in an understandable way but
more importantly to spark their interest.
Therefore, the first task of this project
was to develop very simple parallel
applications that would be interesting
enough to draw kids attention.

As a starting point, we decided to
use a database of tweets and implement
a parallel search in the database. This
embarrassingly parallel application can
demonstrate usefulness of parallel com-
puting while staying attractive for kids
as social media in general is a very pop-
ular topic these days.

We used the Python programming
language for the implementation. This
was to ensure that the code will be eas-
ily readable for novice programmers, for
example kids who already have some
knowledge of coding.

37

Build up a supercomputer

For development purposes one does not
really need Wee Archie. Smaller Rasp-
berry Pi based cluster can do the job and
even kids can build their own. What is
needed?

• 5 Raspberry Pis with power cables

• 5 micro SD cards with adaptors

• 5 Adafruit Mini 8x8 LED Matrix
Backpacks

• Ethernet switch

• 6 Ethernet cables

There are many tutorials on the In-
ternet providing instructions on how to
build and set up the cluster, for example
the EPCC ones.

In a nutshell, the set up includes in-
stalling the Raspbian operating system
on each Raspberry Pi, setting up net-
work infrastructure, creating a shared
directory for parallel programs and in-
stallation of any additional required
software on all Raspberry Pis.

Small supercomputer with LED lights build
out of 5 Raspberry Pi nodes.

Programming LED lights

The two main pieces of software needed
for programming the LED lights are:

• Adafruit Python LED backpack
library. It is a freely available
Python library for controlling LED
backpack displays on Raspberry
Pis and other similar devices.

• Python PIL (or PILLOW) library,
more specifically Image and Im-
ageDraw modules.

One possibility is to program the LEDs
directly with Adafruit library by setting
each pixel of on the LED matrix to
on or off. This might come in handy
sometimes but an even easier way of
doing it is to also make use of the
Python PIL library. It provides functions

for creating and drawing 8x8 1-bit
images that can be then printed on the
LEDs using the Adafruit library.

The following picture gives an example
of code employing the aforementioned
libraries to print a smile on a LED
matrix backpack.

Challenges

To make visualisations look appealing
we not only want to print images but
also to move them across the LEDs,
for example to scroll them over a LED
matrix. This can be done by creating a
sequence of images that, if displayed
in order one after another on the
LED matrix, appear to scroll over. The
Adafruit library comes with functions
that create such sequence out of a given
image.

Scrolling over multiple LEDs is a lot
more challenging task. To animate for
example point to point communication
between two nodes we would like an
arrow to move smoothly from one
LED matrix to another. This requires
synchronisations of more nodes of the
cluster which means we need to also
use MPI. A straightforward solution of
scrolling might be sending the images
that should be printed from one node
to another. This however, might not
result in a smooth scroll due to the
latency in communication.

To achieve smooth scrolling, it is benefi-
cial to make use of MPI communicators.
Simply, we create a communicator from
all nodes that should participate in the
scrolling and to avoid communication
we give all of them all the images that
should be printed to animate scrolling.
Additionally, we need to set a corre-
sponding offset according to the order
of the nodes. Using MPI Barrier func-
tion for synchronisation within the com-
municator will then guarantee smooth
scrolling across those nodes without af-
fecting the rest of the cluster.

Parallel search

The first application we developed was
a parallel search in a database of tweets.

At the beginning. the pro-
gram asks the user to type in
any string (a word) they want
to look for in the database.
Then it searches the database
for all tweets containing this
given string and as a result
it prints some statistics about
the tweets that contained
the string. For example how
many of them were marked
to be happy tweets.

This program employs a stan-
dard master-worker model where one
of the nodes acts as a master that co-
ordinates the computation and the rest
of nodes act as simple workers (slaves).
The program is flow as follows:

• Master reads a string from input

• Master broadcasts the string to all
worker nodes

• Each worker searches its part of
the database

• Master gathers the results back
and prints them to output

Two important parts of parallel comput-
ing are demonstrated with this program.
These are the distribution of work
among a number of working nodes and
collective communication. Namely a
broadcast function (master node sends
identical message to all workers) and a
gather function (master node collects
messages from all workers).

A couple of animations were used to
visualise both communication within
the cluster and the search itself. For
example, to visualise that a message is
being sent an animation of a closing

38

envelope is displayed followed by
arrow pointing where the message is
being sent. Analogically for receiving
a message. You can find a video of the
program here.

Parallel search on Wee Archie. Worker nodes
searching, top left master node is idle.

Outcomes

Besides the above explained Parallel
Search we have also developed a little
bit more advanced application that
is called Bingo game. It implements
a simple alphabetical bingo game on
the nodes of Wee Archie and aims to
visualise (among other things) point to
point communication. For more details,
have a look at this video presentation.

It was already mentioned that the first
part of outreach is to catch peoples eye.
So for science festival we also have
some fun animations such as scrolling
a welcome message over the LEDs of
Wee Archie or a really nice-to-watch
animation of a rainfall that can be used
as a screen-saver.

Further more, all the animation func-
tions for the LED lights have been
wrapped up as a class of functions.
These can be used in any Python pro-
gram and not only contain a variety of
demos for visualisation of parallel work
and communication but also other addi-
tional functions that may be useful for
further development.

Conclusion

The results of this project are outstand-
ing, many expectations have been ex-
ceeded. Compared to what has been
done so far the outcome is very innova-
tive. Until now, none of the simulations
developed for Wee Archie made use of
the LED matrices for real-time visualisa-
tion of computations. Also, the existing
simulations were usually way too com-
plex to allow novice programmers to
understand them. Now, we have sim-
ple yet attractive parallel programs that
fully utilise the LEDs to visualise main
building blocks of parallel computing.

For further development we provide a
set of functions (demos) for controlling
the LED matrix backpacks that is very
straightforward to add new functions to.
Some tips for follow up projects would
be, for example, focusing on more ad-
vanced parts of parallel programming
such as all to all communication pat-
terns or reduction functions.

PRACE SoHPCProject Title
Parallel Computing Demonstrations
on Wee Archie

PRACE SoHPCSite
Edinburgh Parallel Computing Centre,
United Kingdom

PRACE SoHPCAuthors
Eva Havelková, [MFF UK, Prague]
Czech Republic

PRACE SoHPCMentor
Dr. David Henty, EPCC Eva Havelková

PRACE SoHPCContact
Dr. Leon Kos, PRACE
E-mail: leon.kos@lecad.fs.uni-lj.si

PRACE SoHPCSoftware applied
Python, MPI, Linux, Adafruit, Raspbian

PRACE SoHPCMore Information
Adafruit Python OpenMPI

PRACE SoHPCAcknowledgement
I would like to thank everyone at the Edinburgh
Parallel Computing centre who helped me with this
project. Namely, my mentor Dr. David Henty and
co-mentor Dr. Oliver Brown for their willingness to
answer all my questions. I would also like to thank Dr.
Gordon Gibb and Dr. Alistair Grant for their help with
both software and hardware issues I had with Wee
Archie. Lastly, I would like to thank Dr. Mario
Antonioletti for keeping the spirits of our office up
throughout the whole summer.

PRACE SoHPCProject ID
1813

39

Investigating the effect of the oncogenic mutation E545K of the PI3Kα protein with enhanced
sampling MD simulations

Simulating the effects of
an oncogenic mutation
Pedro Santos

PI3Kα is the most commonly mutated
kinase in human cancers. The PI3Kα
E545K mutation causes a spontaneous
separation of PI3Kα subunits that causes
its overactivation. However, the
mechanism of this process is not known.
In this project, metadynamics simulations
and Principal Component Analysis have
been employed using HPC resources in
order to gain insights on the mechanism of
overactivation, needed for the efficient
design of new anti-cancer drugs.

Of the kinase mutations that
lead to cancer, those oc-
curing in the enzyme phos-
phatidylinositol 3-kinase α,

PI3Kα, are the most common. This en-
zyme catalyses the phosphorylation of
phosphatidylinositol 4,5-bisphosphate
(PIP2) to phosphatidylinositol 3,4,5-
trisphosphate (PIP3), which is essen-
tial for cell growth and survival.1 Fig-
ure 1 a) shows the molecular structure
and domains of PI3Kα. It is known that
the wild-type protein becomes active af-
ter binding to a phosphopeptide, which
causes a detachment of the nSH2 do-
main from the helical and kinase do-
mains (see Figure 1 a)).

One of the most common mutations in
PI3Kα is E545K (Figure 1 a)), which is
known to cause overactivation of the

protein. In this mutation the negatively
charged glutamic acid E545 is replaced
by a positively charged lysine (K545).
Because E545 is in the vicinity of an-
other positively charged lysine on the
nSH2 domain (K379), the two posi-
tively charged residues K545 (helical)
and K379 (nSH2) repel each other re-
sulting in a detachment of the helical
and nSH2 domains and to overactiva-
tion, similar to the effect of the phospho-
peptide mentioned above. However, the
exact mechanism behind this process at
the molecular level is not clear, and this
knowledge is of paramount importance
for designing anti-cancer drugs that can
target specific intermediate structures
observed along the overactivation pro-
cess.

Molecular dynamics (MD) simulations

is a powerful tool that provides a sys-
tematic approach to investigate the dy-
namics of proteins in atomic-level de-
tail. Previous simulations of PI3Kα bear-
ing the E545K mutation have shown a
spontaneous detachment of the nSH2
domain from the helical domain.2 How-
ever, this detachment process was only
observed in one instance. This is be-
cause large scale protein motions, such
as the one under study here, occur on a
timescale unattainable by standard MD.

