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A long hot summer is time for a break,
right? Not necessarily! PRACE Summer of
HPC 2019 reports by participants are here.

HPC in the
summer?
Leon Kos

There is no such thing as lazy
summer. At least not for the 25
participants and their mentors at 11
PRACE HPC sites.

S ummer of HPC is a PRACE programme that offers
university students the opportunity to spend two
months in the summer at HPC centres across Europe.
The students work using HPC resources on projects

that are related to PRACE work with the goal to produce a
visualisation or a video.

This year, training week was in Bologna and it seems to
have been the best training week yet! It was a great start to
Summer of HPC and set us up to have an amazing summer!

At the end of the summer videos were created and are
available on Youtube as PRACE Summer of HPC 2019 presen-
tations playlist. Together with the following articles interest-
ing code and results are available. Dozens of blog posts were
created as well. At the end of the activity, every year two
projects out of the 25 participants are selected and awarded
for their outstanding performance. Award ceremony was
held early in November 2019 at PRACE AISBL office in Brus-
sels. The winners of this year are Mahmoud Elbattah for Best
Performance and Arnau Miro Janea as HPC Ambassador. Ben-
jamin surpassed expectations while working on an interesting
project, and carrying out more work than planned. Mostly
with no assistance, he carried out benchmarking analysis to
compare different programming frameworks. His report was
well written in a clear and scientific style. Pablo carried out
a great amount of work during his project. More importantly,
he has the capacity to clearly present his project to layper-
sons and the general public. His blog posts were interesting,
and his video was professionally created and presented his
summer project in a captivating and pleasant way.

Therefore, I invite you to look at the articles and visit the
web pages for details and experience the fun we had this
year.

What can I say at the end of this wonderful summer.
Really, autumn will be wonderful too. Don’t forget to smile!
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Enabling software and hardware profiling to
exploit heterogeneous memory systems

Memory:
Speed Me Up
Dimitrios Voulgaris

Memory interaction is one of the most
performance limiting factors in modern
systems. It would be of interest to
determine how specific applications are
affected, but also to explore whether
combining diverse memory architectures
can alleviate the problem.

Supercomputers are gradually es-
tablishing their position in al-
most every scientific field. Huge
amount of data requires storage

and processing and therefore impels the
exascale era to arrive even sooner than
anticipated. This immense shift cannot
be achieved without seeing the big im-
age. Processing power is usually consid-
ered as the determinant factor when it
comes to computer performance, and
indeed, so far, all efforts in that di-
rection did seem fruitful. CPU perfor-
mance, however, has been extensively
researched and thus optimised, leaving
scarcely any opportunities for improve-
ment.
INTRODUCTION

Heterogeneous memory (HM) sys-
tems accommodate memories featur-
ing different characteristics such as ca-
pacity, bandwidth, latency, energy con-
sumption or volatility. While HM sys-
tems present opportunities in different
fields, the efficient usage of such sys-
tems requires prior application knowl-
edge because developers need to de-
termine which data objects to place in
which of the available memory tiers [1].
Given the limited nature of “fast” mem-
ory, it becomes clear that the approach
of placing the most often accessed data
objects on the fastest memory can be

quite misleading. In order to identify
the data which benefit the most from
being hosted into different memory sub-
systems it is important to gain insight
of the application behaviour.

Application profiling comes in two
flavors, software and hardware based.
Tools like EVOP [2], which is an exten-
sion of Valgrind [3], VTune [4] as well
as others, offer exclusively instruction-
based instrumentation, i.e. monitoring
and intercepting of every executed in-
struction. The additional time overhead
implied by this technique is more than
apparent, therefore, vendors have come
up with the idea of enhancing hard-
ware, making it capable of aiding in ap-
plication profiling. Specialized embed-
ded hardware counters deploy sampling
mechanisms to provide rich insight in
hardware events. PEBS [5] is the im-
plementation of such mechanism in the
majority of modern processors.

These two approaches essentially
have the same ultimate scope of high-
lighting the application behaviour re-
garding its memory interaction in or-
der to result in an optimal performance-
wise memory object distribution. Nev-
ertheless the former approach accounts
for each and every memory access while
the second one performs a sampling
of the triggered events. It would be of

great interest to find out whether by
forcing software to imitate hardware’s
methodology, i.e. sampling, we are ca-
pable of achieving similar final results.
This the original target of the project.

BACKGROUND

Memory architecture, describes the
methods used to implement computer
data storage in the best possible man-
ner. “Best” describes a combination of
the fastest, most reliable, most durable,
and least expensive way to store and
retrieve information [6]. Traditionally
and from a high point of view, a mem-
ory system is a mere cache and a RAM
memory.

Caches are very specialised and
hence complicated pieces of hardware,
placed in a hierarchical way very close
to the processing unit. Divided into lay-
ers (usually 3 in modern machines),
every cache element presents different
characteristics regarding size and data
retrieval latency.

RAM, being an equally complex
piece of hardware, presents significantly
bigger capacity which qualifies it as the

ideal main storage unit of the system.
On the downside, it is characterised
by degrees of magnitude longer access
time which makes it quite inefficient,
yet necessary to access.
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Figure 1: Memory hierarchy along with typ-
ical latency times.

Both storage elements interact with
each other in the following way: when
a memory access instruction is issued,
cache memory is the first subsystem to
be accessed. If the respective instruction
can be completed in cache (that is: the
referred value resides there) then we
have a “cache hit”, otherwise a “cache
miss” will be signaled and the effort of
completing the instruction shall move
on to the next cache level. In case of
a “last level cache miss” the main mem-
ory has to be accessed in order to ful-
fil the need for data. These exact ac-
cesses pose the greatest performance
limitation especially when it comes to
memory-bound applications. Keeping
that in mind, these exact accesses have
we considered as the key factor for opti-
mising our workflow.
METHODOLOGY

In order to monitor memory inter-
actions we opted for Valgrind as it of-
fers the additional possibility of simu-
lating cache behaviour. That is, when
we run our application under Valgrind,
all data accesses can be monitored and
collected giving the chance of determin-
ing all those accesses that missed cache
and had to deploy memory subsystems
deeper in the hierarchy.

Considering every accessed data in
isolation would be neither intuitive nor
helpful for further post-processing. This
is where EVOP intervenes in order to
group data into memory objects. An ob-
ject can be an array of integers, a struct
or any other structure the semantics of
which suggest that it has to be consid-
ered as an entity. Such objects, regard-
less if they are statically or dynamically
allocated are labeled and every time an
access is issued, it is tied to the related
object.

Simulating, intercepting and keep-
ing logistics of that a few billion data
(memory references) can be highly com-
putationally intense. Indeed,

Figure 2: Valgrind logo.

instrumenting an application will make
it from four to twenty times slower. In
order to alleviate this fact we decided to
restrict the instrumentation only to the
regions of code that is of interest. Val-
grind provides the adequate interface
that eases the aforementioned scope: In
figure 3 you can see the macros that,
by framing the relevant lines of code,
enable or disable the instrumentation
and information collection.

Setting the aforementioned com-
parison of software and hardware ap-
proach as our ultimate scope, we en-
hanced EVOP with the option of per-
forming sampled data collection. In
detail, we extended Valgrind source
code by integrating a global counter
which increments on every memory ac-
cess. While counter’s value is below
a predetermined threshold no access
shall be accounted for. On the con-
trary, the memory access that forces
counter and threshold to be equal
will be monitored and therefore ac-
cumulated to the final access number.
The threshold is to be plainly defined
when EVOP is called using the flag
--sampling-period=<int>.

What is more, we familiarised with
the internal Valgrind representation of
memory accesses in order to distinguish
between “load” and “store” ones. Sim-
ilarly as before, we added a counter
that increments every time a load or
store is detected. The sole accesses that
are to be monitored are the ones that
equalise the counter to the predeter-
mined threshold. This time, the user
has to define a combination of flags
such as -sample-loads=no|yes
-sample-stores=no|yes
-sampling-period=<int> in or-
der to specify the type of accesses to
be sampled as well as the respective
sampling period.

Having enabled these two features
our methodology can be summarised
in the following procedure: We initially
performed a simulation of our

Figure 3: Pseudo-code for enabling Valgrind
instrumentation and detail collection.

benchmarks without sampling in order
to get the total number of memory ob-
jects. The latter were processed by a
BSC-developed tool in order to be opti-
mally distributed to the available mem-
ory subsystems. The distribution takes
into consideration the last-level cache
misses of each object as well as the num-
ber of loads that refer to each one of
them and sets as its goal the minimisa-
tion of the total CPU stall cycles. The
total “saved” cycles are calculated along
with the object distribution and thus
the final speedup can be determined.
This speedup is the maximum achiev-
able given the application and the mem-
ory subsystem mosaic.

What follows is a trial-and-error ex-
perimentation process of obtaining re-
sults using various sampling periods to
extract the referenced objects. It can be
intuitively assumed that the longer the
sampling period is, the fewer the total
memory accesses will be, too. Given the
fact that each access is related to one
memory object, the fewer the accesses
are, the less the possibilities are that not
all existing memory objects are discov-
ered. The latter presumably results in a
worse distribution; worse in the sense
that the final speedup is lower than the
initial, achievable one. Nevertheless, de-
pending on the access pattern of each
benchmark, there is a specific sampling
period, or a restricted range of neigh-
bouring sampling periods, that identify
all the objects responsible for the initial
speedup.

Note that potential access patterns
may exist among code loops. A sam-
pling period that always intercepts the
same memory access (in different loop)
is considered faulty and shall result in
biased outcome. In order to avoid that,
we used exclusively prime numbers as
sampling periods.
TEST CASES – RESULTS

Since memory behaviour is of
essence for this project it is important
to choose wisely the applications-under-
test. MiniMD and HPCCG are a pair of
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Figure 4: Sampling at a specific low rate
results in omitting memory objects; a higher
sampling frequency is needed

Figure 5: In rather iterative access be-
haviour, low-frequency sampling is enough
for complete memory object discovery.

mini-applications intended as bench-
marks for assessing the performance of
certain production applications. Hence,
they are representative of the behaviour
of more complex applications.

MiniMD, a molecular dynamics sim-
ulator, has a rather sequential access
pattern of the objects that it refers to.
As a result, sampling period cannot be
of the same degree of magnitude of the
total access number (discovered by the
non-sampled execution). In fact, in or-
der to have an optimal speedup, sam-
pling period has to be relatively small.
On the contrary, HPCCG, which offers
an iterative computational implementa-
tion of the conjugate gradient method
on an arbitrary number of processors,
entails its main computation in a “for
loop”. Thus, the same memory objects
are referenced every time the loop iter-
ates enabling the use of greater sam-
pling periods. Indeed, we were able
to use intervals of the same degree of
magnitude as the overall access number
of some objects and still get accepted
speedup time.

In the first two figures we present a
qualitative representation of the mem-
ory access behaviour for each applica-
tion, as it was understood by us. Sparse

sampling, in the first case, is not enough
to account for every “important” object,

Figure 6: Only low periods are allowed in
order to achieve an optimal speedup.

Figure 7: Bigger sampling periods can result
in equally high speedup as memory objects
keep being discovered.

while in the second case, due to the dif-
ferent access pattern, this is allowed. In
the following two graphs we pictured
the exact correlation between the final
speedup and the sampling period used
to get the objects. While in the first case,
there is a strict threshold, after which
the final results are strongly damaged,
in the second case this threshold can be
generalised in a larger neighbourhood
of periods.
FUTURE RESEARCH

When deploying the hardware pro-
filing approach aiming in performance
optimisation we are restricted by the
imposed sampling that has to be per-
formed. So far we have obtained some
concrete results regarding the effect
that different sampling rates have on
the discovered memory objects. Given
that the latter are responsible for the
final performance speedup, as well as
that hardware profiling mechanisms
rely solely on sampling, we can trivially
assume that the same, or at least sim-
ilar, results should be obtained when
profiling using the hardware counters.

We have provided the chance to fu-
ture researchers (and why not future

SoHPC participants) to experiment us-
ing the sampling periods from our trials
in order to determine the most efficient
way to gain insight into an application’s
memory behaviour and subsequently
boost its performance by exclusively fo-
cusing on the optimal distribution of its
memory objects.
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Exploring Reproducible Workflows in Automated
Heterogeneous Memory Data Distribution
Literature Results

“It worked on
my machine...
5 years ago”
Perry Gibson

Leveraging emerging heterogeneous memory subsystems for memory bound HPC ap-
plications requires an understanding of memory access patterns of the target workload.
We revisit prior work from 2014, which simulated cache behaviour of HPC test work-
loads, and produced near-optimal data placement strategies from high-fidelity runtime
data. We find that the results of the original simulations cannot be precisely reproduced.
We document our approach of attempting to reproduce the results, and put forward
concrete solutions to improve the reproducibility of future HPC research endeavours.

HPC applications the de facto
expensive workload. At scale,
even sub-percentage acceler-
ation can represent massive

cost savings. Thus, opportunities across
the stack must be exploited as much as
possible. Often the biggest bottleneck in
these applications is data access times.
If data is stored close to the processor
when needed, such as at the lowest level
of cache, then we incur very little over-
head. However, this isn’t feasible in all
cases, given typical sizes of L1 caches
are on the order of a dozen or so KiB,
and higher levels of cache are on the
order of a few dozen MiB. Since even
modest HPC applications use GiBs of
data, or orders of magnitude more, we
are forced to store it in main memory,
or disk.

A promising mitigation for this prob-

lem is moving to a heterogeneous mem-
ory model. Instead of the classic hier-
archical memory model of L1 cache →
L2 cache → . . . → LL cache →
Main Memory → Disk, we have a choice
to place individual data in a number of
memory subsystems with different prop-
erties. To prepare current and future
HPC applications to exploit the poten-
tial benefits of this change, it is neces-
sary to devise novel approaches for plac-
ing data objects in an appropriate mem-
ory subsystem, giving good automatic
placement with minimal programmer
involvement, while providing fine grain
control if needed.

To perform this profiling, in 2015
researchers at BSC heavily adapted the
Valgrind instrumentation framework,1

so that they could measure the access
patterns for individual data objects in a

running program. The fork, developed
for a suite of papers from the BSC, is
described in more detail in.2 The main
contribution was adding the ability to
trace loads and stores to individual vari-
ables, and in particular dynamic objects
which are created by a number of lines
of code, and are thus less easy to detect
directly (for example arrays of point-
ers).

The results of using this system,
named EVOP (Extended Valgrind for
Object-differentiated Profiling), on two
HPC mini-applications4 1 were pre-
sented in.5 The paper demonstrated the
scope for acceleration, which is still true
today. However, the exact experimental
results of the access patterns for the can-
didate applications and resulting data
placement proposal differ.

1Interested readers can learn more about mini-applications in the SoHPC podcast episode featuring Dr. Mike Heroux.
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Methods

We began our work by getting access
to the original EVOP codebase, and the
candidate workloads. Initially, we used
the latest version of the code, commit-
ted two years after the original paper.
We sought to first understand its func-
tionality and configuration, then began
to run full experiments. With the latest
version of the code, we found that for
our first workload, miniMD, the number
of executed instructions was 17.9% less
than the original results, and the last-
level cache miss rate was 64.1% higher.
Care was taken to ensure that the cache
configuration was identical to what was
described in the original paper.

Our next step was to eliminate the
possibility that some version change in
EVOP had changed its instrumentation
behaviour. Using version-control com-
mit timestamps, we examined the differ-
ences between candidate code versions
that may have been used for original
results. However, none of these versions
could be successfully compiled. For com-
mits of interest, source code files used
inconsistent API calls, and we hypothe-
sise that during development not all of
the working files were tracked correctly.
We patched a number of these code ver-
sions, and found identical results. This
was promising for the consistency of the
tool across versions, but did not explain
the difference with the original paper.

We hypothesised that the compiler
version used to produce the workload
binaries, coupled with versions of the
standard library could be an influence.
Thus, we used a containerisation work-
flow (via the HPC-first Singularity sys-
tem6) to systematically compare can-
didate environments. Many of these
older tool-versions no longer existed in
package repositories or archives, and re-
quired manual compilation. The effect
of the compiler version on the number
of instructions and data access patterns
was found to be minimal. Variation of
the instruction set extensions used by
the compiler (such as (dis/en)abling
vector instructions) changed the num-
ber of instructions, but not the data ac-
cess patterns.

Consulting with the original authors,
we reconstructed the original OS envi-
ronment, using an archived distribution.
This test for an unknown factor of in-
fluence. However, again the results re-
mained identical.

With a reproduction of the original
work appearing unlikely, we still con-

sider the results we collected to be sen-
sible. Thus, a useful extension to the
work would be to compare the results
of a simulate run against the results
on actual hardware. We followed the
approach of,3 which used the Extrae
framework developed at BSC. The use
of Intel PEBS sampling would allow
a similar type of object tracing infor-
mation to be produced. The advantage
over simulation is reduced overhead, at
the cost of lower fidelity data. Collabo-
rating with a colleague investigating the
use of sampling in EVOP would enable
a fair comparison. We had access to a
configuration file believed to be used
to gather the results in.3 However, in
the time remaining we were not able to
collect the instrumented data of inter-
est, namely object addresses and their
access patterns.

Results and Conclusion

We have ruled out with some degree
of certainty the influence of compiler
and standard library versions. Because
of the inconsistent version-control his-
tory, we cannot rule out that a differ-
ent version of the codebase was used to
perform instrumentation. However, our
patched versions of EVOP generated the
same results.

As one would expect, the instruc-
tion set architecture used has an in-
fluence on the number of instructions
that a given program execution takes.
However, it does not change the simu-
lated cache behaviour. We followed the
description of the cache configuration,
and input parameters to our test work-
loads. However the exhibited behaviour
was different. The simulator’s behaviour
should be agnostic to the underlying
hardware it runs on, and we found this
was true for small scale experiments.

In conclusion, the replication of re-
sults after years of tools lying dormant
is a difficult one. The configurations and
sequence of steps used to produce re-
sults is easily lost, and can be non-trivial
to recover at a later date.

Our recommendation is that dur-
ing the development stages of research
tools, continuous integration systems
are used to ensure that the versioned-
project state is as expected.? We have
created a continuous integration to be
used in future versions of EVOP.

When the results for publications
are being produced, then containerisa-
tion should be used to enshrine the con-
figuration and tool version used to gen-

erate the needed computations. These
details are generally not included in
publications, as they are superfluous to
the conceptual contribution of a work.
However, it is clear that once lost to
time they cannot easily be recovered,
and for some systems are necessary for
work’s conclusions. This was not the
case for EVOP, as our results using mod-
ern toolchains still trace objects and
demonstrate theoretical speedups for
candidate object distributions. They dif-
fer numerically from the original results.
Ideally, containerised workflows should
be published, but can also be kept in
internal archives is aspects of their func-
tioning are sensitive.

The pitfall of relying on external
package repositories for the creation
of containerised workflows should be
heeded by researchers whose results
are possibly influenced by such factors.
Including the packages in the project
archives should be considered a pre-
ferred practice.

References
1 Nethercote, Nicholas and Seward, Julian. Valgrind: A

Framework for Heavyweight Dynamic Binary Instru-
mentation.

2 Pena, Antonio J. and Balaji, Pavan. A Framework for
Tracking Memory Accesses in Scientific Applications.

3 Servat, H. and Peña, A. J. and Llort, G. and Mercadal,
E. and Hoppe, H. and Labarta, J. (2017). Automat-
ing the Application Data Placement in Hybrid Memory
Systems.

4 Crozier, Paul Stewart and Thornquist, Heidi K. and
Numrich, Robert W. and Williams, Alan B. and Ed-
wards, Harold Carter and Keiter, Eric Richard and Ra-
jan, Mahesh and Willenbring, James M. and Doerfler,
Douglas W. and Heroux, Michael Allen Improving Per-
formance via Mini-Applications.

5 Peña, A. J. and Balaji, P. (2014). Toward the Efficient
Use of Multiple Explicitly Managed Memory Subsys-
tems.

6 Kurtzer, Gregory M. and Sochat, Vanessa and Bauer,
Michael W. Singularity: Scientific Containers for Mo-
bility of Compute.

PRACE SoHPCProject Title
Reproducing Automated
Heterogeneous Memory Data
Distribution Literature Results and
Beyond

PRACE SoHPCSite
BSC, Catalonia

PRACE SoHPCAuthors
Perry Gibson

PRACE SoHPCMentor
Peña, A. J. Perry Gibson

PRACE SoHPCAcknowledgement
Many thanks to support and guidance from my mentor,
the researchers and staff of the BSC, the organisers of
the SoHPC at PRACE for getting things working and my
cohort for bringing interesting stories to the weekly
meetings. Special thanks to Dimitris Voulgaris for
working closely with me throughout the project.

PRACE SoHPCProject ID
1902

7



What can we gain if we use HPC tools for
Machine Learning instead of the JVM-based
technologies?

High
Performance
Machine
Learning
Thizirie Ould Amer

Machine Learning (ML) algorithms are designed

to process and learn from huge amounts of data

and their correlations to adapt and adjust the

results. This big quantity of data needs to be

analyzed and classified according to various

criteria, which means that our ML algorithms

have to evaluate these criteria and select the best

ones. As you can imagine, this requires a lot of

time and energy to be done. So how can we

increase the efficiency of ML algorithm runs?

HPC is the solution for many
kinds of problems! Com-
bined with other features,
HPC tools can have a big

impact on the performance of our
applications (programs). Big data
processing is currently dominated
by JVM-based technologies such as
Hadoop MapReduce or Apache Spark.
Their popular tools are indeed fairly ef-
ficient, and particularly, they are easy to
use for developers. Our goal is to eval-
uate the traditional HPC tools such as
MPI, OpenMP or GASPI for ML / big
data processing, and to see for our self
it they are at least as good as the afore-
mentioned tools, or maybe even better!

In order to successfully carry out this
project withing a limited time frame,
we chose one popular ML algorithm –
(Gradient Boosting Decision Trees).

This algorithm is very popular in
Kaggle competitions. Indeed, many of
the biggest winners of these contests
include Gradient Boosting algorithms
in their winning models ensembles,
amongst a variety of other models. The
most commonly used library is XG-
Boost and it aims to provide a Scalable,
Portable and Distributed Gradient Boost-
ing (GBM, GBRT, GBDT) Library.1

The main focus of this project is then
the GBDT but the other methods are as
popular and successful as this one.

Decision Trees

The idea of the Decision trees algorithm
is to find a set of criteria that will help us
“predict” (classify or inter/extrapolate
variables we pick.

In the example in the Table 1, let’s
see if we can predict if an algorithm can
be parallelized or not.

Table 1: Example 1

IndepParts LoopsDep Parallel?
1 0 1
0 1 0
0 0 0
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Since the goal is to predict the last vari-
able (Parallel?), our decision tree will
have to consider each feature (column)
and see which one helps us the most
to distinguish if a code can be paral-
lelized or not. Once such feature is iden-
tified, we split the codes according to
that variable. Selecting any feature can
naturally lead to misclassification of ele-
ments, otherwise the feature on its own
would correlate perfectly with the result.
This misclassification is also referred to
as the impurity – an error rate param-
eter ranging from 0 to 1; 0 for pure
(no misclassification) and 1 for a group
where every element is misclassified. In
each step of the construction of the de-
cision tree, we pick the variable which
leads to split with the lowest impurity.
Decision trees on their own tend to suf-
fer from overfitting, so we must use ad-
ditional tricks to make it a good ML
method.

Gradient Boosted Decision
Trees

Gradient boosting in general is an ap-
proach of creating a predicting model in
the form of an ensemble of weak predic-
tion models. In Gradient Boosting Deci-
sion Tree, the weak prediction model is,
unsurprisingly, the Decision Trees. By fit-
ting a decision tree to pseudo-residuals
(i.e. errors) of another tree, we can sig-
nificantly increase the accuracy of the
data representation.

Typically, a limited side decision
trees (of depth 4 to 8) are iterated mul-
tiple (typically less than 100) times, cre-
ating (at most) 100 decision trees that
have different decision criteria and "fix-
ing" at each iteration the errors that
the previous tree has made. The algo-
rithm doesn’t give more weight to any of
the trees but the tree number i focuses
on individuals that didn’t fit into their
leaves/groups in the tree number i-1
(i.e. focuses on the individuals that have
the most important pseudo-residual val-
ues).

How to parallelize this?

When it comes to the concept of a paral-
lel version of a program, many aspects
have to be taken into account, such as
the dependency between various parts
of the code, balancing the work load on
the workers, etc.

This means that we cannot paral-
lelize the gradient boosted algorithm’s

loop directly since each iteration re-
quires the result obtained in the previ-
ous one. However, it is possible to create
a parallel version of the decision trees
building code.

The algorithm for building Decision
Trees can be parallelized in many ways.
Each of the approaches can potentially
be the most efficient one depending on
the size of data, number of features,
number of parallel workers, data dis-
tribution, etc. Let us discuss three vi-
able ways of parallelizing the algorithm,
and explain their advantages and draw-
backs.