In order to access the timescale of the
PI3Kα detachment, specific analyses
and simulation techniques have to be
employed. In this work, the main objec-
tive was to gain insights on the mecha-
nism of overactivation of PI3Kα bearing
the E545K mutation, through the use of
principal component analysis (PCA) and

40

Figure 1: a) Molecular structure of PI3Kα, showing the main domains, the site where PIP2 binds for the reaction and the area where the
E545K mutation is located. b) and c) show a zoom in the aminoacid 545 for the wild-type and mutant PI3Kα, respectively.

metadynamics simulations, two tech-
niques that allow a description of large-
scale protein motions, and at the same
time require HPC resources.

Methods

PCA is a widely used statistical tool that
allows the reduction of a large multi-
variate data set to only a few variables
describing most of the variation, called
principal components (PCs). In the con-
text of MD, PCA can be used to sim-
plify the description of large motions
observed in the trajectory.3 In this work,
the trajectory of the MD simulation of
PI3Kα with E545K mutation was ana-
lyzed by PCA, using the tools available
in the software GROMACS 2016.4.
Metadynamics4 is one of the so-called
enhanced sampling techniques, whose
aim is to accelerate the observation of
rare events in regular MD. The basic
principle is to fill the energy landscape
that is being explored in MD with Gaus-
sian functions, allowing access to differ-
ent energy minima, that are separated
by large energy barriers, as the simula-
tion progresses. Two collective variables
were used to describe the detachment
of the nSH2 and helical domains: the
distance between centers of mass of the
helical and nSH2 domains (CV1) and
the distance from the contact map of

the reference open state of the protein
(CV2). In this project, convergence anal-
ysis were performed for previously ob-
tained multiple walkers metadynamics
simulations of the wild-type and mutant
PI3Kα (8 walkers) as well as the genera-
tion of a parallel tempering metadynam-
ics simulation of the wild-type protein,
using GRNET HPC resources provided
by the Summer of HPC programme.

Figure 2: Scaling plot for the parallel tem-
pering metadynamics simulation of mutated
PI3Kα on ARIS (GRNET).

In addition, a parallel tempering meta-
dynamics simulation of the E545K mu-
tant protein was run for 44 ns with the
software GROMACS 2016.4 using the
PLUMED plugin, on the ARIS supercom-
puter. 20 replicas were used, with tem-
peratures between 300 K and 319 K and
exchanging configurations every 2000
steps. In order to determine the simula-

tion setup that gives the best use of the
available hardware, scaling tests were
performed with a single replica by vary-
ing the number of nodes used and also
the number of threads per MPI task. The
performance results are represented in
Figure 2. For a more efficient use of
computational resources, 4 nodes per
replica were employed, with 5 threads
per task.

Results and discussion

Principal Component Analysis

Figure 3: Vectors of the first principal com-
ponent (PC1) of the trajectory of PI3Kα bear-
ing the E545K mutation.

PCs are obtained from an eigenvalue
decomposition of the covariance matrix

41

of our data. As such they are associated
with an eigenvalue, which is related to
the percentage of variance explained by
the PC. From a plot of those eigenval-
ues we were able to see that 10 PCs are
needed to describe at least 85% of the
data, but if we apply the popular crite-
ria of looking at the link in the eigen-
value plot we conclude that PC1 should
already be appropriate. In fact, if we
draw the vectors that constitute PC1
in space, we find that they represent
a detachment of the nSH2 and helical
domains, with the former having the
greatest displacement (Figure 3). There-
fore, we can conclude that PC1 is a good
variable to represent the detachment
process, and could in fact be used as a
collective variable in the metadynamics
simulation.

Metadynamics

In order to determine if a metadynam-
ics simulation is converged and can be
safely analysed, three criteria must be
fulfiled:

Figure 4: Distribution of CV space explored
by each of the 8 walkers.

1) the entire space of each CV must
be fully explored during the simulation
time; 2) the height of the deposited

Gaussian functions must tend to zero
and 3) the free energy profile must re-
main consistent. In Figures 4 and 5, a
representative example for the multi-
ple walkers metadynamics simulation
of the mutated PI3Kα is shown. Figure 4
shows that all CV space is fully accessed
by all walkers during the metadynamics
simulation.

Figure 5: Free energy profile as a function
of each CV and every 30 ns of simulation.

By plotting the heights of the Gaussian
functions we observed that nearly all
walkers have Gaussian heights close
to zero at the end of the simulation.
However, one of the walkers seems to
present an exception, and as such the
simulation should be extended to con-
firm that the height of all deposited
Gaussians is nearly zero. Finally, Figure
5 suggests that the free energy profiles
on both CV spaces remain consistent af-
ter 300 ns of simulation, another indica-
tion of convergence. A similar scenario
was verified for the multiple walkers
metadynamics simulation of the wild-
type protein. However, on the parallel-
tempering simulation of the wild-type
PI3Kα the heights of the Gaussian func-
tions did not tend towards 0, and so this
simulation is not converged and should
be extended for more time before fur-
ther analysis.

Future directions

The PCA analysis performed in this
work can serve as a platform for fur-

ther metadynamics simulations, such
that the identified PC1 can be used as
a collective variable. Further PCA stud-
ies should be conducted for the wild-
type PI3Kα as well, in order to establish
the qualitative difference in dynamics
between the wild-type and mutant pro-
teins. Convergence analysis and energy
analysis should also be performed for
the parallel-tempering simulation run
in ARIS for the mutant PI3Kα, so that
meaningful conclusions can be drawn
about the free energy surface of this sys-
tem and how it links to its dynamics.

References
1 Lee, J. Y., Engelman, J. A., and Cantley, L. C., PI3K

Charges Ahead. Science, 2007, 317(5835), p. 206-
207.

2 Leontiadou, H., Galdadas, I., Athanasiou C., and Cour-
nia, Z., Insights into the mechanism of the PIK3CA
E545K activating mutation using MD simulations, Sci.
Rep., 2018, in press

3 Mueller Stein, S., Loccisano, A., Firestine, S., and
Evanseck, J., Principal components analysis: A review
of its application on molecular dynamics data, Annual
Reports in Computational Chemistry, 2006, 2, p. 233-
266

4 Barducci, A., Bonomi, M. and Parrinello, M., Metady-
namics, 2011, 1, p. 826-843

PRACE SoHPCProject Title
Investigating the effect of the
oncogenic mutation E545K of the
PI3Kα protein with enhanced
sampling MD simulations

PRACE SoHPCSite
Biomedical Research Foundation of
the Academy of Athens (BRFAA) and
Greek Research and Technology
Network (GRNET), Greece

PRACE SoHPCAuthors
Pedro Santos, University of Coimbra,
Portugal

PRACE SoHPCMentor
Zoe Cournia, BFRAA, Greece Pedro Santos

PRACE SoHPCContact
Pedro, Santos, Department of Chemical Engineering,
University of Coimbra (DEQ-UC), Portugal
Phone: +351 916 132 094
E-mail: pmsantos@eq.uc.pt

PRACE SoHPCSoftware applied
GROMACS, PLUMED, VMD

PRACE SoHPCMore Information
www.gromacs.org
www.plumed.org
www.ks.uiuc.edu/Research/vmd/

PRACE SoHPCAcknowledgement
My thanks to Dr. Zoe Cournia and the Cournia Lab
members, at BRFAA, for recieving me, to Ioannis
Galdadas for supplying metadynamics trajectories for
convergence analysis and for his support, and to Dr.
Dimitris Dellis at GRNET for his support and providing
access to the ARIS supercomputer.

PRACE SoHPCProject ID
1805

42

Appendix

Figure 6: Scree plot of the eigenvalues for the first 50 principal components of the mutant PI3Kα simulation (black line) and respective
cumulative percentage of variance explained (red bars).

Figure 7: Evolution of the height of Gaussian functions with simulation time for all 8 walkers of the multiple walkers metadynamics
simulation of PI3Kα with the E545K mutation.

Figure 8: Evolution of the height of Gaussian functions with simulation time for the parallel tempering metadynamics simulation of
wild-type PI3Kα.

43

Improving existing genomic tools for HPC
infrastructure

ABySS
Sequence
Assembler
Vladimir Nikolić

ABySS is a resource efficient software for
assembling DNA sequences from a large
number of short fragments. The project
consists of multiple stages and although
the main assembly part of the project is
efficient and well distributed, some stages
are not performing optimally and could be
optimised, which was my task!

A sequence assembler in bioin-
formatics takes thousands of
small fragments of DNA, with,
say, a hundred or two nucle-

obases length, and determines where to
place them on the whole genome. This
is a very demanding task, both algorith-
mically and computationally, as we can
be dealing with many gigabytes of DNA
information. The ABySS assembler that
I was working on builds a graph of how
these fragments are related and slowly
tries to connect them into a contiguous
sequence. As this graph is large and the
process takes time, it is split up into
computational nodes, each dealing with
its own part of the DNA. However, as
this is a multistage process, not all of
it is distributed across nodes, but only
the core. So the problem we are fac-
ing here is parallelising the rest of it, as
each stage takes considerable amount
of time.

Optimisation approaches

Here, I will describe how I have paral-
lelised Sealer, one of the final stages of
ABySS designed to fill in the missing
DNA data in the final sequence.