Sharing the tree nodes creation among the
parallel processes at each level

The way we implemented the decision
tree allows us to split the effort among
the parallel tasks. This means that we
would end up with task distribution
schematically depicted in the Figure 1.

Figure 1: Parallelizing the nodes building at
each level. Levels are in different colours.

Yet, we have a problem with this ap-
proach. We can imagine a case where
we would have 50 "individuals" going
to the left node, and 380 going to the
right one. We will then expect that one
processor will process the data of 50
individuals and the other one will pro-
cess the data of 380. This is not a bal-
anced distribution of the work, some
processors doing nothing while others
maybe drowning in work. Furthermore,
the number of tree nodes that can be
processed in parallel limits the maxi-
mum number of utilizable parallel pro-
cesses... So we thought about another
way.

Sharing the best split research in each
node.

In our implementation of the decision
tree algorithm, there is a function that
finds the value that splits the data into

groups with minimum impurity. It it-
erates (for a fixed column – variable)
through all the different values and cal-
culates the impurity for the split. The
output is the value that reaches the min-
imum impurity.

Figure 2: Sharing the best split research in
each node, for each feature.

As can be seen in the Figure 2, this
is the part of the code that can be
parallelized. So every time a node has
to find a split of individuals in (two)
groups, many processors will compute
the best local splitting value, and we
keep the minimum value from the par-
allel tasks. Then, the same calculations
are repeated for the Right data on one
side, and for the Left Data on the other.

In this case, a parallel process will
do its job for a node and when done
it can directly move to another task on
another node. So, we got rid of the un-
balanced workload since (almost) all
processes will constantly be given tasks
to do.

Nevertheless, this also has an no-
table drawback. The cost in communi-
cation is not always worth the effort.
Imagine the last tree level where we
would have only a few individuals in
each node. The cost of the communica-
tion in both ways (the data has to be
given to each process, and received the
output at the end). The communication
will eventually slow down the global ex-
ecution more than the parallelization of
the workload speeds it up.

Parallelize the best split research on each
level by features

The existing literature2 helped us to
merge some features of the two afore-
mentioned approaches to find one that
reduces or eliminates their drawbacks.
This time, the idea is to parallelize the
function that finds the best split, but for
each tree level. Each parallel process
calculates the impurity for a particular
variable across all nodes within the level
of the tree.
This method is expected to work better
because:
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1. The workload is now balanced
because each parallel process evaluates
the same amount of data for "its fea-
ture". As long as the number of fea-
tures is the same (or greater, ideally
much larger) than the number of par-
allel tasks, none of the processes will
idle.

2. The impact of the problem we
described in the second concept is re-
duced, since we are working on the
whole levels rather than on a single
node. Each parallel task is loaded with
much larger (and equal) amounts of
data, thus the communication overhead
is less significant.

The global concept is shown in Fig-
ure 3

Figure 3: Parallelizing the best split re-
search on each level by features

How can this be improved?

There are several ways to improve the
performance of our parallel algorithm.

Let us focus on the communication,
particularly its timing. While we can-
not completely avoid loosing some wall-
clock time in sending and receiving
data, i.e. communication among the
parallel processes, we can rearrange the
algorithm (and use proper libraries) to
facilitate overlap of the computation
and communication. As shown in the
the figure 4, in the first case (a) we
notice that the processor waits until
the communication is done to launch
the calculations, whereas in the second
case (b) it starts computation before the
end of the communication process. The
last case displayed in 5 shows differ-
ent ways to facilitate total computation-
communication overlap.

Figure 4: Timing of communication and com-
putation steps: (a) no overlap, (b) partial over-
lap

Figure 5: Timing of communication and computation steps: (c) complete overlaps.

One of the libraries that allows
for asynchronous communications pat-
terns, thus overlap of computation
and communications is the GPI-2 (
http://www.gpi-site.com ), an open
source reference implementation of the
GASPI (Global Address Space Program-
ming Interface, http://www.gaspi.de )
standard, providing an API for C and
C++. It provides non-blocking one-
sided and collective operations with
strong focuses on fault tolerance. Suc-
cessful implementations is parallel ma-
trix multiplication, K-means and Tera-
Sort algorithms are discribed in Pitonak
et al. (2019) "Optimization of Computa-
tionally and I/O Intense Patterns in Elec-
tronic Structure and Machine Learning
Algorithms.".3

Conclusion

We have discussed some of the miscella-
neous possible parallel versions of this
algorithm and their efficiency. Unfortu-
nately we did not have enough time to
finalize the implementations and com-
pare them with the JVM-based tech-
nologies but also with XGBoost perfor-
mances.

Future works could focus on improv-

ing and continuing the implementations
and comparing them to the usual tools.
Including OpenMP in the paralleliza-
tion could also be a very interesting
approach and lead to a better perfor-
mance.

Another side that could be considered
as well is using the fault tolerant func-
tions of GPI-2 which would ensure a
better reliability for the application.
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Where can you find the electrons of a nanotube?
Electron density computation for each orbital.

Electron
density of
Nanotubes
Irén Simkó

We exploit the helical symmetry of nanotubes
in the electronic structure computation. The
code was extended with electron density
computation for each orbital. I used Message
Passing Interface for parallelization and
visualized the electron density isosurfaces.

Have you heard about (carbon)
nanotubes? Probably you al-
ready had, but you will hear
a lot more about them in the

future. The extraordinary mechanical
and electrical properties of nanotubes
have a lot of promising applications in
engineering and material science. For
example, composite materials with car-
bon nanotubes have great mechanical
strength. Nanotubes are candidates for
nano-electronics as well, because they
can behave like metals, semiconductors
or insulators.

The topic of my project was simu-
lating the nanotubes with the SOLID98
quantum chemical program.1 The pro-
gram –written in FORTRAN77– com-
putes the electronic structure of the nan-
otubes.

According to the principles of quan-
tum mechanics, the states of the elec-
trons have well-defined discrete en-
ergies and wave functions (orbitals),
which are computed by the program.
The parallelization of the code was the
task in the previous years of Summer
of HPC, and my goal was to extend the
code with a new feature: Electron den-

sity computation and visualization. This
shows us the distribution of electrons
in the space, to see the chemical bonds
and the nodes of the orbitals.

Use symmetry when you can!

The computational cost of a quantum
chemical simulation strongly increases
with the size of the system. But how
can we still compute large systems such
as nanotubes or crystals? One solu-
tion is periodicity and symmetry, which
means that we can build the whole large
system by replicating a small building
block (unit cell) following symmetry
rules. Since the replicas are not indepen-

dent, the size of the unit cell determines
the cost of the computation.

Nanotubes have helical symmetry2

which allows us to use very small unit

Figure 1: Helical symmetry of the nanotube

cells. For carbon nanotubes
it is enough to have only
two atoms! Then, imagine a
spiral that is winding on the
surface of a cylinder, and
replicate the unit cell fol-
lowing the path of the spi-
ral. This way you can build
the whole carbon nanotube.
Using helical symmetry is a
much better approach than
considering only the trans-
lational symmetry along the

axis of the nanotube.

The electronic structure compu-
tation

To get the electronic orbitals and ener-
gies we have to solve the Schrödinger-
equation. But do not grab a pen and
paper, because it has an analytical solu-
tion only for simple systems, we have
to do it numerically in other cases. The
wave function is a linear combination
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of basis functions in the simulation. The
Schrödinger-equation is translated to
an eigenvalue-equation of the so-called
Fock matrix, which is solved iteratively.

The diagonalization part of the pro-
gram is parallellized with Message Pass-
ing Interface (MPI). Thanks to some
mathematical tricks the Fock matrix is
block diagonal, eack block labelled with
a k value and diagonalized by a differ-
ent process. As a result, we get orbitals
and energies for each k block.

Electron density: The serial
code

The electron density is the probability
of finding the electron at a given point
is space. We would like to visualize the
individual electron orbitals, so we re-
strict the computation for one orbital at
a time.

Electron density computation is the
last step of the program, we use the re-
sults of the last diagonalization. From
the eigenvectors, we build the so-called
density matrix (P ), and contract it with
the basis functions (χ). „Contraction” is
a double sum over all basis functions of
the system:

ρ(r) =
∑

a,b

Pabχa(r)χb(r)

Figure 2: Electron density of one unit cell and the whole benzene molecule

First, we compute the contribution of
the central unit cell of the electron den-
sity. Here in the sum we take one basis

function from the central unit cell and
the other one from the whole nanotube.
Then we get the total electron density
in the same manner as we built the
nanotube from the unit cell by replicat-
ing the contribution of the central unit
cell. In the figure below you can see an
example for the benzene molecule.

Parallelization using MPI

Next step was to parallelize the electron
density computation. I decided to use
the same technique as it is in the diag-
onalization of the Fock matrix. We use
the Master-Slave MPI system, where the
Master process (rank = 0) distributes
the work among the Slave processes
(rank = 1,2,...,N − 1). First the Mas-
ter process does some initialisation and
broadcasts the data to the Slaves, then
each process does the work assigned to
them.

The electron density computation is
done in two nested loops: one loop over
the k values and one loop over the or-
bitals of a given k. In the first version
of the code, each process computes the
orbitals belonging to a different k value.
We use a counter variable to distribute
the work. The counter is set to 0 at the
beginning of the loop.

A process does the upcoming k value
if its rank is equal to the actual counter
value. If a process accepts a k value, it

increases the counter value with 1, or
updates it to 0 if it was N − 1. This
way, process 0 does k = 1, proc. 1 does
k = 2, proc. N − 1 does k = N , then
proc 0 does k = N + 1, and so on.

Figure 3: MPI parallelization

The problem with this implementa-
tion is that you cannot use more pro-
cessors than than number of k values.
So in the second version I moved the
parallelization to the inner loop over
the orbitals. If we have M orbitals in
each block, the first M processes start
working on the k = 1 orbitals, the next
process gets the first orbital of k = 2.
This is a much better solution, because
we can utilize more processors than in
the first case.

On the other hand, the diagonaliza-
tion of the Fock matrix is still paral-
lelized at the k-loop, so we have idle
processors if we have more than the
number of k values. The relative time
of the diagonalization and the electron
density computation determines if it is
worth to use the k-loop or the orbital-
loop parallelization.

”A picture is worth a thousand
words”

One goal of the project was to actually
see where we can find the electrons, but
visualization turned out to be more chal-
lenging than I expected. A good scien-
tific figure should capture the essence
of the topic of the research as well as
catch the attention of the reader.
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Figure 4: Electron density visualization examples

The result of the computation is the elec-
tron density in a large number of grid
points. If the grid points are on a plane,
I plotted the results with Wolfram Math-
ematica using ListPlot3D and ListDen-
sityPlot. On the figures above you can
see an example for a benzene orbital,
with the electron density calculated at
the plane of the molecule.

I visualized the electron density in
space by plotting the isosurface, which
is a surface where the electron density
equals to a given value. I used the Visual
Molecular Dynamics program to make
isosurface plots after transforming the
output to Gaussian cube file format.

Results & discussion

I tested the electron density computa-
tion and visualization for the benzene
molecule and a small carbon nanotube.
I tried to find the physical meaning
of each electron density plot. For ex-
ample, there are bonding benzene or-
bitals where the electron density is high
between the atoms; and there are an-
tibonding orbitals with nodal surface,
where the electron density is zero. In
the case of some nanotube orbitals the

electron density is localised inside the
tube, while in other you can see the
bonds between the carbon atoms.

Figure 5: Speed-up of the parallel program

As for the parallelization, I made a
test for a nanotube that has 32 k val-
ues. In the figure above, you can see the
speed-up for the two code versions. The
maximal number of cores was 32 for the
k-loop version, and 128 for the orbital-
loop version. Up to about 64 cores the
speed-up is ideal, but after that the pro-
gram will not be much faster if we in-
crease the number of cores.
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Live Visualisation of Simulation Result using
Paraview Catalyst

In Situ / Web
Visualisation of
CFD Data using
OpenFOAM
Li Juan Chan

Paraview Catalyst has been proposed to
overcome the limitations caused by I/O
bottleneck. In this research, the scalability
of OpenFOAM with coprocessing has
been investigated and it has shown to be
very scalable.

Over the years, the compu-
tational power of processor
is developed in a tremen-
dous fast pace. This has made

large-scale computing to become more
affordable. The development of paral-
lel computing software is advancing
equally as fast as the processor. How-
ever, there are subsystems of high-
performance computer that are not de-
veloped at the same pace with processor.
One of them is the I/O bandwidth. I/O
is developed in such a slow pace that it
is now becoming the bottleneck for ex-
ascale computing. This project hoped to
address this issue and try to get around
the bottleneck by using in situ visualisa-
tion.

Traditionally, the simulation process
consists of pre-processing, processing
and post-processing. However, this pro-
cess is getting more and more expensive
due to the I/O bottleneck. Writing and
reading data have become very slow
when compared to the processing speed.
In situ visualisation was designed to
solve this problem by moving some of
the post-processing tasks in line with
the simulation code.

Paraview has come out with a in situ
visualisation library called Catalyst. Cat-
alyst enables live visualisation of simu-
lation while the simulation is still run-

ning. There are a few benefits of using
Paraview Catalyst. One of them is that
the live visualisation feature of Paraview
Catalyst enables researchers to examine
whether the pre-processing step is set
up correctly. If the boundary conditions
are found to be incorrect, the simula-
tion can be stopped immediately before
investing more time and resources into
an incorrect simulation. Furthermore,
with Paraview Catalyst, the frequency
of data writing is significantly reduced
as only the final result is needed to be
saved. The intermediate result can be
viewed instantly without having to be
saved for post-processing.

Therefore, one may wonder if Par-
aview Catalyst will increase the demand
of memory due to live visualisation. The
answer is yes and no. The live visualisa-
tion definitely requires some memory to
run. However, the demand of memory
is not significant because Paraview has
the ability to extract a small amount of
important data from the result instead
of saving the full datasets. The features
that can be extracted from Paraview in-
clude slice, clip, glyphs, streamline, etc.

Aim and Motivation

In the field of high-performance com-
puting, the scalability of a software is
very important. This is because super-
computer is nothing but a bunch of com-
puters combined together to perform a
task. Therefore, researchers may want
to know how much benefit can be ob-
tained by running a software with ad-
ditional resources. Since Paraview Cata-
lyst is so useful and may be widely used
in the future, I, as a researcher, would
like to find out how scalable Paraview
Catalyst is and this basically is the aim
of this project.

How to use Paraview Catalyst?

After introducing Paraview Catalyst, I
would like to introduce another soft-
ware that is used together with Par-
aview Catalyst, which is OpenFOAM.
OpenFOAM is an open-source software
for computational fluid dynamics (CFD)
and it is also highly scalable. There-
fore, the scalability of OpenFOAM with
and without co-processing will be deter-
mined and compared.

The model I was working on is
shown in Figure 1. It is a wind tun-
nel construction with two NACA0012
airfoils, rotating with respect to hinges.
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Figure 2 is the zoomed in image of the
model. As shown in the figure, struc-
tured mesh is used in the upstream and
downstream of the model.

Figure 1: Model

Figure 2: Mesh

The mesh in the middle is unstructured
due to the rotation of the airfoils. There
are approximately 10 million cells in
the mesh. A compressible solver named
rhoPimpleFoam is used for all simula-
tions.

Figure 3: Live Visualisation

To run OpenFOAM and Paraview Cata-
lyst at the same time, a software called
Remote Connection Manager (RCM)
is used. It allows the users to con-
nect to the compute node of the su-
percomputer. One RCM session is used
to run the Paraview. When Paraview is
loaded, Catalyst can be connected from
the menu bar of the Paraview. Mean-
while, another RCM session is opened
to run OpenFOAM. However, an Open-
FOAM plugin, co-developed by CINECA
with ESI-OpenCFD and Kitware, should

be loaded before running OpenFOAM.
Once loaded, the simulation can be run
and the intermediate result of the simu-
lation can be visualised concurrently as
shown in Figure 3.

In Figure 3, the feature displayed is
a slice. To extract other types of features,
a different pipeline is needed. A pipeline
is a python script that specifies the fea-
ture to be extracted and the parame-
ters of the feature. The pipeline can
be obtained from Paraview GUI. The
process is repeated with different num-
ber of cores and different pipelines. In
this study, several pipelines, for example
slice, clip, glyphs, streamline and region
are produced as shown in Figures 4, 5,
6,7 and 8.

Figure 4: Slice

Figure 5: Clip

Figure 6: Glyphs

Figure 7: Streamline

Figure 8: Region

What is the outcome?

The three graphs in the next page are to
summarise the results of this research.
It consists of scaling graph, graph of ex-
ecution time of OpenFOAM with and
without catalyst and graph of execution
time of Paraview Catalyst.

First of all, what is speedup?
Speedup is a variable that measures
scalability. The speedup of n cores is
defined as the execution time in one
core divided by the execution time in n
cores, where n is the number of cores to
be measured. Basically, it measures the
relative performance of one core and
n cores processing the same problem.
In the scaling graph, one may notice
that the speedup of OpenFOAM with
coprocessing are very similar regard-
less of the type of pipeline. Additionally,
the speedup of OpenFOAM with and
without coprocessing are very similar
up until 108 number of cores. Beyond
that point, they start to diverge with the
OpenFOAM without coprocessing being
more scalable than that with coprocess-
ing. The degree of divergence increases
as the number of cores increase. We
also noticed that the scalability of Open-
FOAM with and without coprocessing
starts to flatten out beyond 216 num-
ber of cores. The sudden reduction of
their scalability is due to communica-
tion overhead. Therefore, if a good scal-
ing after 216 cores is wanted, the size
of the mesh is needed to be increased in
order to have a good balance between
computation and communication,

Similar to the scaling graph, the ex-
ecution time of OpenFOAM with and
without coprocessing are very similar.
However, the execution time without
coprocessing is slightly faster at large
number of processor cores. The differ-
ence increases as the number of proces-
sor cores increase. In contrast, the exe-
cution time of Paraview Catalyst do not
seem to have a clear pattern as the two
previous graphs. However, all pipelines
exhibit a trend, in which the execution
time decreases up until 108 processor
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Compilation of the graphs of result

cores. Beyond that point, the execution
time increases. This trend agrees with
the scaling graph.

In a nutshell

OpenFOAM with Paraview Catalyst is
very scalable with only slightly inferior
to pure OpenFOAM. However, the bene-
fits that can be obtained from Paraview
Catalyst definitely outweigh the slight
reduction of scalability.

For anyone who is interested in this
project, the details of this project can be
found in the github repository.1
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Building explainable model for understanding HPC
faults

Explaining the
faults of HPC
systems
Martin Molan

This work provides initial investigation into possibilities for machine learning on log
data collected on HPC systems at CINECA supercomputer site. General data
transformation/preparation pipeline that can be the basis for further machine learning
projects is presented. Additionally, this work also explores possibilities for creation of
explainable machine learning models on processed data.

The goal of presented work
is to explore possibilities for
machine learning on top of
data collected from high perfor-

mance computing (HPC) systems. The
data was collected on two HPC systems
(MARCONI and GALILEO) from super-
computer site CINECA.

Presented work has the following
key points:

• Preparation of dataset for future
machine learning experiments.
This involves creation of data
transformation/pre-processing
pipeline that is capable of han-
dling huge quantities of data in
parallel and in batches.

• Building of explainable machine
learning (ML) model that investi-
gates a learning task on a subset
of data

• Implementing scalable parallel in-
duction of stable decision trees.

1 Dataset preparation

The main goal of dataset preparation
is to convert data from raw data (each
row represents single attribute, single
time stamp and single node) to data
appropriate for machine learning. The

processing should be done in parallel
and in batches.

1.1 Feature construction and
dataset description

The dataset has the following attributes
(features):

alive::ping
backup::local::status
cluster::status::availability
cluster::status::criticality
cluster::status::internal
dev::raid::status
dev::swc::confcheckself
filesys::local::avail
filesys::local::mount
filesys::shared::mount
memory::phys::total
ssh::daemon
sys::ldapsrv::status
batchs::JobsH
filesys::eurofusion::mount
sys::gpfs::status
dev::ipmi::events
dev::swc::bntfru
dev::swc::bnthealth
dev::swc::bnttemp
dev::swc::confcheck
batchs::client::state
batchs::client
net::opa::pciwidth
net::opa
sys::orphaned-cgroups::count
core::total
sys::cpus::freq
batchs::client::serverrespond
MaxState

The only constructed feature is
MaxState which is the value of most
serious warning in a timestamp. All
features have values between 0 and
3 where 0 means normal operation, 1
means warning and 2 means serious
failure (3 signifies missing data).

Feature evaluation Informative-
ness of features is estimated by eval-
uating them with random foresters and
extra tree classifiers (ensemble classi-
fiers based on decision trees). The most
relevant features evaluated are (accord-
ing to both methods of evaluation):

batchs::client::state
MaxState
ssh::daemon
alive::ping

2 Supervised learning

The second goal of the project is to con-
struct a supervised learning task. The
training set consists of instances, de-
scribed by attributes and a target value
for each instance. In this work target
value will always be discrete - the train-
ing task will be classification.
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2.1 Comparison of different
classification algorithms

Comparison of classification algorithms
is done with 10-fold cross validation.
In each repetition of the process, the
model is trained on 90% of the data
and evaluated on 10%. The results are
then averaged across (10) iterations.
10-fold cross validation generally pro-
duces more reliable results than sim-
ple train/test split (it avoids overly pes-
simistic or optimistic estimates of classi-
fier performance). The goal of the super-
vised learning model is to predict when
a fault (a warning, or a fault) from a
component (attributes described above)
is serious enough to warrant a shut-
down of a node (binary target class).
Such (explainable) model would enable
the operators to make more informed
decision about the seriousness of the
warnings provided by the system.

Table 1: Average classification accuracy in
10-fold cross validation

Dummy Classifier 0.9663
Nearest Neighbors 0.9865
Linear SVM 0.9926
RBF SVM 0.9924
Decision Tree 0.9928
Random Forest 0.9744
Neural Net 0.9915
AdaBoost 0.9928
Naive Bayes 0.9936

Table 2: Average gain compared to dummy
classifier in 10-fold cross validation (in per-
centages)

DDummy Classifier 0.0
Nearest Neighbors 2.015
Linear SVM 2.625
RBF SVM 2.612
Decision Tree 2.644
Random Forest 0.805
Neural Net 2.514
AdaBoost 2.644
Naive Bayes 2.73

Classifier evaluation (and base clas-
sifiers themselves) are based on Scikit-
leran library.1 Each of iterations was per-
formed in its own thread (paralleliza-
tion).

The most significant takeaway form
classifier performance is the relative
strength of decision trees. This suggests
that:

• Features are informative. Feature
set provides good information
about the target label without the
need for additional feature con-
struction.

• Features do not require non-linear
transformations to be informative
(SVMs do not represent improve-
ment over base-line features

Informative features are the basis for
creation of an explainable model. If
that was not the case - if for instance
SVMs performed considerably better
than baseline trees - features would
need non-linear transformations which
would make them much more difficult
to interpret.

Decision trees - in their basic imple-
mentation (greedy splitting) - are not a
reliable explainable model for the prob-
lem of this scale. Because they are gen-
erally unstable (can significantly change
with small changes on the dataset) rea-
soning provided by the decision trees
cannot be the basis for the final model.

3 Future work

Based on the relatively good perfor-
mance of decision trees the next step
in building of the predictive model is
to solve inherent instability of decision
trees. A possible approach is a consen-
sus tree classifier. This is an ensem-
ble learning approach based on deci-
sion trees. It essentially combines pre-
dictions of several decision trees into a
single (stable) model.

Basic algorithm for consensus tree
induction can be summarized as:2

1. Perform N-fold partition of the
data set (same partition as with
cross validation), train separate
decision tree on each partition

2. Compute dissimilarity matrix for
instances with regards to the
trained decision trees

3. Construct hierarchical clustering
and clean the dataset

4. Construct decision tree on a
cleaned data set

3.1 Implemented on summer
of HPC

Preliminary experiments with parallel
implementation (computation of dis-

similarity matrix is parallel) of con-
sensus tree algorithm were performed.
The open problem remains how to effi-
ciently implement the parallel version
of the algorithm that would be appli-
cable to bigger datasets (great number
of instances and base estimators). The
main problem of this implementation
is the memory demands of each indi-
vidual thread. Parallel implementation
and subsequent consensus trees will be
a topic of future paper prepared with
mentors from university of Bologna.
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Visualising Parallel Computations for Education
on Raspberry-Pi Clusters

Parallel
Computing
Demos on
Wee Archie
Caelen Feller

I created a framework for visualising
parallel communications on a
Raspberry-Pi based parallel computer
Wee Archie. I used this to create
demonstrations illustrating basic parallel
concepts, and an interactive coastal
defence simulation.