Sealer

As output of ABySS, we do not get a
single contiguous DNA sequence, but
instead, multiple sequences with some
data missing in them, which are called
scaffolds. Sealer’s job is to use whatever
unused DNA data we have from the
input and try to extend inwards the
ends of the gaps with missing data to
get a better sequence. The problem
is that Sealer is single threaded, and
is a bottleneck to the whole pipeline.
When trying to close the gaps, Sealer
tries several so called k values. A k
value determines the length of a kmer,
which is the length of a sample that
we use when dealing with DNA se-
quences. So the overall process consists

of trying to close the gaps with one
k value, then proceeding to close the
leftovers with the next one, and so on.

Figure 1: Scaffold - a DNA sequence with miss-
ing information.

OpenMP

Gaps are independent one from another,
and can be sealed in parallel. This is
where OpenMP comes in - it automati-
cally spawns threads in C++ code for
a given loop, and distributes the iter-
ations as equally as possible between
the threads. Tests have shown that the
multithreaded version of gap sealing
performs up to 10 times faster on a
24 core machine, however, the main
factor that determines the speedup is
the longest gap that needs to be closed,
as that is the bottleneck here.

44

1. Original: 192 mins, OpenMP: 39 mins, OpenMP + MPI: 34 mins

2. Original: 561 mins, OpenMP: 56 mins, OpenMP + MPI: 29 mins

3. Original: 968 mins, OpenMP: 447 mins, OpenMP + MPI: 408 mins

Figure 2: What we are most interested in is the difference in execution times. The charts on the figure show the comparison between the
original Sealer, the OpenMP (with 24 cores), and MPI (with 8 nodes) version respectively, for three different datasets, each increasing in
size, with the final one being the full fish genome.

MPI

This change distributes the workload of
Sealer to multiple computing nodes. In
addition to giving each node a pool of
gaps to close from the total, the work
is also split based on the k values -
every node tries to get a different one.
This gives a noticeable speed up, as
every k values requires a particular data
structure to be built for it, the so called
Bloom filter, so instead of having one
node build this for every value of k,
different nodes each build for the k
value they are working with.

It should be noted that MPI doesn’t
necessarily give much better results
than the OpenMP version, as particu-
larly long gaps determine the minimum
amount of time the job will take, below
which we cannot go, no matter how
much we parallelise.

Other attempts

In addition to improving Sealer, there
were two other unsuccessful optimisa-
tion attempts.

File reader

Because we are dealing with files up
to hundreds of gigabytes in size, im-
proving the speed of the code that
reads the files seems rational. With
that in mind, I integrated Heng Li’s
(github.com/lh3/readfq) kseq library,
written in C, designed to be one of the
fastest libraries for reading DNA files.
Benchmarks have shown that it is twice
as fast as the ABySS counterpart. How-
ever, after running the whole ABySS
pipeline, the difference in execution
time was only up to 10% and after

discussing the results, we concluded
it was not worth the additional code
complexity that it introduced.

Bloom filter

This is the aforementioned required
data structure, and it is a probablis-
tic set that can tell you whether your
data is in it but can give false posi-
tives. The purpose of a Bloom filter is
to trade correctness (because of the
false positives) for memory usage, as it
requires less memory than a tradional
set. When working with kmers, they are
often placed into this filter instead of
keeping them all in memory. Building
a bloom filter is multithreaded, but it
requires locking parts of it to ensure
correctness. The lock contention slows
things down a lot, so I implemented
a lockless version, where every thread
gets its own copy of the filter, builds it
independently and then merges with
the others in the end. This however,
only provided a speed boost if the filter
was not too large, as merging large
filters took too long, so the change was
not used.

Figure 3: The graphs show the difference
in how much a computing node is loaded
when running Sealer. The original Sealer
is single threaded (with the exception of a
spike at the start, which builds a required
data structure, and is multithreaded) and
the node is heavily underused. The graph
after it shows the OpenMP version, in which
the node reaches peak usage, as all of its
cores are running at one point. On the last
OpenMP + MPI graph, every node gets a
different color and after building a required
data structure, they are all fully used as they
seal the gaps.

45

Discussion & Conclusion

Other than the speed ups I have im-
plemented, we have uncovered a lot
of potential improvements for future
work. For example, a small subset of
the gaps being sealed are bottlenecks
as they take most of time. This is very
visible on Figure 2 on the third chart
- even though Sealer is parallelised,
it does not divide the execution time
by the number of threads and nodes
it is running on. A suggested solution
here is to limit the number of nodes in
the graph that are being traversed to
determine the gap sequence.

Another thing we have noticed, is that
there is a discrepancy between the esti-
mated length of the gaps being sealed,
and the length of actual sequences
Sealer fills them with. Figure 4 shows
the difference in the distances, where
ideally, the charts should overlap. This
means the sequences that are used for
gaps are not as accurate as they should
be.

Figure 4: Histogram of estimated (red) and
sealed (blue) gap distances.

Results

The outcome of the summer project is:

• Two pull requests accepted into
the original project:

– Sealer OpenMP paral-
lelization.
MPI is being phased out from
ABySS, so the MPI version of
Sealer was a demonstration
and not suitable for merging.

(github.com/bcgsc/abyss/pull/249)

– Sealed gap sequence file
output.
This change adds a com-
mand line option to Sealer
to let it write sealed gap se-
quences to a file during the
job, letting the user inspect
what is happening before ev-
erything is done.

(github.com/bcgsc/abyss/pull/247)

• Insight into file reader perfor-
mance.
It is not a bottleneck and further
optimizations do not provide a sig-
nificant improvement.

• Insight into bloom filter perfor-
mance.
There is some lock contention dur-
ing its construction, however, on
long jobs, it is not a major de-
termining factor of the execution
time.

PRACE SoHPCABySS
Sequence Assembler
Improving existing genomic tools for
HPC infrastructure

PRACE SoHPCSite
VŠB - Technical University of Ostrava,
Czech Republic

PRACE SoHPCAuthors
Vladimir Nikolić, School of Electrical
Engineering, Belgrade, Serbia

PRACE SoHPCMentor
Martin Mokrejš, VŠB - Technical
University of Ostrava, Czech Republic Vladimir Nikolićphoto

PRACE SoHPCContact
Vladimir Nikolić, School of Electrical Engineering,
Belgrade
Phone: +381 61 294 2579
E-mail: nv130344d@student.etf.bg.ac.rs

PRACE SoHPCAcknowledgement
I would like to thank my mentor, Martin Mokrejš, for
all the guidance on the project. I am also thankful to
Ben Vandervalk and Shaun Jackman, the original
creators of ABySS, for the feedback they have provided
on my work. And finally, thanks to PRACE, Summer of
HPC and IT4Innovations for the provided infrastructure
and accomodation.

PRACE SoHPCProject ID
1817

PRACE SoHPCReferences
Shaun D Jackman, Benjamin P Vandervalk, Hamid
Mohamadi, Justin Chu, Sarah Yeo, S Austin Hammond,
Golnaz Jahesh, Hamza Khan, Lauren Coombe, René L
Warren, and Inanc Birol (2017). ABySS 2.0:
Resource-efficient assembly of large genomes using a
Bloom filter. Genome research, 27(5), 768-777.
doi:10.1101/gr.214346.116

46

Adding Matlab functionality to a Hybrid Monte
Carlo graphene model and implementing the
Eig-CG solver.

Graphene
Models in
HPC
Janni Harju

Graphene, the the 2D wonder-material,
can be modelled using modern HPC
infrastructure. Functionality for analysis
using Matlab was added, and the Eig-CG
method was implemented.

Ever since the first paper1

on the electronic properties
of graphene, a nanomaterial
formed of layers of carbon

atoms in a hexagonal lattice, its curi-
ous electronic properties have led to
much excitement. Since methods for
producing graphene on an industrial
scale are still under development, com-
puter modelling plays an important role
in developing our understanding of this
"wonder-material".

At the Jülich Supercomputing Cen-
ter (JSC) in Germany, Smith & von
Smekal,2 amongst others, have devel-
oped Hybrid Monte Carlo (HMC) meth-
ods to calculate graphene’s electronic
properties using lattice-discretized
quantum field theory, a model widely
used to make particle physics predic-
tions using HPC. The aim of this sum-
mer project was to provide functionality
for exporting the fermion matrix to Mat-
lab, a programming language widely
used in applied mathematics. After this,
the Eig-CG method, an improved ver-
sion of the conjugate gradient (CG)
method,3 was implemented.

Introduction

The electrons in a graphene lattice are
quantum particles. This means that they
can best be described by probabilistic
models; the physical properties that we
observe (conductance, tensile strength
etc) are averages of the "fuzzy" be-
haviour of the particles involved. In
principle, to calculate this average in
order to describe graphene’s electrical
properties in time, we should there-
fore calculate every possible combina-
tion of movements of the electrons in a
graphene lattice. Of course, this is not
actually possible.

HMC simulations rely on generating
only a small number of the most likely
trajectories, and taking the average of
these. These likely trajectories are con-
structed by generating random small
"jumps" in time, corresponding to new
states of the electrons at set time inter-
vals. To ensure that we are construct-
ing a likely trajectory, the probability of
each jump is calculated, and the jump
is accepted only with this probability.

To calculate the probability of a
small transition in graphene, equations

of type
MM†x = b (1)

must be solved. Here MM† is a large
matrix, b is a known vector defined by
the states we are considering, and x is
an unknown vector we wish to find. For
physical models, the matrix is very large,
and supercomputers are usually needed
to solve these problems repeatedly.