EPCC has developed a small,
portable Raspberry-Pi based
“supercomputer” which is taken
to schools, science festivals etc.

to illustrate how parallel computers
work. It is called Wee Archie because
it is a smaller version of the UK national
supercomputer ARCHER. It is actually a
standard Linux cluster and it is straight-
forward to port C, C++ and Fortran
code to it. There are already a num-
ber of demonstrators which run on Wee
Archie that demonstrate the usefulness
of running demonstrations on a paral-
lel computer, but they do not specifi-
cally demonstrate how parallel comput-
ing works.

In this project, I developed a frame-
work for creating and enhancing new,
existing and in-development demonstra-
tions that show more explicitly how a
parallel program runs. This is done by
showing a real-time visualisation on the

front-end of Wee Archie, or by program-
ming the LED lights attached to each
of the 16 Wee Archie Pis to indicate
when communication is taking place
and where it is going (e.g. by display-
ing arrows). All of these visualisations
are triggered via the MPI (Message Pass-
ing Interface) profiling interface, a stan-
dard feature on all modern HPC sys-
tems, making this a drop-in solution for
most existing code.

Client Code Animation Server

Communication
Info

10100111010011

I developed visualisations for a tu-
torial illustrating the basics of paral-
lel communications and a coastline de-
fence demonstration. I also developed a
web interface for the tutorials to cre-
ate a more cohesive user experience.
In these demonstrations, I aimed to be
able to make it clear what is happening
on the computer to a general audience.

Animation Server

To display communications via the LED
panels (created by Adafruit), I used the
official Adafruit Python library. As such,
my visualisations are done in Python.

To allow all demonstrations to share
the panels safely, I start a queue on
each Pi on a separate background pro-
cess, where any demo can add an 8px ×
8px image to be displayed on the 8× 8
LED panels. I can also give these im-
ages properties such as how long to be
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displayed and create parcels of images
together which form my various anima-
tions.

I had two major requirements from
my animation system. I need to allow
demonstrations developed in any pro-
gramming language to create an anima-
tion, and to be able to coordinate anima-
tions between Pis. To do this, I made a
web server on each Pi using Flask which
will place an animation in queue when
you make a certain web request against
it. You must provide options for anima-
tion length, type, and type-specific op-
tions as discussed below.

Point to Point Visualisations

In MPI, an important class of commu-
nications are “point to point” commu-
nications. These are when a message is
passed from one node (here meaning
a Raspberry Pi) to another directly. In
its most basic form, a node will start to
send to some destination, and wait un-
til that destination has begun to receive
from the correct source before begin-
ning to transfer the message.

Given the ability to add a sequence
of images to a queue, how can I accu-
rately visualise a "send" and "receive" op-
eration between two Pis? My approach
was to use a Python “pipe”. When an
animation is reached in queue, it will
show an “entry” and stop, using the pipe
to wait until the server allows it to con-
tinue. This allowed me to synchronise
and wait on animations between Pis.
This accurately replicates the behaviour
of MPI messaging.

This behaviour is known as a “syn-
chronous” or “blocking” send. There
also exists a “non-blocking” send. The
main difference between blocking and
non-blocking communications is that us-
ing non-blocking communication, the Pi

will continue working, not waiting for
the communication to start, and do the
communication in the background. This
is a more efficient but less safe form
of communication, and I provided visu-
alisation for it as it is commonly used.

Other differences are discussed in the
MPI standard.1

Collective Visualisations

The next major class of MPI communi-
cations are “collectives” - when many
nodes want to communicate others at
once. Say I want to distribute some re-
sult to every node - this is done using a
broadcast. According to the standard,1

this will cause every node participating
to wait until it has the correct output
before continuing, though the exact tim-
ing varies.

For clarity and consistency, in collec-
tive communication visualisations, all
participants wait until the communica-
tion is done overall before continuing.
The implementation is similar to that of
waiting in point to point.

There were several other types of
communication I visualised (gathering,
scattering and reduction), whose imple-
mentation is similar. With gathering, the
result is collected from each node and
stored on one. With scattering, the re-
sult on one node is split into small, even
parts and distributed to many. With re-
duction, the result is gathered but an
operation is done to it as it is collected
such as a sum or product. For more de-
tails on these, see the MPI standard.1

C and Fortran Framework

While demonstrations for Wee Archie
typically use Python for their user in-
terface, they use the C and Fortran
languages in computations for perfor-
mance reasons. Thus, it was desirable
to create a wrapper around MPI in these
languages which will automatically let
the animation server know when a a
communication is started.

Communication
Info

Animation ServerWee MPI

MPI

Client Code

1010011

I did this using
the MPI profiling in-
terface. MPI inter-
nally refers to func-
tions using “weak
symbols”, which al-
lows you to over-
ride the functions
provided by the li-
brary and allows a

library developer to call their visual-
isation and logging code. The frame-
work includes visualisations for most
MPI communications, all shown on the
next page.

Application-Specific Animations

Often a demonstration will require
unique animations, such as a context-
appropriate “working” animation, or a
visualisation of some communication at
a higher level of abstraction than MPI,
such as the “haloswaps” of the coastal
defence demonstration. Here, the ani-
mation server can be contacted using a
non-MPI process which directly contacts
the server and requires modification of
the source code.

Unified Web Interface

As these demonstrations are used for
outreach, the surrounding narrative is
important for audience engagement. To
improve this aspect of the Wee Archie
interface is an important aspect of ex-
plaining more complex concepts such
as parallel communication. In previous
demonstrations for Wee Archie, a frame-
work written in Python is used to dis-
play a user interface on a connected
computer. This starts the demonstra-
tion by contacting a demonstration web
server running on Wee Archie, which in
turn uses MPI to run the code on all of
the other Raspberry Pis. It returns any
results to the client continuously.

I created an internal website for
Wee Archie, but due to the performance
constraints of serving complicated web-
sites from a Raspberry Pi while it’s han-
dling so many communications already,
I opted to make it a static website - one
which does not require processing by
the server other than providing the cor-
rect files. I did this using the Gatsby
framework.

In order to allow the static web-
site to start a demonstration, I wrote
my own version of the Wee Archie
framework in JavaScript. This frame-
work uses the Axios library to manage
communication with the demonstration
server, and the React framework to pro-
vide a generic demonstration web inter-
face.

Basic MPI Tutorials

This series of tutorials consist of a set of
ten demonstrations to be run on Wee
Archie and accompanying text. They
are aimed at a complete beginner, who
does not have programming experience,
but can understand the concept of a
program doing work, and take them
through all of the concepts Wee MPI
has to offer.
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Figure 1: Left: Top: Send and Receive, Middle: Broadcast, Bottom: Gather. Right: Top: Scatter, Middle: Reduce (Sum), Bottom: Wave
demonstration in progress.

The first two demonstrate the ben-
efits of parallel computing through the
analogy of cooking, showing an embar-
rassingly parallel problem and then, in-
troducing conflict and making the prob-
lem less perfectly parallel, showing the
need for efficient communication. The
next series go through point to point
communications, first showing a loop of
blocking and then non-blocking sends
and receives. The final set discusses col-
lective communications, demonstrating
what each do and showing their ani-
mations. It also shows the way that a
broadcast could created using point to
point communications.

Coastal Defence Demonstration

In the demo, the ocean is broken up
into wide horizontal strips.2 Each strip
is processed by a single Raspberry Pi.
However, there needs to be some com-
munication so that waves can propagate
throughout the simulation.

To do this, after every tick of the
equation solver that is run in the simu-
lation, the edges of these strips are ex-

changed between Pis. This is known as
a “haloswap” and is shown by a custom
animation. As many thousands of these
occur during the simulation, I only show
every hundredth haloswap.

Recommendations

The main goal of the project was to cre-
ate an extensible and easily used frame-
work to visualise parallel communica-
tions in any language. By using the an-
imation server-client architecture and
the profiling interface, this goal has
been accomplished.

As demonstrated in the tutorials and
coastal defence simulation, this func-
tions in practice, and as the animations
can easily be modified or turned off,
there is nothing stopping adoption in

future demos.
It also would be an improvement

were all demonstrations for Wee Archie
done using the web framework, as this
would allow users to easily switch be-
tween demonstrations, and provide a
surrounding explanation. It also allows
for novel, interactive visualisations with
the use of new features such as WebGL,
and the D3 JavaScript library.
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Performance Comparison of Python and C
Programs in Computational Fluid Dynamic (CFD)

Performance
of Python
Program on
HPC
Ebru Diler

This project aims to improve the speed per-
formance of Python, by experimenting with
high performance scientific and fast data
processing libraries.

Scientific researchers use HPC
to model and simulate complex
problems.They require fast su-
percomputers in order to re-

solve problems in the areas of Life Sci-
ences, Physics, Climate research, En-
gineering and many others. Such ma-
chines harnesses the power of thou-
sands of tightly connected highend
servers to deliver enough power to pro-
grams. One of such machines is Archer
located in Edinburgh.

In recent years, the preferred pro-
gramming language for HPC is gener-
ally C/C++ or Fortran. Because they
give the programmer very high con-
trol. A research or project that started
with a programming language can be
hard to change programming language,
but there are tradeoffs that should be
considered. One of other languages is
Python, which is constantly growing
and developed by a strong community.

Python has become a very popu-
lar programming language due to its
wide range of uses. If you read program-
ming and technology news or blog post
then you might have noticed the rise
of Python as many popular developer

communities including StackOverflow
and CodeAcademy has mentioned the
rise of Python as a major programming
language. Although it is widely used, it
has some disadvantages. One of them is
that it is poor performance. Therefore,
it is not preferred in large scale model-
ing and simulation used in high perfor-
mance computers. However, some high
performance/fast processing libraries in
Python also growing. Thus, tradeoff be-
tween compiled languages and scripting
languages reconsidered. Python offers
faster implementation time, flexibility
and ease to use/learn, which makes it
very strong community, which should
be compared to other languages that
preferly have been used in HPC.

In short, this project aims to improve
the speed performance of Python, a
modern programming language known
with ease of use and flexibility but not
with speed. Main purpose will be opti-
mize the speed by using:

• mpi parallelization library,
mpi4py

• fast data processing library,
numpy

NumPy is one of the most robust
and widely used Python libraries. The
Python Library is a repository of script
modules that can be accessed from a
Python program. Recovers some fre-
quently used commands from rewriting.
It also helps to simplify programming.
NumPy provides a multidimensional ar-
ray object, routines for fast operations
on arrays, and a range of routine prod-
ucts that provide a variety of derived
objects (such as masked arrays and ma-
trices), including mathematical, logical,
basic linear algebra, shape manipula-
tion, sorting, and selection.

MPI for Python provides bindings of
the Message Passing Interface (MPI)[2]
standard for the Python programming
language, allowing any Python pro-
gram to exploit multiple processors.
It supports point-to-point (sends, re-
ceives) and collective (broadcasts, scat-
ters, gathers) communications of any
picklable Python object, as well as
optimized communications of Python
object exposing the single-segment
buffer interface (NumPy arrays, builtin
bytes/string/array objects).
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Introduction

Computational fluid dynamics (CFD) is
a branch of fluid mechanics that uses
analysis methods to analyse and solve
problems involving fluid flows. In order
to simulate the flow of a liquid, com-
puters are used in the calculations re-
quired. Better solutions can be achieved
with high-speed supercomputers and it
is necessary to solve the biggest and
most complex problems with high speed
supercomputers.

Fluid dynamics is a continuous prob-
lem that can be identified by partial dif-
ferential equations. In this study, the
finite difference approach will be used
to solve the equations and determine
the fluid flow model in a square cav-
ity with a single inlet on the right side
and a single outlet at the bottom of the
cavity.

Computational fluid dynamics
(CFD) is a branch of fluid mechanics
that uses analysis methods to anal-
yse and solve problems involving fluid
flows. In order to simulate the flow
of a liquid, computers are used in the
calculations required.

Methods

The fluid flow can be described by the
stream function defined as follows:

∆2ψ =
δ2ψ

δx2
+
δ2ψ

δy2
= 0

Using the finite difference approach, the
flow value at each grid point can be cal-
culated as follows:

ψi−1,j+ψi+1,j+ψi,j−1+ψi,j+1−4ψi,j = 0

With the boundary values fixed, the
stream function can be calculated for
each point in the grid by averaging the
value at that point with its four nearest
neighbours. The process continues un-
til the given number of iterations. This
simple approach to solving a problem is
called the Jacobi Algorithm. The veloc-
ity field u must be calculated to obtain
the fluid flow pattern within the cavity.
The x and y components of u are related
to the stream function by:

ux =
δψ

δy
=

1

2
(ψi,j+1 − ψi,j−1)

uy = −δψ
δx

= −1

2
(ψi+1,j − ψi−1,j)

Implementation

There was already C code written to
solve this problem. Here are 3 different
parameters that affect the algorithm:

1. The scale factor, which has to do
with the size of the problem

2. The reynold number, related to
the flow property of the fluid

3. Tolerance, used to provide conver-
gence control

The flow images resulting from the
change of the reynold number is given
in figure 1 and 2.