The CG method is a commonly used
iterative scheme to estimate solutions x
to Equation 1. Iterative schemes are nu-
merical methods based on generating a
guess x0 for the solution. If the remain-
der r = b−MM†x0 is large, this guess
is improved (this counts as an iteration,
and the improved guess is labelled x1)
and if it is smaller than a set value (of-
ten called the tolerance) the guess is
accepted as an approximate solution.

For large scale numerical calcula-
tions like these, optimized, compiled
languages such as C++/C, or FOR-
TRAN are commonly used. They al-
low for fast calculations large matri-
ces, which is a prerequisite for perform-
ing HMC simulations. However, data
in such formats is not easily visualized
or manipulated. Many interpreted lan-

47

M =




S∓ +A D+
1 D−Nt

−D−1 S∓ +A D+
2

−D−2 S∓ +A
. . .

. . .
. . .

D+
Nt−1

−D+
Nt

−D−Nt−1 S∓ +A




S∓ =




−1 0 0 . . .
0 1 0 . . .
0 0 −1 . . .
...

...
...

. . .


 , D+

n =




eiφ − µ
0

eiφ − µ
. . .

eiφ − µ
0




,

Plots of the fermion matrix M (as defined on the left) and a decomposition using Matlab. The blue lines depict non-zero entries.

guages, such as Matlab or Python, on
the other hand, often allow the pro-
grammer to perform such tasks in a sin-
gle line of code.

Matlab Export

The HMC simulations conducted at the
JSC are run on C++. To allow for easier
and more intuitive exploration of the re-
sults, scripts were written to export the
results into Matlab.

A function calculating the numerical
fermion matrix for a given lattice set-up
was written. Since the fermion matrix
mostly consists of zeros, it was exported
into Matlab using sparse matrix format.
This means that a file with indices and
values for non-zero values is written.
Matlab features a compressed datatype
sparse array which quickly loads and
processes this kind of data.

Functions in Matlab for testing the
integrity of the matrix, visualising non-
zero elements and possible decomposi-
tions were written.

Eig-CG

Although the CG method is efficient for
solving Equation 1, note that, in general,
the expected number of iterations for

each different right-hand side remains
constant. The idea behind the Eig-CG
method, as proposed by,3 is to use the
first m equations to improve later "start-
ing point guesses". This adds overhead
and hence increases the time needed
to calculate the solution for the first m
equations, but after this, the iteration
count for later calculations can decrease
dramatically.

After the algorithm was im-
plemented, it was found that for
graphene’s fermion matrix the method
did not appear to significantly reduce
the iteration count. The reasons are cur-
rently unknown, and it is also possible
that despite best efforts to find mis-
takes in the implementation, something
might have escaped notice.

Conclusion

Over the course of this summer project,
functions exporting data for HMC sim-
ulations for graphene into Matlab were
written. The change of platform allows
for much easier evaluation and explo-
ration of the data.

Despite best efforts, the Eig-CG im-
plementation did not improve perfor-
mance. Checks will be done in the com-
ing weeks to see if this is because of a
mistake in the code, or because of some

yet unknown qualities of the matrix un-
der consideration.

References
1 K. S. Novoselov et.al.. (2004). Electric Field Effect in

Atomically Thin Carbon Films. Science, 306:666–669.

2 D. Smith & L. von Smekal. (2014). Monte Carlo sim-
ulation of the tight-binding model of graphene with
partially screened Coulomb interactions. Phys. Rev. B,
89:195429.

3 A. Stathopoulos, K. Orginos. (2010). Computing
and deflating eigenvalues while solving multiple right
hand side linear systems in Quantum Chromodynam-
ics. SIAM J. Sci. Comput., 32:439–462.

PRACE SoHPCProject Title
GraPhine meets CudeCD

PRACE SoHPCSite
Jülich Supercomputing Center,
Germany

PRACE SoHPCAuthors
Janni Harju, Finland

PRACE SoHPCMentor
Stefan Krieg, JSC, Germany Janni Harju

PRACE SoHPCContact
Janni Harju,
E-mail: janni.harju@yahoo.com

PRACE SoHPCSoftware applied
Matlab Intel Math Kernel Library

PRACE SoHPCMore Information
software.intel.com/mkl
https://www.mathworks.com/matlab

PRACE SoHPCAcknowledgement
Write any requested acknowledgements or thanks here.
Mentors should be asked for them too.

PRACE SoHPCProject ID
1818

48

Effects of GPU abuse on FMM performance

Effects of
GPU abuse
on FMM
performance
Wojciech Nawrocki

All existing implementations of the Fast
Multipole Method are either entirely
CPU-based or only use acceleration for
fragments of the algorithm. This work
evaluates the feasibility of executing the
entire algorithm on graphics processing
units, utilising device-wide task queues. A
preliminary implementation is evaluated.

What are the effects of elec-
trostatic or gravitational
interactions on a set of
N particles? This question,

also known as the N-body problem, is
at the heart of simulations in chemistry,
biology, materials science and other dis-
ciplines. Naive algorithms can evaluate
the resulting forces and potentials in
O(N2) time. For larger systems, which
are what is interesting to simulate in
practice, this quickly becomes computa-
tionally infeasible.

The Fast Multipole Method (FMM)1

is an algorithm capable of solving the
N-body problem in O(N) time, improv-
ing upon simpler algorithms by several
orders of magnitude for large systems.
Unfortunately, to achieve this improve-
ment in time complexity, the algorithm
utilises several elaborate, interdepen-
dent transformation passes. The result-
ing workload is irregular and difficult

to parallelise.
Graphics processing units (GPUs)

provide floating-point processing power
orders of magnitude larger than that
of CPUs. However, they’re designed to
execute regular, structured programs –
for example, squaring every element
in a large array. In general, the more
fine-grained (e.g. thread-wise) the con-
trol flow, the slower a GPU kernel will
execute. Moreover, code running on a
GPU is arguably closer to the metal
and grants the programmer more con-
trol over mechanisms such as memory
caching. At the same time, program-
mers need to be aware of many pitfalls
that can result in buggy or slow exe-
cution. For example, details of thread
scheduling are largely undefined and
cannot be relied upon.

Given the nature of the problem and
the hardware constraints, we’re sure to
be presented with an interesting chal-

lenge when trying to implement FMM
on GPUs.

Illustration of quadtree traversal

One part of the algorithm is espe-
cially troublesome – it involves travers-
ing a tree up and down, with compu-
tation on each level depending on re-
sults from the previous level. At the root
of the tree we have to wait on a sin-

49

gle node, which is a serious bottleneck.
Luckily, a good solution exists for CPU-
based implementations.

Another phase of the algorithm,
known as P2P is completely indepen-
dent from the tree traversal. This means
that we can execute it concurrently with
the root node computations, so that all
cores of the CPU are kept occupied. Af-
ter the root node has been processed,
each core can either start processing
lower levels of the tree or continue with
P2P.

We do not want to control this kind
of scheduling manually, so a task-based
scheduling system is used. A global task
queue (or several, for performance rea-
sons) exists. A task is simply a func-
tion/computation definition with some
associated input. Each task can also de-
pend on others, so that the others have
to finish before it can start. Computa-
tion at the root node, which depends
on all of its children, is an example
of this. The scheduling system auto-
matically chooses tasks from the queue
and assigns them to each available core.
Thanks to this, as long as all tasks in the
queue take roughly similar times, all
cores are kept occupied and no parallel
potential is wasted.

The implementation of a global
queue requires communication between
cores – we would be in trouble if two
grabbed the same task or corrupted
memory via a data race. On a CPU, this
can be achieved in many ways by us-
ing thread-safe structures and synchro-
nisation primitives. We choose specifi-
cally which ones we want based on their
performance characteristics. With the
right choices, this scheme can achieve
extremely high parallel performance
and scalability with the number of CPU
cores.

GPU-based implementation

Implementing the queue on a GPU is
a completely different story. The execu-
tion model on GPUs groups threads into
blocks (in CUDA; called work-groups in
OpenCL). Depending on the used frame-
work (OpenCL 1/OpenCL 2/CUDA), the
memory model is somewhere between
weak and undefined. Weak means that
memory operations across (and even
within) blocks are out-of-order, unless
special synchronisation instructions are
used.2 Undefined means that goblins
might jump out of the screen and eat
the programmer.3

CUDA thread model

Fortunately, a tasking system imple-
mentation whose authors dealt with
some of these problems already exists –
Whippletree.4 Versions for both CUDA
and OpenCL 25 are available. So the syn-
chronisation of the queue itself has been
dealt with, but to implement FMM we
still need to synchronise operations on
our own data – the tree, the particle in-
formation, etc. Moreover, Whippletree
does not support tasks that depend on
more than one other task. For example,
an operation on a parent node in the
tree might depend on all its children –
we need to make sure it only starts after
the others are done manually.

To decrease the necessary synchro-
nisation, I employed some memory re-
dundancy – the same data might exist in
two or more physical memory regions,
so that several threads can write to it
without racing. The results would later
be gathered into a single array.

Where synchronisation between sev-
eral tasks is required, simple spinlocks
in global memory are used. A spinlock is
simply a number that must reach a spec-
ified value before execution can con-
tinue. To wait on the spinlock, a thread
loops and continuously fetches the lock
until it obtains the desired value. For
this to succeed (and not deadlock), an-
other thread must eventually set the
lock to the right value. Unfortunately,
GPUs provide no forward-progress guar-
antees. This means that there is no guar-
antee of other threads ever executing
before we finish, and our thread might
end up waiting on the lock forever. To
alleviate this problem, we launch a pre-
cisely determined number of threads,
such that there are never more than

there are available cores. This works,
although to my best knowledge it is not
guaranteed to work (goblins).

The result of my work is a megak-
ernel implementation of the Fast Mul-
tipole Method. This means a single
GPU kernel executes the whole algo-
rithm, as opposed to splitting it into
several phases with a kernel for each.
It launches fine-grained tasks. For ex-
ample, each node in the tree is pro-
cessed by a separate task. This approach
works, but proves to have poor perfor-
mance. An analysis of the concurrent
behaviour and emitted machine code
reveals where the problems lie.

FMM computation time taken per number of
input particles, using a prototype GPU-based
implementation (log-log)

An important part of GPU program-
ming is register allocation. There is
a number of registers available, how
many exactly depends on the specific
device. Registers are used to store val-
ues of local variables. In CUDA, when
a kernel uses too many local variables
to fit into the registers, storage for the
rest is allocated in local memory – a
phenomenon known as register spilling.
Local memory is drastically slower to
access. When it is used many times
in a loop, a large negative impact on
program performance can be observed.
Megakernels tend to have a lot of code
by definition, so register spilling is of-
ten a problem. Whenever CPU synchro-
nisation overhead is not a problem, it
is better to split the kernel into smaller
ones.

Another issue guiding us towards
splitting the kernel is the difference in
memory requirements between phases
of the FMM algorithm. The amount
of shared memory available to each
block is allocated during the kernel
launch and cannot be changed after-
wards. However, after executing the first

50

few phases of FMM, a change in this size
using a second kernel launch would re-
sult in better memory usage.

Finally, the small size of tasks
presents an issue. The tasks have to
communicate their results to others,
and the queue has to synchronise its
state for each task. A communication
operation involves a global memory bar-
rier and cache flush, which have to tra-
verse the cache hierarchy, and hence
are slow operations. Increasing the task
size allows us to perform some of the
operations in memory regions which are
physically closer to the compute cores
(L1 cache/shared memory). This turns
out to substantially reduce the overhead
of memory operations.

Future work

Given all these problems, a new ap-
proach is needed to achieve optimal de-
vice utilisation and parallel efficiency,
utilising the redesign strategies outlined

above. Moreover, a better understand-
ing of the algorithm can be gained by
restating it in purely functional/data-
flow style and applying transformations
that do not alter the computation result.

For example, wherever the algo-
rithm stated this way utilises an abstract
reduction algorithm, any actual imple-
mentation of reduction can be used on
the GPU. This allows us to see which
parts of the algorithm allow a variety
of implementations, and hence the best-
performing ones can be chosen.

References
1 L. Greengard and V. Rokhlin. A Fast Algorithm for

Particle Simulations. Journal of Computational Physics,
1997.

2 J. Preshing. Weak vs. Strong Memory Models. Preshing
on Programming, 2012.

3 Undefined Behaviour. C2 Wiki, 2014.

4 M. Steinberger et al. Whippletree: Task-based Schedul-
ing of Dynamic Workloads on the GPU. ACM Trans.
Graph., 2014.

5 https://github.com/apc-llc/whippletree
https://github.com/apc-llc/whippletree-opencl

PRACE SoHPCProject Title
One kernel to rule them all

PRACE SoHPCSite
Forschungszentrum Jülich, Germany

PRACE SoHPCAuthors
Wojciech Nawrocki, University of
Edinburgh, United Kingdom

PRACE SoHPCMentors
Andreas Beckmann, FZJ, Germany
Ivo Kabadshow, FZJ, Germany Wojciech Nawrocki

PRACE SoHPCContact
Ivo Kabadshow
E-mail: i.kabadshow@fz-juelich.de
Wojciech Nawrocki
Email: wjnawrocki@protonmail.com

PRACE SoHPCSoftware applied
C++, CUDA, SYCL, LLVM, Python

PRACE SoHPCAcknowledgement
Huge thanks to Ivo, Laura, Andreas, David and
everyone else at JSC for being the most friendly,
welcoming groups of scientists in existence and for
helping me with everything from confusing algorithms
to broken bikes. My gratitude goes to the FZJ for
hosting me and the SoHPC organisers for making this
work possible.

PRACE SoHPCProject ID
1819

51

Hybrid-parallel Convolutional Neural Network
training

Scaling the
Neural Net
Hari Prasad Radhakrishnan

Studying the Convolutional Neural
Network (CNN) architecture that can
handle image recognition using deep
learning techniques and optimising its
compute-time performance by
implementing both model and data
parallelism.

Current convolutional Neural-
Networking (CNN) models
utilise data parallelism in or-
der to scale up and handle

large training sets. A drawback is that
beyond a certain compute capacity, no
further reduction in compute time is
possible. The only possible scaling up
happens with a larger training data-set.
Model parallelism is still experimental
and under heavy development. Lately,
machine learning frameworks have
started to adopt support for model and
model-data hybrid parallelism. Training
a Neural Net (NN) is compute-intensive.
With increasing neurons in output lay-
ers, a lot of features should be consid-
ered for classification. Therefore, involv-
ing deeper NN architecture. To over-
come this, all the possible scopes for
parallelism has to be exploited. While
training the model, the data is fed to the
input layer in batches and the weights
are updated using back propagation.

Objective

Analysing the bottle-necks due to large
input data-feed and simplifying the pro-
cess by splitting the model to improve
the compute-time and efficiently handle
the image classifier.

Description
Image recognition is the ability of a

mathematical model to classify objects
from the images, fed as input and la-
belling the content of images with meta-
tags. Tasks that are easy for humans to
intuitively solve are sometimes hard to
describe formally, as a set of rules to
automate a process. Image recognition
is one such processes.

Even if provided, this methodology
often fails due to the machine’s inabil-
ity to cognitively learn things. There-
fore, deep learning techniques are used,
where the mathematical model is de-
signed to resemble the way a human
brain functions.

CNN are generally used for image
recognition due to its sparse connection
between the layers when compared to
the previous Neural Nets, requiring mas-
sive amounts of power for its compute-
intensive nature.

CNN comprises of many layers
stacked between the input and the out-
put layer, known as hidden layers. The
input image is read as an array of pixels
along with the number of channels in
the input layer. The output layer con-
sists of the required labels in the form
of neurons, which can generally store a
value from zero to one.

Each layer consists of neurons that
are connected to the adjacent layers
with random weights. These neurons
act as a placeholder, storing values
based on the computations in the pre-
vious layers. These hidden layers are
comprised of Convolutional and fully-
connected layers.

The images are fed in batches to
the network. Based on the pixel val-
ues, if greater than the set threshold
value, the corresponding neurons are
activated. These fired neurons send
signals to the connected neurons in
the next layer. These neurons accu-
mulate the computed value based on
weight and value of the previous neu-
ron. The neurons keep firing in the same
trend until the output layer. Based on
the cost function, given as feedback
back-propagation pass is executed and
thereby the weights of the neural net
is updated. The training is performed
until the desired prediction accuracy is
achieved. Based on the number of la-
bels, size of the dataset, depth of the
neural-net, math-operations, the train-
ing time may vary.

There is a lot of research around
scaling out convolutional neural net-
works to a large number of compute
nodes, as the computational require-

52

ments when training complex networks
on large-scale datasets become pro-
hibitive. However, most if not all of this
work employ data-parallel training tech-
niques, where a batch of image sam-
ples is evenly split across the number
of workers. Then each worker indepen-
dently processes in the forward propa-
gation stage, with gradient communica-
tion among workers being performed in
the backward propagation pass.

Although this technique proved
quite successful, it has its own draw-
backs. One of the most important is that
scaling out to a very large number of
nodes implies increasing the batch size,
and this leads to more difficulty in the
Stochastic Gradient Descent(SGD) opti-
misation. The second drawback is that
data-parallel training works only if the
model fits in memory. However, when
using model parallelism, there is much
more communication involved, particu-
larly in the forward propagation pass.

Tensorflow, a data-flow program-
ming and machine learning framework,
is used to develop the neural net archi-
tecture. Using Horovod, a distributed
library built on top of Tensorflow, hy-
brid model and data parallelism can be
achieved. Since, the approach is still in
its developing stages, there is scope on
evaluating various schemes of the hy-
brid approach (model-parallel within
node, data-parallel across nodes), and
exploring its limitations and finding
smart solutions. The built computa-
tional model is then tested to a real-
world case, "World Flora Classification".
Data Parallelism
Across the data dimension, when the

workers are allowed to train on differ-
ent data samples, it is known as data
parallelism. Here, the workers must
synchronise the model parameters (or
the parameter gradients) to ensure that
they are training a consistent model.
They are efficient when the amount of
computation per weight is high, because
the weight is the unit being communi-
cated.
Model Parallelism
Different workers train different parts
of the model. They are efficient when
the amount of computation per neuron
activity is high, because the neuron ac-
tivity is the unit being communicated.

Implementation

The training time of the neural nets
can be optimised by sharing the
model across different workers. The
penultimate layer is generally a fully-
connected layer, where each of its neu-
rons are completely connected with all
the neurons of the output layer, mak-
ing it compute-intensive for the models
with larger neurons in the output layer.