Figure 1: Fluid flow Reynold number is
None

Figure 2: Fluid flow Reynold number is 2

Serial Program I have written se-
rial code 3 different versions of Python
to compare the speed.

1. With using python lists and for
loops

2. With using Numpy arrays and for
loops

3. With using Numpy arrays and
built-in Numpy vectorization fea-
tures [1]

Parallel Program I have started
from a serial version running -on a sin-
gle processor -and accelerated by dis-
tributing the work -over more processor

cores -communicating by the MPI in-
terface. In addition parallel approach is
based on the domain decomposition. All
cores calculated details and exchange
necessary information due to keep the
problem consistent. This is called halo
swapping (Figure 3) and it’s reguleted
by MPI.

Figure 3: Visualisation of Halo Swap

Results and Discussion

Comparison of Python Programs
For each one thousand iterations, the
time that spent by differents runs . The
fastest program; Numpy with vectoriza-
tion which let us to avoid for loops. This
was our expectations at first place. But
we were quite suprised with other two
versions (Figure 4).

The version with Numpy worked
much more slowly than the one without
Numpy. Our prediction was that the pro-
gram would run faster using the numpy
library.

Comparison of C Programs
In order to control compilation-time
and compiler memory usage, and the
trade-offs between speed and space for
the resulting executable, GCC provides
a range of general optimization levels,
numbered from 0–3, as well as individ-
ual options for specific types of opti-
mization.

An optimization level is chosen with
the command line option -OLEVEL,
where LEVEL is a number from 0 to
3. The following figure shows the per-
formance of the C program running
on different optimization levels. Figure
5 shows the execution time of the C
program according to the optimization
level.

We also compared C and Python ex-
ecution speeds. Figure 5 shows the data
generated as a result of C and python
programs. According to data, efficient
features of Numpy has increased perfor-
mance 112 times.
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Figure 4: Comparison of Python programs

Performance measures for Paral-
lelization
The speedup of a parallel code is how
much faster the parallel version runs
compared to a non-parallel version. Tak-
ing the time to run the code on 1 proces-
sor is T1 and to run the code on N pro-
cessors is TN , the speedup S is found
by:

S =
T1
TN

This can be affected by many different
factors, including the volume of com-
munications to calculation. If the times
are the same speedup is 1, there was no
change.

Figure 7 demonstrates the strong scal-
ing of Python parallel program running
on different number of processor. The
graphic describes how the execution
time of the program is affected by in-
creasing the number of cores as the size
of the problem increases.

Figure 5: Comparison of C programs

Figure 6: Parallel Python Program

Conclusion

Although the Python program still
falling behind the C program in terms of
performance, it is possible to improve
its performance thanks to the Numpy
library. In this project: we can say that
using numpy arrays without using ef-
ficient numpy features (like vectoriza-
tion) does effect performance in nega-
tive way for Python program.

Figure 7: Comparison of Python and C pro-
grams
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Investigation on GASNet’s Active Messaging
component as an alternative to MPI

Investigations
on GASNet’s
active
messages
Benjamin Huth

Illustration of the difference between the MPI approach
and GASNet’s active message (AM) approach. Whereas
MPI requires the receiving process to actively take the
data, an active message directly jump in and modify the
local memory.

The project aimed at replacing an MPI-based communication backend with GASNet.
However, performance tests showed that GASNet does not perform well on this task,
and a following broader investigation backs this observation.

Parallelism is the most impor-
tant concept in modern super-
computing. On today’s large
supercomputers this is mainly

achieved by a technique called SPMD
(Single Program Multiple Data). This
means, that there is only one unique
program which is executed on many dif-
ferent CPUs (often on several hundreds
or thousands) at one time, but each of
them has individual data. To communi-
cate between these programs, program-
mers use specific messaging libraries.
The most popular one is MPI (Message
Passing Interface). Its basic concept is
as follows:

• The sending program calls a send-
function.

• The destination program has to
call a receive-function.

• Only if there is a matching pair of
send- and receive-functions, the
communication takes place.

Although this is the most popular
concept, it is not the only one. Another
one called "Active Messaging" is im-
plemented by GASNet (Global-Address
Space Networking). Its approach is very
different from the above one:

• The sender sends not just data,
but also a function to the destina-
tion.

• If the message arrives at the desti-
nation, it automatically executes
the function which can work on
the data.

• The receiver has no direct control
over the message arrivals.

There are tasks which naturally bet-
ter fit to this second approach, e.g. a
task-based library, which abstracts the
problem of explicitly sending data from
the programmer, and lets them focus
on the logical structure of his program
and data. Actually this was the motiva-
tion for my project: we aimed at replac-
ing the communication back-end of a

library called “EDAT”, which relies on
MPI, with a GASNet-based one.

Change of focus

After implementing the first version of
EDAT with GASNet we saw that the
performance was not as good as ex-
pected. So we changed the focus to
investigate more the basic properties
of GASNet’s active messaging compo-
nent. To get more general results, we
decided not to analyse the performance
of self-made code, but to rely on ex-
isting standard benchmarks (programs
for measuring hardware performance)
for MPI, and rewrite them with GASNet
as close as possible. These benchmarks
should cover a broad spectrum of paral-
lel software, to figure out what are the
strengths and weaknesses of GASNet.

Its important to mention that we use
GASNet here as a drop-in replacement
for passive point-to-point communica-
tion, which is not what it is designed for.
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(a) Visualisation of the swapping process in a simple 2D stencil
algorithm. The grey circles represent the processes, whereas each
arrow denotes a data transfer.
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(b) Example for a graph. On the bottom one sees how
the ”breadth-first search” goes through the above graph
in four steps; In the first step it reaches all points with
distance 1, in the second all with distance two...

Figure 1: Visualisation of the two benchmarks

But if that works out well, it would be
easier for developer to implement than
redesigning the whole application.

Benchmarks for analysis

The purpose of the first benchmark is to
determine the basic messaging proper-
ties of each communicating system:

• The bandwidth is the amount of
data a network can transfer in
a certain time, nowadays mod-
ern networks typically have a low
two-digit number of GB/s, e.g. 10
GB/s. Compared to the bandwidth
of the internal memory this is very
slow, so this is a big bottleneck for
parallel software.

• The latency is the time a network
needs to react to a messaging re-
quest. It determines the fastest
possible communication, and is
for small messages often more im-
portant than the bandwidth.

To measure these two quantities, we
use a standard benchmark designed by
the Ohio State University (see [1]).

The second application we chose
for our tests is a stencil-benchmark.
In this application a grid is distributed
over many processes (so each process

has a small fraction of the grid in its
local memory). During the run, each
grid point is updated with the sum of
its 4 neighbours (in the simplest 2D
case). This is a typical scientific applica-
tion, so e.g. above algorithm is solving
the Laplace-equation of electrodynam-
ics. To perform an update on the grid
points on the edges of a local grid, one
must transfer some grid points from a
neighbour process to the local one. In
the simple 2D case, each process has
to send 4 chunks of data to its neigh-
bours, but also receives 4 chunks from
them (see figure 1a). As a bases of the
GASNet benchmark, we used the imple-
mentation of Intel’s Parallel Research
Kernels for MPI (see [2]).

The last benchmark is called
graph500 (see [3]). It is designed to
simulate applications, which are not re-
lying on heavy numerical computations,
but on complex data structures. It im-
plements a so called “graph”. This is
an abstract data structure, which con-
sists of points (called “vertices”), and
some of them are connected by “edges”.
These edges usually represent a dis-
tance, whereas the vertices can contain
any kind of information. A common and
simple example of data one can repre-
sent as a graph is a road map (see figure
1b).

The graph500 benchmark first cre-
ates a random graph which is again dis-
tributed over the processes, and then
starts as “breadth-first search” (see also
figure 1b). This results (in contrast to
the stencil-benchmark) in many, but
very small messages with unpredictable
destinations.

To implement this benchmark, I
haven’t rewritten the whole program,
but just replaced the already abstracted
communication layer with a GASNet
based one.

All used source code is available in
a repository (see [4]), together with de-
tailed instructions how to compile GAS-
Net and the different benchmarks.

How to run the benchmarks

We run these benchmarks on three dif-
ferent systems, but here we show only
the results from ARCHER, UK’s national
supercomputer. For its network there
exists an optimised MPI as well as an
optimised GASNet implementation, but
the results are also representative for
the rest of the systems.

Whereas in the micro-benchmarks
we scale the message-size, but hold the
process count constant, for the two big
benchmarks we scaled the parallelism:
we started with the serial problem and 1
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(a) Performance of the latency-
benchmark. The message size is
increased in powers of 2 from 1
byte to about 4 MB.
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(b) Performance of the
bandwidth-benchmark. The
message size is increased in
powers of 2 from 1 byte to
about 4 MB.
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(c) Performance of the stencil-
benchmark. The workload is
hold constant as 1000000 grid-
points per process respectively
core.
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(d) Performance of the
graph500-benchmark. The
workload is hold constant
as 4096 vertices per process
respectively core

Figure 2: performance plots from ARCHER

process, and went up to 3072 processes
(for the stencil) respectively 2048 pro-
cesses (for the graph500 which requires
the number of processes to be a power
of two). While we are scaling the num-
ber of processes, we try to keep the
amount of work per process constant
(called weak scaling), since we’re not
interested in how the algorithm bene-
fits from parallelism, but how well the
communication works. For a theoreti-
cal communication system with infinite
speed and zero latency, the execution
time would stay constant, so an increase
of execution time reflects the commu-
nication overhead coming with more
parallelism.

Results and analysis

Already in the micro-benchmarks (see
figures 2a and 2b) we see a significant
performance difference. This isn’t suf-
ficient as a proof that GASNet’s active
messages perform badly on ARCHER,
but a strong indicator.

In the latency plot, the left side is the
most interesting one: Here we see that
the minimal time for a message in GAS-
Net is nearly twice as long as for MPI.
On the bandwidth plot, the most inter-
esting area is the right side, and here we
see also better performance with MPI,
especially for the largest message sizes.

But these effects are not directly
seen in the stencil benchmark: there
is not much difference between both
frameworks (see figure 2c). After a big
increase at the beginning (which is prob-
ably caused by memory effects inside a
single node), the performance stays con-
stant, as expected for weak scaling.

With the graph500 (see figure 2d),
we see an entirely different picture.

GASNet is now a whole magnitude
slower than MPI. This could be sur-
prising, because one might think, that
the active messaging approach is more
suitable for this kind of application (in
fact, in original benchmark uses an ac-
tive messaging layer implemented with
MPI). On the other hand, an obvious ex-
planation for this can be found with the
latency results before: A difference in la-
tency is much relevant with many small
messages than with a few big messages.

Conclusion

With these results in mind, it is prob-
ably not worth using GASNet’s active
messaging as a replacement of MPI for
passive point-to-point communication.
For this reason, we dropped the previ-
ous aim of this project and focused on
pure GASNet as an alternative for MPI.
I think investigations on this topic are of
general interest for the parallel comput-
ing community; although MPI is very
good and widely used, it is always im-
portant to consider alternatives which
can not only help developers choosing
right tools for their job, but also pushing
MPI to further improvements.

However, these are only preliminary
results, it could be interesting to inves-
tigate a few things further, like doing
more extensive profiling to understand
the observed performance better. It may
also be worth to investigate the possi-
bilities of GASNet’s second component
RMA (Remote Memory Access) which
can compete with MPI according to the
developers.

References

1. Panda, D. K. OSU Micro-Benchmarks
5.6.1 accessed 7th August 2019. Mar.
2019. http://mvapich.cse.ohio-
state.edu/benchmarks/.

2. Intel Corporation. Parallel Research Ker-
nels accessed 7th August 2019. 2013.
https://github.com/ParRes/
Kernels.

3. Graph500 Steering Committee.
Graph500-3.0.0 accessed 7th August
2019. May 2019. https://github.
com/graph500/graph500.

4. Huth, B., Brown, O. T. & Brown, N.
EPCCed/GASNet-AM-benchmarks: PAW-
ATM19_submission Aug. 2019. doi:10.
5281 / zenodo . 3368621. https :
/ / doi . org / 10 . 5281 / zenodo .
3368621.