For a Resnet-50 architecture, the
fully connected layer consists of 1024
neurons. For a model with 300,000 neu-
rons in the output layer, the storage
space only for the last two layers is al-
most two Gigabytes!

Therefore, by implementing model
parallelism for the last two layers, the
training time can be reduced.
Results
In order to measure the run times, the
Tensorflow and Horovod timelines are
used. For convolutional and fully con-
nected layers, the forward and back-
ward computation time with respect
to the input layers, and the backward
computation with respect to the filters
are separately tracked. For training the
model, the data parallelism approach is
utilised by using up to eight GPUs with
a weak scaling strategy. And then com-
pared with a hybrid model, where each
of the two CPUs connects to four GPUs.
Discussion & Conclusion
Implementing data parallelism for the
convolution layers and model paral-
lelism for the fully-connected layers,
reduces the train-time drastically. The
further scope for parallelism is utilis-
ing the previous layers for a different
mini-batch while working on the cur-
rent mini-batch of images.

Table 1: Fully-connected layer(FC)

ResNet50 Architecture

FC Output Memory

1024 300000 ≈2 GB

Table 2: Effectiveness of Parallelism

Comparison Chart

Workers Data Hybrid

1 1.00× 1.00×
2 1.72× 1.94×
4 3.03× 3.79×
8 5.40× 6.70×

References
1 Krizhevsky, Alex (2014). One weird trick for paralleliz-

ing convolutional neural networks

2 Ben-Nun, Tal and Hoefler, Torsten (2018). Demysti-
fying Parallel and Distributed Deep Learning: An In-
Depth Concurrency Analysis.

3 Qi, Hang Sparks, Evan R Talwalkar, Ameet (2017). PA-
LEO: A PERFORMANCE MODEL FOR DEEP NEURAL
NETWORKS

PRACE SoHPCProject Title
Hybrid-parallel Convolutional Neural
Network training

PRACE SoHPCSite
SURFsara, Netherlands

PRACE SoHPCAuthors
Hari Prasad Radhakrishnan,
TU Bergakademie Freiberg, Germany

PRACE SoHPCMentor
Valeriu Codreanu, SURFsara,
Netherlands

Hari Prasad
Radhakrishnan

PRACE SoHPCContact
Hari Prasad, Radhakrishnan, TU Bergakademie
Freiberg, Germany
Phone: +49 176 2677 1429
E-mail: hariprasadr1hp@gmail.com

PRACE SoHPCSoftware applied
Tensorflow and Horovod frameworks (python)

PRACE SoHPCMore Information
https://summerofhpc.prace-ri.eu/hybrid-parallel-
convolutional-neural-network-training/

PRACE SoHPCAcknowledgement
I would like to thank everybody at the SURFsara
Computing Centre for their help,and for making the
summer enjoyable. I would also like to thank my
mentor for his help with the project

PRACE SoHPCProject ID
1820

53

Algorithmic optimisation of inner and outer vector
space padding in a quantum internet simulator

Optimisation
of quantum
internet
simulator
Filip Kuklis

Because of many time-consuming matrix
operations and exponential data and time
complexity of quantum simulation, the
main idea was to find and optimise
suitable operations on accelerators. But
there is a bottleneck in transferring data for
the used sizes of matrices. We managed
to accelerate the simulation example from
two to five times depending on the number
of qubits and number of iterations only by
algorithmic optimisation.

Although the topic of creating
a scalable, efficient, quantum
simulator has been actively
pursued by multiple research

groups in the past years, due to the com-
plexity of the solution required (for ex-
ample multiple types of gates and for-
malisms) it is still very much open and
interesting at least for the HPC, Physics,
Chemistry and Machine Learning com-
munities. At the moment, there are mul-
tiple solutions available, varying in qual-
ity and completeness. What might be
one of the more interesting debates is
the suitability of GPUs for offloading
the dense kernels, considering the over-
arching issue of steep memory require-

ments resulting from the use of multiple
qubits (memory usage increase grows
exponentially).
Qubits and operations
Qubits and all operations on qubits can
be represented by vectors and matrices
and computed using vector-space opera-
tions. This vector-space is rises with the
number of qubits exponentially. There-
fore the computation time rises expo-
nentially.
Simulator
A simulator of quantum internet was
written in Cython language. Cython is
an optimising static compiler for both
the Python programming language and
the extended Cython programming lan-

guage (based on Pyrex). It makes writ-
ing C extensions for Python as easy as
Python itself.1 Cython allows:

• write Python code that calls back
and forth from and to C or C++
code

• adding static type declarations
• interact efficiently with multi-

dimensional NumPy arrays.
• use combined source code level

debugging to find bugs in your
Python, Cython and C code.

Idea
Because of big efficiency of matrix oper-
ations on GPU the idea was to write a
CUDA C code called from Cython code

54

and offload the operations on GPU. The
C code can be called from Cython with-
out copying matrices, but to compute it
on GPU the data have to be copied to
and from a GPU.

Offloading operations

The two most time consuming suit-
able operations were identified. The
matrix-vector multiplication and Kro-
necker product, both using complex
dense or complex sparse matrices and
complex dense vectors. The dense matri-
ces are used for small number of qubits
and sparse for bigger number of qubits.

Because of the fact that data has to
be copied to and from GPU we began
with a copy benchmark. Firstly, the sim-
ple parallel C code to compute complex
matrix-vector multiplication was writ-
ten for both sparse and dense matrices.
Then the CUDA copy benchmark was
written and the copy time of matrices
with given dimensions was measured.
However, the benchmark showed that
only copying the data to and from GPU
is much more time consuming than com-
putation on CPU. The Kronecker prod-
uct showed similar results.

In order to fully characterise the be-
haviour of our two operations we ran a
series of benchmarks for varying sizes
of dense and sparse matrices in order
to identify the threshold from which
it is beneficial to offload the computa-
tion to an accelerator. In the case of
the Kronecker tensor product we have
compared a Cupy implementation run-
ning on a Nvidia 1080TI with a Numpy
and Scipy optimised one running on
a 32 core Intel Boadwell CPU. The re-
sults show that when working with a
dense matrix of more than 1 million ele-
ments the GPU implementation is faster
than the CPU one and therefore prefer-
able. Unfortunately, due to the limita-
tions on the accelerator’s memory this
means that the class of problems that
is solvable is quite limited - between
approximately 20 to 25 qubits. In the
case of sparse matrices, even when us-
ing cuBLAS and cuSPARSE, GPUs were
outperformed by CPUs in all cases. Fu-
ture work for this project will include an
optimised implementation of the prod-
uct that leverages more of the archi-
tecture specific features, similar to the
work done.2

Data transfer optimisation
After this results we focused on the
matrix and vector data for multiplica-

tion. The vector represents the state
of the qubits and the matrix is op-
eration on this state. The state vec-
tor changes with every iteration, how-
ever that is not the case for the op-
eration matrices. These can be effec-
tively reused and cached. After this,
we focused only on copying the state-
vector. The result is shown in Fig.1. For
20 qubits the state vector has one mil-
lion elements and have 16MB(1m(num-
elements)*2(complex)*8(double)). The
one computation on CPU takes cca
2.25ms and copying data takes cca 3.3
ms(1.5ms to GPU 1.3ms from GPU).
We are getting 10-12GB/s which is 60-
75% of maximum bandwidth of PCI-
e16x3 which is normal for that small
data amount.

On the other hand, after looking on
Kronecker product data we found out
that for outer and inner vector space
padding the operation is computed al-
ways between matrix, which can be
dense or sparse, and identity matrix.

Figure 1: Copy benchmark result.

Vector space padding optimisa-
tion

Outer vector space padding
As we can see in Fig.4 for outer vector
space padding – we actually don’t have
to compute Kronecker product because
we can only copy data and create a new
bigger matrix. There are two versions
of outer vector space padding: before -
where there is an identity matrix oper-
ated with given matrix, and after - when
given matrix is operated with identity
matrix. We can see some pattern and
we have to compute only indexes to the

new matrix. The ratio between zeros
and non-zeros is quite big in the output
matrices and with bigger matrices, it
actually rises. Therefore the output ma-
trices are sparse matrices and the zeros
are not stored.

Inner vector space padding

On the other hand, the inner vec-
tor space padding is slightly different.
There is an operation between the iden-
tity matrix and dense matrix which is
split into smaller matrices and the Kro-
necker product is computed separately.
Then these matrices have to be stuck
together to one output matrix. But here,
we can see nearly the same pattern and
we can compute indexes from the origi-
nal matrix without splitting it and then
stick it together. In this case also, an-
other optimisation was implemented. It
is named as innerif because of compar-
ing of elements in dense matrix to zero
with if statement. This zeros are not
stored, but the Kron operation stores
this zeros. This optimisation may save
time in some cases but also saves mem-
ory consumption.

Result

The code for inner and outer vector
space padding was written in C. With
this optimisation our simulation exam-
ple runs from two to 5 times faster de-
pending on the number of qubits and
number of iterations.

Table 1: 20 qubits 10 iterations

Code op. Comp. time Speedup

original 32.5s 1x
outer 9.3s 3.49x
outer_inner 9s 3.61x
outer_innerif 7.5s 4.33x

Table 2: 6 qubits 5000 iterations

Code op. Comp. time Speedup

original 27 1x
outer 24.4 1.1x
outer_inner 10.9 2.48x
outer_innerif 11.2 2.41x

55

Figure 2: Computation time of simulation
in seconds. Original vs optimised code.

In the tables Tab.1 and Tab.2 we can
see computation time and speedup of
code with different optimisations. For
big matrices (20 qubits) the if optimi-
sation saves a lot computing time, but
for small matrices the if statement over-
head actually slows the code a bit.

Figure 3: Computation time of simulation
in seconds. Original vs optimised code.

On the other hand, this optimisation
saves memory in both cases.

References
1 About Cython,
https://http://cython.org/

2 B. Liu and C. Wen and A. D. Sarwate and M. M.
Dehnavi(2017) A Unified optimisation Approach for
Sparse Tensor Operations on GPUs.

3 PCI EXPRESS BASE SPECIFICATION, REV. 3.0,
http://composter.com.ua/documents/PCI_Express_Base_Specification_Revision_3.0.pdf

PRACE SoHPCProject Title
Large scale accelerator enabled
quantum simulator

PRACE SoHPCSite
SURFSara, Netherlands

PRACE SoHPCAuthors
Filip Kuklis, [association,] country

PRACE SoHPCMentor
Damian Podareanu, SURFsara,
Netherlands Filip Kuklis

PRACE SoHPCContact
Filip, Kuklis, BUT
Phone: +421 915 745 565
E-mail: xkukli03@stud.fit.vutbr.cz

PRACE SoHPCSoftware applied
NetSQUID

PRACE SoHPCMore Information
qnetsquid.org

PRACE SoHPCAcknowledgement
Write any requested acknowledgements or thanks here.
Mentors should be asked for them too.

PRACE SoHPCProject ID
1821

Figure 4: Example of outer vector space padding from left and from right.

56

RHadoop scripts for automatic storing,
preprocessing, and visualising big data using
clustering algorithms.

RHadoop on the
trial of radiation
clusters
Marcin Konieczny

Knowledge about radiation is extremely
important, because it has a big influence
on our lives. This project helps detecting
radiation doses in your area.

Big data is all around us. Most of
the people know how to send
an e-mail or a text message. Ev-
eryday we produce about 2.5

quintillion (218) bytes of data. There
are many types of it: from texts through
sounds and pictures.
The dataset which was the subject of
my work consist of 90 million ioniz-
ing radiation measurements provided
by ’Safecast’. It is a global volunteer-
centered citisen science project work-
ing to empower people with data about
their environments. Radiation has a big
influence on our lifes. There are many
units which describe radioactivity - all
of them are connected with energy. In
my project I used the Sievert unit.

1Sv =
1J

1Kg
(1)

Exposure to 100 mSv a year is the low-
est level at which any increase in can-
cer risk is clearly evident. A cumulative
1,000 mSv would probably cause a fa-
tal cancer many years later in five out
of every 100 persons exposed to it1 .
We have contact with radiation every-
where. Each year people receive about

3 mSv (global average) of ’background
radiation’ which is inhalation of air, in-
gestion of food and water, or cosmic
radiation from space. This value varies
among different places. For background
radiation we also include medical treat-
ments.

Table 1: Radiation doses per treatment

Name of treatment Radiation dose

(CT)–Colonography 6 mSv
(CT)–Head 2 mSV
Mammography 0.4 mSv
Chest X-ray 0.1 mSv
Dental X-ray 0.005 mSv

The presented data below, are a part
of the background radiation and shows
the doses people have received by a cer-
tain region, from the air.

1 Final product

The main goal of the project was de-
veloping RHadoop scripts for automatic
storing, preprocessing, and visualising
big data using clustering algorithms. An-

other aim was preparation of the PRACE
FutureLearn MOOC tutorial.

Tutorial

PRACE FutureLearn MOOC goal is to
help understand Hadoop and R. First of
all, participants have a chance to down-
load big data directly into their HDFS.
Then they will become acquainted with
the Hadoop environment and some R
scripts which are about statistics, clus-
tering, and visualisation. I supported
my work with AWK sciprts.

RHadoop

We use RHadoop for provide concur-
rent processing. RHadoop is a collec-
tion of R packages that allow users to
manage and analyse data with Hadoop.
Hadoop’s main component is a NameN-
ode, a master server that manages the
file system namespace and regulates ac-
cess to files by clients. There are a num-
ber of DataNodes, usually one per node
in the cluster, which manage storage.
With every DataNode there are several

57

associated computing cores. All files are
split into blocks which are stored in
DataNodes.

HDFS

Hadoop Distributed File System is a
system designed to run on commodity
hardware. HDFS is highly fault-tolerant
and is designed to be deployed on low-
cost hardware. It provides high through-
put access to application data and is
suitable for applications that have large
data sets.3

RHadoop parallelisation

Every file is divided into 128 MB block.
With every block there is a number of
cores provided by the resource manager
’YARN’. The important thing in this, is a
replication number which refers to the
number of copies of particular block in
a distributed file system. The higher the
replication number is, the faster the soft-
ware can work in parallel on one block
of file. Each block has different cores
assigned by YARN.

Map-Reduce

Map-Reduce is programming paradigm
with allows to process vast amounts of
data. Firstly, the master-node divides
data into smaller, independent chunks.
Then each worker node works on one
of them. It uses Map function which
performs filtering and sorting. The out-
put from Map goes to Reduce function
which performs join or summary oper-
ation (like searching for a minimum or
maximum) .

Table 2: Number of mappers and blocks by
size of the file

Size Mapper Block

12 MB 10 1
270 MB 223 3
10 GB 8305 77
12.5 GB 10266 96

K-means

K-means clustering is a type of unsu-
pervised learning. The main goal is to
find centroids with similar values. In my
case K-means operates on coordinates.
It looks for the closest neighbours on

the map and make from them one point
whose value is the average of its ele-
ments. It is very sensitive on the outliers
influence, that’s why preprocessing of
data is necessary.

Described above tools enable us to
process big data. Without any help from
them, processing is crunching the num-
bers. Thanks to RHadoop we can make
it much faster.

In this project, every mapper returns
100 of groups generated by K-means.
Then reducer joins them all. From the
biggest file, the program generates few
hundred of thousand coordinate points,
which are represent a neighbourhood.

Figure 1: Radiation in Europe

HPC effectivity

Figure 2: Time of processing in minutes and
file size with different number of DataNodes
in HDFS

Results

Europe is safe. European values usually
oscillate around 0-150 cpm (150 cpm is
about 0.45 Sv/h - yearly dose is around
4mSv). There are some places with con-
stantly a higher radiation level than the
average. This is particularly noticeable
at Central Bohemian Granite Highlands
in Czech Republic and in Massif Central
in France. It is caused by Granite moun-
tains. Granite contains thorium, radium
and uranium 238 which makes it a little
bit radioactive.

Nuclear plants

Another thing is the matter of damaged
nuclear plants and their surrounding ar-
eas. We feel the effects of disaster in
Chernobyl to this day. Despite the core
of the nuclear plant now present un-
der safety layer, the nearest area is still
under big influence of radiation doses.
Buildings nearby have devices detect-
ing value of 40Sv/h (equal 12.000 CPM,
yearly 350 mSv).

Cosmic radiation

Filtering higher values of the dataset
allows to show radiation measured dur-
ing flights. It is because of the influence
of the cosmic radiation. Also in the high
mountains areas we can see big change
compare to the average value of radia-
tion.

What Next ?

The project will continue. More data
will be used: like device Id (to elimi-
nate redundant observations) or dates
to show how radiation changed over
months.

References
1 Radiation limits: https://www.reuters.com/article/us-

how-much-radiation-dangerous/how-much-radiation-
is-dangerous-idUSTRE72E79Z20110315

2 Radiation doses in treatements:
https://www.radiologyinfo.org/en/info.cfm?pg=safety-
xray .

3 HDFS: https://hadoop.apache.org/docs/r1.2.1/hdfsdesign.html

PRACE SoHPCProject Title
Big Data clustering with RHadoop

PRACE SoHPCSite
University of Ljubljana, Slovenia

PRACE SoHPCAuthors
Marcin Konieczny,
Poznan University of Technology,
Poland

PRACE SoHPCMentor
prof. dr. Janez Povh, Faculty Of
Mechanical Engineering, Slovenia Marcin Konieczny

PRACE SoHPCContact
Marcin Konieczny
Phone: +48 695640640
E-mail: marcin.konieczny.poznan@gmail.com

PRACE SoHPCSoftware applied
Hadoop (HPC processing), R, Python

PRACE SoHPCMore Information
I would like to thank to my site coordinators, Prof.
Janez Povh and Dr. Leon Kos from University of
Ljubljana for their help and support

PRACE SoHPCProject ID
1822

58

Reading, processing, and plotting data from HPC
simulations in nuclear fusion: the TimeTools plugin for
ParaView

Visualization
of nuclear
fusion HPC
data
Mario González Carpintero

Plotting the results obtained by HPC simulations is an excellent and efficient way to extract

conclusions from them. For this purpose, we have managed to create quite smart plots from

the data obtained from ITER fusion simulations, by writing a custom plugin for ParaView. The

data from the simulations is usually complex, but our interface provides an easy way to select

what we want to plot, and to customise the plots once they are created.

A cheap and efficient way to
study the processes related to
nuclear fusion (which are not
easy to perform experimen-

tally) is by performing simulations by
computation. This is what is being done
for the plasma that eventually will burn
in ITER’s fusion reactor.