PRACE SoHPCProject Title
Task-based models on steroids:
Accelerating event driven task-based
programming with GASNet

PRACE SoHPCSite
EPCC, UK

PRACE SoHPCAuthors
Benjamin Huth, Uni Regensburg,
Germany

PRACE SoHPCMentor
Nick Brown, EPCC, UK
Oliver Brown, EPCC, UK Benjamin Huth

PRACE SoHPCContact
Huth, Benjamin
Universität Regensburg
Phone: +49 174 605 4097
E-mail: benjamin.huth@physik.uni-regensburg.de

PRACE SoHPCSoftware applied
MPI, GASNet

PRACE SoHPCMore Information
gasnet.lbl.gov

PRACE SoHPCAcknowledgement
I want to thank my mentors Nick Brown and Oliver
Brown for their constant support, Ben Morse for
organising our stay in Edinburgh and PRACE and Leon
Kos for organising this event. Last but not least I want
to thank my SoHPC collegues Caelen and Ebru for
spending this awsome summer with me!

PRACE SoHPCProject ID
1909

27



Using HPC to investigate the structure and
dynamics of a K-Ras4b oncogenic mutant protein

Studying an
oncogenic
mutant protein
with HPC
Rebecca Lait

Molecular Dynamics (MD) simulations and
Normal Mode Analysis have been used in
order to discover potential binding sites on
the K-Ras4b protein, which could be
further used in drug design studies.

The oncogenic mutant K-Ras4b
is a protein that has been stud-
ied for many years but there
has been limited progression re-

garding finding new drugs against it.
Drugs are small molecules that bind
to proteins and inhibit protein func-
tion. Also known as ligands, they bind
to a specific region of the target pro-
tein, the binding site. In some cases,
the location of the binding site is not
known in advance, even though the pro-
tein structure is available. In this con-
text, computational studies can help dis-
cover new binding sites. Hence, the goal
of this project was to identify binding
sites on the oncogenic protein K-Ras4b,
which could benefit future therapeutic
approaches.

K-Ras4b

K-Ras4b is a small GTPase, which refers
to a large family of hydrolyse enzymes.
It is an essential component of sig-
nalling network controlling signal trans-
duction pathways and promoting cell
proliferation and survival. It operates

as a binary switch in signal transduc-
tion pathways, cycling between inac-
tive GDP-bound and active GTP-bound
states.[1] In the GTP-bound active state,
cell proliferation, which refers to an
increase in the number of cells due to
cell growth and division, can normally
occur. However, in the GDP inactive
form, cell proliferation is inhibited. Fig-
ure 1 shows the GTP molecule bound
to the K-Ras4b protein.

During the hydrolysis of GTP, there is a
loss of a phosphate group, which results
in the formation of GDP. Thus, these

two states act like switches to turning
the function of the protein on and off,
respectively. However, the hydrolysis of
GTP to GDP in the G12D mutated
K-Ras4b, where the glycine in residue
position 12 has been replaced with as-
partic acid, is no longer possible. Con-
sequently, the protein is ‘locked’ in the
active GTP state.[1] This leads to over-
activation of the K-Ras4b protein and as
a result, to cancer growth. The K-Ras4b

Figure 1: The GTP molecule bound to the
K-Ras4b protein.

protein is comprised of three functional
domains: the effector binding region
which is defined by amino acid residues
1-86; the allosteric region by residues
87-166; and the HVR tail by residues
167-188. Each of these three domains
are responsible for a particular interac-
tion or function which contributes to
the overall function of the protein.[2]
The first domain in K-Ras4b, the effec-
tor binding region, is located in the N-
terminus of the protein. There are three
sub-domains within the effector binding
region: P-loop; switch I and switch II.[1]
Once the GTP is bound, the protein un-
dergoes conformational changes that in-
volve switch I and switch II. The sec-
ond domain, the allosteric region, has
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been suggested to play a role in switch II
conformation and the orientation of the
membrane, while the third domain, the
HVR tail regulates the biological activity
of the protein.[3] Within the aqueous
component of the cytoplasm of a cell,
the CYS185 of the protein is farnesy-
lated, meaning that there is an addition
of a farnesyl group, allowing the protein
to bind to the inner leaflet of the plasma
membrane.[4] There are many posi-
tively charged lysine amino acids within
the HVR tail that interact strongly with
the negatively charged membrane.[1]
These functional domains can be seen
in Figure 2. The blue region highlights
the effector binding region. The red re-
gion displays the allosteric region and
the green region shows the HVR tail.

Figure 2: The K-Ras4b protein with the
three domains highlighted in red, blue and
green.

Aims of the project

The aim of this project was to identify
new potential binding sites on the sur-

face of the unmutated wild type and
the G12D mutant K-Ras4b, where small
molecules can bind. This would aid the
rational design of selective K-Ras4b in-
hibitors. In order to achieve this, Molec-
ular Dynamics simulations and Normal
Mode Analyses were performed.

Molecular Dynamics simulations

Atomic coordinates files of the protein
and the specific attached ligand struc-
ture - either GTP or GDP - were down-
loaded from the Protein Data Bank.[5]
Protein preparation including solvation
and ionisation processes was carried
out. The pdb files used for the unmu-
tated WT K-Ras4b bound to GDP, G12D
mutated K-Ras4b bound to GDP, unmu-
tated WT K-Ras4b bound to GTP and
G12D mutated K-Ras4b bound to GTP
had pdb codes 5W22, 5US4, 5VQ2 and
6GOF, respectively.[5] Regarding the
G12D K-Ras4b GTP structure, a struc-
ture was not available and so one was
created using the 6GOF structure as
a starting point. The HVR region was
taken from pdb code 2MSC and ap-
pended to the 6GOF structure. More-
over, one of the two magnesium ions
was removed and the GPPNHP molecule
was replaced with the GTP molecule.
The solvation step, which places the pro-
tein in a water box, and the ionization
step, which places ions in water, was
carried out in order to represent a more
realistic biological environment. Thus,
the following systems were created: un-
mutated wild type K-Ras4b bound to
GDP or GTP, and G12D mutated
K-Ras4b bound to GDP or GTP. Once
protein preparation was completed for

all four K-Ras variants, Molecular Dy-
namics simulations were performed us-
ing the ARIS supercomputer. For the WT
K-Ras4b bound to GDP, the simulation
was run for 75 ns and for the remaining
3 variants for 23 ns each.

Identifying K-Ras4b binding
sites

After performing Molecular Dynamics
simulations, the last frame of each sim-
ulation was collected and imported into
the Schrodinger Suite for binding site
identification. SiteMap was used in or-
der to determine whether any cavities
with hydrophobic characteristics and hy-
drogen bonding capacity existed on the
simulated proteins.[6] Initially, regions
on the protein surface, called ‘sites’,
were identified as potentially promis-
ing. These were located using a grid of
points called ‘site points’. In the second
stage, contour maps, ‘site maps’, were
generated and the predicted binding
site was visualised. Finally, each site was
assessed by calculating various proper-
ties, such as druggability and hydropho-
bicity.[6] All of the predicted binding
sites were investigated and only the
ones that appeared the most promising
would continue in further analysis. The
identified binding sites for the mutated
G12D K-Ras4b bound to GTP are shown
in Figure 3 below. The binding sites
identified are shown in three colours:
red, yellow and purple. They are each
highlighted using coloured circles and
are each labelled.

Figure 3: The identified binding sites for the G12D mutated K-Ras4b bound to GTP. Each binding site is labelled and is highlighted using
coloured circles.
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Normal mode analysis

Normal mode analysis was carried out
alongside the binding site identifica-
tion in order to investigate large scale
motions of the protein structures. Nor-
mal mode vibrations are simple har-
monic oscillations around an energy
minimum. The normal modes which
have the biggest amplitude can indicate
the functional motions of the proteins.

In the context of this project, the fluc-
tuations around predicted binding sites
were investigated. More specifically, if
the analysis predicted large scale mo-
tions at a particular area of the protein
that SiteMap identified as a potential
binding site, it may be suggested that
this is a biologically functional region of
the protein and could act as a binding
site. This type of analysis is qualitative.
However, when this is combined with

binding site identification results, it can
give useful insights regarding the func-
tional areas of a protein. For each of
the four studied K-Ras variants, regions
with considerable large-scale motions
near to the identified binding sites were
found. An example of this analysis un-
dertaken is shown in Figure 4 below
and compared to the binding site iden-
tification result from SiteMap.

Figure 4: The normal mode analysis undertaken on the unmutated wild type K-Ras4b structure bound to GDP. The binding site is circled.

Conclusions

In this project, models of the K-Ras4b
structures were constructed and MD
simulations were used to study the
dynamics of this protein. Binding site
identification was performed in order
to find cavities where candidate drugs
could potentially bind, resulting in suc-
cessfully identifying sites on the four
K-Ras4b variants in different domains
of the protein. Normal Mode Analyses
were used to identify whether the pre-
dicted binding sites lie in areas of the
proteins with large fluctuations.
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HPC for candidate drug optimization using free
energy perturbation calculations

Lead
Optimization
using HPC
Antonio Miranda

Free Energy Perturbation (FEP) calculations
may reduce the time and cost of drug
discovery. Specifically, they may help in
optimizing the binding affinity between the
drug candidate and the therapeutic target. To
validate this methodology within the context of
drug discovery, FEP calculations were
performed and compared with experimental
data. Results suggest that FEP has predictive
ability and can be used for lead optimization
but using HPC resources is crucial.

The cost of creating and launch-
ing one drug has been reported
to be above US$1 Billion. In-
deed, there are even studies

that estimate this cost in more than
US$2.8 billion.1

Figure 1: Drug discovery cost. Data Source: Paul et al. (2010)7

Drug discovery has several phases
(Figure 1). One of them, “lead optimiza-
tion” may account for almost 25% of the
total cost of all four phases, according to
a study from 2010.1 This phase includes
optimizing drug metabolism, pharma-
cokinetic properties, bioavailability, tox-

icity, and of course efficacy. Drug effi-
cacy is directly dependent on the bind-
ing affinity of the candidate drug onto
the pharmaceutical target, which is com-
monly a protein.

Lead Optimization using computa-
tional approaches.

This project focuses on the opti-
mization of the binding affinity, i.e. the
strength of interaction of the drug candi-
date onto the target protein using com-

putational approaches. Specifically, the
binding affinity of several modified com-
pounds (analogs) of an original lead in-
hibitor of a target protein was studied
using using Molecular Dynamics (MD)
simulations coupled with Free Energy
Perturbation (FEP) calculations.

Free Energy Perturbation calcula-
tions.

Free Energy Perturbation (FEP) cal-
culations offer a promising tool for com-
puting the relative binding affinity of
two drug candidates, because they have
a rigorous statistical mechanics back-
ground.2,3 In particular, in FEP calcu-
lations the free energy difference, ∆G,
between compound A and compound B
is computed by an average of a func-
tion of their energy (kinetic and po-
tential) difference by sampling for the
reference state. Then, using a thermo-
dynamic cycle (Figure 2), the relative
binding free energy, ∆∆G, between two
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congeneric ligands A and B is calculated
from the following equation: ∆∆G =
∆GB – ∆GA. If this approach results in
∆∆G<0, it is concluded that ligand B
is favored over ligand A (Figure 2).

The use of FEP simulations in
drug discovery has been historically re-
stricted by the high computational de-
mand, the limited force field accuracy
and its technical challenges. However,
in recent years, FEP calculations have
benefited from advances in GPU and
HPC availability, force-field research
and the development of more elaborate
simulation packages.2

Once these limitations have been
overcome, it is time to assess whether
FEP calculations using HPC resources
are efficient for drug discovery. If this
is the case, the time and cost of drug
discovery could be reduced. This reduc-
tion could have implications in the final
market drug price, which would eventu-
ally benefit the whole society. Therefore,
the scope of this work is the compari-
son of the FEP simulation results with
experimental results as well as to assess
whether using HPC resources would
be efficient for FEP calculations. The
comparison with experimental results
has been done using several analogs of
CK666, a micromolar Arp2/3 inhibitor.
Arp23 is a protein involved in cell lo-
comotion and a mediator of tumor cell
migration (thus, it is involved in metas-
tasis).4,5 The HPC resources that were
used were the Greek national supercom-
puter, ARIS, from the GRNET facility.