This reactor, so called Tokamak,
has a toroidal shape (see Fig. 1), and
the applied magnetic fields make the
plasma spin inside, keeping it confined
during each shot. In most of the simula-
tions, one can assume that the reactor
is a symmetric device around its axis
(coloured green in the picture), so the
angle around that axis (Ψ, orange) be-
comes one degree of freedom, and the
outcome of the experiment becomes
independent of it.

That means that we can reduce our
study to a transverse cut of the toroid
(like the plan coloured red). This is a
huge simplification!

Figure 1: Scheme of a cut of the Tokamak
chamber. We can notice its cylindrical sym-
metry.

The dataflow: from a complex
database to a smart plot

The complex framework intended for
plasma computations on ITER is called
Integrated Modelling & Analysis Suite
(IMAS) and the IMAS databases are
called Interface Data Structures (IDS).
These databases contain a complex
tree structure with a huge amount of
leafs, although only a few amongst all
of them are actually filled with data.

In this database, for each stored ob-
ject, both its geometry and physical
quantities related to it (as scalars as-
sociated with each coordinate), are
described. Every object is composed
by at least some points, that may be
joined together by lines, or either 2D or
3D cells.1 Also, a physical quantity can
be defined by setting its value on each
point of the mesh.

These objects are complex, and the
cleanest way to deal with them outside
the IDSs is by using the VTK libraries,
that allows the creation of a VTK object
that not only contains all the required
information, but also can be displayed
in ParaView.

In fact, we have managed to use
only Python code (and no C++ at all),
so instead of the VTK libraries, we will
import the VTK module that contains it-
self all the VTK functions that we need.
Note that creating a .vtk file for its
visualisation on ParaView is not neces-
sary if we run our script inside ParaView.
If we decide to create it, ParaView be-

59

comes just a visualisation tool, that can
be replaced by any other software based
on VTK.

The following scheme shows the
dataflow from IMAS database to the fi-
nal visualisation:

Creating a custom plugin for
Para-View. From a Python script
to a XML plugin

Schematically, this process can be de-
scribed as follows:

But that is not the only way. In fact,
there are many patterns to create a plu-
gin for ParaView. The most common
one is by writing it in C++ and com-
piling it with CMake. This way requires
a .cxx file with the source code, a

CMakeList.txt file necessary for the
compilation and an XML file describing
the interface. All of them are compiled
into a single .so file that is then loaded
as a plugin into ParaView.

Our way, on the other hand, requires
only an XML file that contains both the
code of the plugin and the description
of the interface. This XML will be loaded
itself as a plugin in ParaView.

The main advantage of this method
is that there is no need to recompile
each time we make a change in our
script, so modifying and loading the plu-
gin is actually very easy and straightfor-
ward.

In our scheme, both the Python
script and the ParaView stages work as
usual. Now we will describe the usage
of the XML generator.

The XML generator

Writing an XML containing both the
whole code as a single string, and the
description of the interface, is some-
thing tedious that usually cannot be
done manually. To deal with it, we have
created in Python an XML generator
that does the job.2 Defining the inter-
face inside is much simpler than doing
it directly in the XML. The code

AddInt("MyInt", "3")

shows the simplest example. It
produces a field for typing an in-
teger, with 3 as its default value:

Then, the generator links all the
variables of our plugin’s code
with their correspondent field
on the interface and the .xml
is generated.
The next picture illustrates a
more complex example:

Here, we have added a Refresh button,
a string field, an integer field, a drop-
down list, a slider and a boolean variable.

Then, if we want to change the code
of our plugin, we just do it and run the
XML generator again. It will take less
than half a second to update the plugin
with the new code. Of course, consider-
ably faster than compiling in C++!

Inside ParaView: the TimeTools plugin

Creating a plugin for ParaView implies
that we can use its interface for setting
all the input data, which is actually a
good thing. Moreover, the output will
be shown inside ParaView, which can
be convenient in some cases.

On the other hand, our plugin has
gone one step further than plotting a
simple mesh with its scalars. It can also
read multiple timesteps from IMAS and
merge all of them into a single object
inside ParaView. This object can be di-
vided also into multiple blocks (as, for
example, a car is divided into doors,
tires, seats...), and each block will be
coloured by the scalars defined on it.

Figure 2: On the left, a transversal cut of the Toka-
mak, coloured by the temperature of the electrons.
On the right, the same plot, restricted to the core
and the inner divertor blocks.

Many of the blocks are lines defined
in the object, that represent some im-
portant parts of the Tokamak. The main
feature of our plugin is the possibility of
taking all the points conforming these
lines and tracking through time some
quantities defined on them, plotting on
the screen either contour or 3D plots,
from which we could extract interesting
conclusions just with one sight.

We can also, using the same plugin,
study the behaviour of one single point,
producing a smart 2D plot tracking the
selected physical quantity versus time.

60

On the left, the value of the magnetic field is tracked over a line (vertical axis) and over time (horizontal axis), in a contour plot. On the
right, down, its correspondent 3D plot rendered with low resolution and some transparency. On the top the correspondent 3D plot to the
featured image, generated with large resolution. It tracks the toroidal component of the current density also in a linear subset.

Is actually ParaView a essential
piece of our project?

The four tools inside the plugin consist
in a set of Python scripts that are run
inside ParaView, but there are two rele-
vant reasons why we would like to make
them standalone.

• First of all, we would like to be
able to embed them in another
python-based application non re-
lated with ParaView. Many of the
tools used in ITER to visualise
their data are, without going fur-
ther, written in PyQt.

• Furthermore, ParaView uses for
plotting its own matplotlib, which
is quite more limited than the
real one. This means that we can
make much more customizable
plots outside ParaView.

For these reasons, we have written
our scripts in a way that the differ-
ences between the ParaView’s one and
the standalone are reduced to the
import paraview statement, the
paraview’s equivalent to the figure()
and show() of matplotlib, and some
little details that depend on the script.

For the main tool (which prepares
the data for the plots and displays it
into ParaView as shown, for example,
on Fig. 2), some code is commented
and the standalone version doesn’t plot
anything. It just creates the .vtk files
(in case that we want to open them
later in ParaView) and the .txt files

with the necessary data to make the
plot.

The same .txt files are used both
by our plugin and by the independent
scrips, so if we load this tool from Para-
View, and we want to make the plots
outside (which is much smarter, as we
have already remarked), it’s not neces-
sary to re-generate any data!

Results and future work

The main outcome of this project are
the scripts that we have created for
dealing with IMAS databases and the
XML plugin creator. Unlike the rest of
our work, this last tool is totally inde-
pendent from IMAS or ITER. It can be
used by anyone for creating any plugin
for ParaView, without knowing it’s in-
ternals. That’s the reason why we have
uploaded it to GitHub, alongside with
a complete tutorial demonstrating it’s
features by creating a simple plugin.

All of these tools are to be included
into the ITER’s SOLPS-GUI project
(which is also focused on the visuali-
sation of that kind of data), alongside
with the proper tutorial about using the
plugins. Both files and the correspon-
dent tutorial will be available only for
ITER people, as long as the files will be
uploaded to their private repository.

Acknowledgements

I would like to thank Dejan Penko, for
all his time and help during the sum-

mer, and for all the resources (Cluster
account, data for analysis, documenta-
tion...) that I have needed to complete
my project. Also Leon Kos, for all the
time that he has spent with me and for
everything that I have learnt from him.

I’m also very grateful to all the peo-
ple in the office, for all the help and
kindness inside and outside the faculty.

References
1 For further information about how VTK defines

a mesh, refer to www.vtk.org/wp-content/
uploads/2015/04/file-formats.pdf.

2 All the source of the Plugin Creator can be found
in our GitHub reprository: https://github.com/
mariohyls/ParaViewXMLPluginCreator

PRACE SoHPC: Project Title
Visualization schema for HPC data

PRACE SoHPC: Site
University of Ljubljana, Slovenia

PRACE SoHPC: Authors
Mario González Carpintero, University
of Oviedo, Spain

PRACE SoHPC: Mentor
Dejan Penko, University of Ljubljana,
Slovenia

Mario González
Carpintero

PRACE SoHPC: Contact
E-mail: leon.kos@lecad.fs.uni-lj.si

PRACE SoHPC: Software applied
VTK, Python, ParaView

PRACE SoHPC: More Information
video presentation:
https://www.youtube.com/watch?v=jK-YU547qzs
&list=PLhpKvYInDmFXUyppWBM −
h1NCD6GEUfgp&index = 22
VTK and ParaView webpages:
www.vtk.org
www.paraview.org

PRACE SoHPC: Project ID
1823

61

 www.summerofhpc.prace-ri.eu

	Partitioning for the parallel solution of PDEs
	Automatic Frequency Scaling
	Resource Simulator for SoHPC
	Get More Throughput Resize Me!
	Lattice QCD simulations on GPUs
	Vectorizing the Multigrid Solver
	Band structure with MPI
	Machine Learning from HPC perspective
	Instant visualisation of CFD data with OpenFOAM
	Visualising HPC System's Power
	Data streaming for IoT
	Job Scheduling Simulator for HPC
	Visualising Computations on a mini supercomputer
	Simulating the effects of an oncogenic mutation
	Portable ABySS Sequence Assembler
	Graphene Models in HPC
	Effects of GPU abuse on FMM performance
	Scaling the Neural Net
	Optimisation of quantum internet simulator
	RHadoop on the trial of radiation clusters
	Visualization of nuclear fusion HPC data