Methods

For every ligand, there are two states:
the ligand free in solution and the lig-
and bound to the protein in solution.
Then, when computing ∆∆G, there are
four states: ligand A, ligand B in solu-
tion, ligand A-protein complex in solu-
tion and ligand B-protein complex in
solution. In a FEP or alchemical calcu-
lations, instead of simulating the bind-
ing/unbinding processes directly (∆G0

1

and ∆G0
2 from Figure 2), which would

require a simulation many times the
lifetime of the complex, ligand A is al-
chemically transmuted into ligand B
in solution or in the protein environ-
ment, through intermediate, nonphys-
ical states (∆G0

A and ∆G0
B in Figure

2). Because free energy is a state func-

tion, the thermodynamic cycle of Figure
2 can be used to compute the difference
in the free energy of binding between
ligands A and ligands B: ∆∆G = ∆G0

B

- ∆G0
A = ∆G0

2 - ∆G0
1.

Figure 2: FEP thermodynamic cycle. Source:
Athanasiou et al. (2017)6

In the consecutive non-physical in-
termediates, the interactions of the
atoms are progressively transformed
from the reference to the final state.
In the simulations performed during
this work using the software GROMACS
5.1.4,8,9 21 non-physical intermediates
were used, split in 21 windows. This re-
sults in performing 21 FEP calculations.
During the first 10 windows, van der
Waals and bonding interactions were
switched on for the appearing atoms.
During the last 10 windows, van der
Waals and bonded interactions were
already switched on and electrostatic
interactions were switched on progres-
sively.

The systems need to be prepared
before one can perform the FEP cal-
culations. The setup includes prepara-
tion of the structures, the parameteri-
zation of the molecules, the alignment
of the ligands, the complex formation,
and the solvation and neutralization.
For the protein the AMBER ff14 force
field10 was used while for the ligands
we used the GAFF2 force field.11 Lig-
ands are aligned because it is assumed
that their common core has the same
binding mode. By having them aligned,
there is more overlap between ligands
potential energies and the FEP calcu-
lations are more probable to converge.
All setup steps were performed using
FESetup tool.12 In addition, coordinate
files for some of the simulated analogs
were created by modifying the refer-
ence ligand with Maestro interface of
Schrödinger software.13

After the setup, MD simulations

were run on Aris supercomputer. MD
simulations consist of four phases: en-
ergy minimization, two equilibration
phases and production. Energy mini-
mization is performed to relax the struc-
tures and guarantee there are no inap-
propriate geometries. Then, equilibra-
tion needs to be performed to stabilize
the temperature and pressure of the
system. Finally, each intermediate state
was simulated for 5 ns during the pro-
duction run each in the 21 non-physical
intermediate states as described above.

At the end of the production sim-
ulation, the obtained potential and ki-
netic energies allow to calculate the free
energy difference for the each of the
intermediate steps. In this work, Ben-
nett Acceptance Ratio, was used to com-
pute the free energy differences.14 The
total free energy difference results by
summing up the free energy differences
of each intermediate step. Finally, once
both legs were finished, ∆∆G was cal-
culated.

Prior to performing the simulations,
scaling curves were obtained in a previ-
ous phase of the project, and it was de-
termined that complex leg calculations
should be run on 4 computing nodes.
The solvent leg only required 1 comput-
ing node.

Results

Figures below show the correlation
among ∆∆G values obtained experi-
mentally and with simulations using
Gromacs and GAFF2. These correlation
plots show an agreement in the values
for some analogs. However, 5 out of
11 analogs retrieved results with a dis-
crepancy larger than 1 kcal/mol. Root
Mean Square Error (RMSE) was 1.42
kcal/mol, Mean Unsigned Error (MUE)
was 1.13 kcal/mol.

Results obtained using Gromacs
and GAFF2 force field for ligand
parametrization have been compared
to previous results with the same soft-
ware package, using the same pipeline
parameters but a different force field,
GAFF. From the correlation plots, it is
observed how the computed ∆∆G val-
ues are highly correlated with those of
the previous experiments except in one
case (RMSE was 0.31 kcal/mol MUE
was 0.24 kcal/mol and R2 was 0.97 ex-
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Figure 3. Left: Correlation plot between experimental and FEP results using Gromacs and GAFF2. Upper-right: correlation between
experimental and FEP results with Gromacs and GAFF. Lower-right: correlation between FEP results using Gromacs and GAFF and
Gromacs and GAFF2. This figure has less points because not all compounds analyzed with GAFF2 were analyzed with GAFF.

cluding that analog). For this outlier
analog, the calculations using GAFF2
correlated better with experimental re-
sults.

It was previously mentioned that, ev-
ery time, we were simulating 5 ns. Since
there are 21 intermediate windows, the
total simulated time is 105 ns per leg.
For the solvent leg, every 5 ns simula-
tion were run on 10 cores and took 6.5
hours. For the complex leg, 80 cores
were used and to run every 5 ns simula-
tion during 13.5 hours. This means that,
if we were to run simulations for 100
analogs in 24 hours, we would need
84000 cores for the complex leg and
5250 cores for the solvent leg.

Discussion

Correlation plots show that, in 6 out
of 11 analogs, FEP results correlate
with experimental results within a 1
kcal/mol error. In general, results ob-
tained a RMSE of 1.42 kcal/mol, MUE
of 1.13 kcal/mol. This shows that FEP
calculations may have predictive power
and can be integrated in the drug dis-
covery pipeline. With respect to the fur-
ther refining, more work on force field
parameters and on sampling techniques,
the treatment of the protein-ligand en-
vironment and of chemical effects (e.g.
buffer salt conditions or protonation
states) may be required to further en-
hance FEP calculations accuracy. This

study also shows that HPC resources
are absolutely crucial for enabling high-
throughput lead optimization with FEP.
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Hybrid Monte Carlo/Deep Learning
Methods for Matrix Computation on
Advanced Architectures

Deep Learning
for Matrix
Computations
Mustafa Emre Şahin
Solving or inverting systems of linear algebraic
equations(SLAE) is significant in many
engineering applications and scientific fields. In
this project, the implementation of stochastic
gradient descent method and inverting SLAE
methods will be simply explained with High
Performance Computing (HPC) methods on
advanced architectures.

Have you ever realised the wait-
ing time for the machines de-
creasing day by day in our daily

life? Of course nobody wants to wait
for slow automated machines or have
slow smart phones, but do you remem-
ber how long you were waiting for the
old devices to open?

How to express the real-world
problems to the machines?

We can describe the problems with help
of the linear algebra and solve the prob-
lems by expressing as systems of linear
algebraic equations. The machines un-
derstand things as numbers in a matrix,
and any manipulation means matrix op-
erations for the machines.

Figure 1: For example this is how we see
images, but machines see as numbers.

”Math is boring and hard.”

Yes, everything is boring and hard when
we are struggling to understand. Let’s
start with a basic question:

"Why do we need the matrix in-
version?"

Let’s assume the equation Ax = bAx = bAx = b,
and we want to find x. To find x, the
both sides can be divided by A: x=b/A.
However, you can’t just simply divide
when A is a matrix, so you need an-
other method to solve the problem.
Since A−1A = IA−1A = IA−1A = I, inverse of matrix can
be used to solve the problem by multi-
plying from left side: x = A−1bx = A−1bx = A−1b. As you
can see, the matrix operations are not
scary monsters, they are just different.

"What is changed in our life when
we solve x?"

X is the hero of our daily lives. It
is the voltage in electronic devices, the
answer of the many simulations like cli-
mate change or aerodynamics. Linear
systems of equations are the foundation
of the science and the technology.

The Matrix Inversion

Let’s remember the good old memories
from high school, the inverse matrix
can be calculated by using minors, co-
factors and adjugate. However when
the matrix size is large, this method
is not very optimal. Iterative methods

are important for the sake of rapidness
while finding the inverse of the matrix.

Assume solving a system of linear
equation (Ax = bAx = bAx = b in matrix form) with
b = Ib = Ib = I, by calculating Ax− bAx− bAx− b over and
over again until a solution that under
desired error is obtained. Still, there are
too many steps while using the iterative
solvers so it can be reduced with the
help of preconditioner[1].

∼ Recipe for Matrix Inverse ∼

In this project, the aim is improv-
ing non-recovered output of "Markov
chain Monte Carlo matrix inversion
(MC)

2
MI(MC)

2
MI(MC)

2
MI [2]" using a stochastic gra-

dient algorithm method. Though using
the (MC)

2
MI(MC)

2
MI(MC)

2
MI method results bad in-

verse matrix, inverse of matrix can be
easily obtained with a time-costly recov-
ery process [1].

Figure 2: Outputs of (MC)2MI(MC)2MI(MC)2MI method,
left: Non-Recovered Inverse, right: Recov-
ered Inverse. [1]
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Figure 3: Left: Implementation of mSGD algorithm to non-recovered inverse of the MCMCMI. Middle: Speed-up graph of non-uniform
mSGD with batches. Right: The time consumption of different parts of the code for per process.

"What is Stochastic Gradient De-
scent (SGD)?"

Gradient Descent is an iterative
method which is used to minimise an
objective function. If randomly selected
part of the samples used in every iter-
ation of gradient descent, it is called
stochastic gradient descent.

Let’s check the recipe for the
method for our case.

• Assume the system Ax = bAx = bAx = b where
b is Identity matrix and x = A−1x = A−1x = A−1.
• Since the aim is estimating a solu-

tion that has lower error (Ax− b),
the objective function should be
minimised F (x) = 1

2m‖Ax− b‖
2F (x) = 1

2m‖Ax− b‖
2

F (x) = 1
2m‖Ax− b‖

2

where mmm is the number of rows
of A.
• After uniform random selection

of row i for every iteration, the
objective function becomes
fi(x) =

1
m (Aix− bi)2fi(x) =
1
m (Aix− bi)2fi(x) =
1
m (Aix− bi)2.

• If we want delicious stochastic
gradient descent, we should add
some gradient to our objective
function,
∇fi(x) = 1

mAi
∗(Aix− bi)2∇fi(x) = 1

mAi
∗(Aix− bi)2∇fi(x) = 1

mAi
∗(Aix− bi)2

where Ai
∗Ai
∗Ai
∗ is the conjugate trans-

pose of AiAiAi.
• For every round(iteration)
kkk, we should update xxx as
xk+1(new) = xk(old) − α(∇fi(x))xk+1(new) = xk(old) − α(∇fi(x))xk+1(new) = xk(old) − α(∇fi(x))
whereααα is the learning rate which
determines the proportion of new
information that will be added.

As a deep learning method, the stochas-
tic gradient descent algorithm in the
paper [3] is implemented in Python to
test our case. According to the paper for
method mSGD:

• Assume a sparse matrix A
which is full rank over-
determined(number of rows »
number of column) matrix is used
on the linear system Ax = bAx = bAx = b.

• Ratio of the number of non-zero
elements over total number of ele-
ments in the A, p is also included
to the stochastic gradient descent
algorithm to estimate a better so-
lution. With the magic of the math
(Details are in the [3]), the up-
dated x becomes:

xk+1 = xk − α( 1
p2Ai

∗(Aixk − bi)2−xk+1 = xk − α( 1
p2Ai

∗(Aixk − bi)2−xk+1 = xk − α( 1
p2Ai

∗(Aixk − bi)2−
1

1−p2 diag(Ai
∗Ai)xk)

1
1−p2 diag(Ai

∗Ai)xk)
1

1−p2 diag(Ai
∗Ai)xk) where diag()diag()diag() gets

diagonal matrix of the input.

"Implementing mSGD to the
(MC)

2
MI”(MC)

2
MI”(MC)

2
MI”

Although, the matrix A is a
square matrix (number of rows
= number of column) in our
case, the method successfully (Fig-
ure 3) decreases the error when
MaximumSteps = 2∗4, α = 4 ∗ 10−4MaximumSteps = 2∗4, α = 4 ∗ 10−4MaximumSteps = 2∗4, α = 4 ∗ 10−4

and A−1A−1A−1, non-recovered inverse from
(MC)

2
MI(MC)

2
MI(MC)

2
MI given as initial solution (x)(x)(x)

to the system. After successful results in
Python, the algorithm is implemented
in C++ with Eigen library on Scafell
Pike X1000 Supercomputer.

”The Cherry on the cake”

"Life is not fair. Why should random
selection be fair?"

In mSGD, the rows are selected
with uniform probability. The results are
slightly better (Figure 3) if probability
of selecting a row is proportional to the
norm of the row.
"Last touch: Adding Batches to Paral-
lelization"

Stochastic Gradient Descent and
Batching are as like as two peas in a pod.
Instead of using whole matrix A for the
method,rows are divided into the sub-
sets for each process in the paralleliza-
tion with Hybrid MPI/OpenMP.When
rows are not equally divided, it is a good
trick to give lower amount of rows to

the master process since it has more
work than others.

Discussion and Conclusion

I successfully implemented and par-
allelized Stochastic Gradient Descent
method to the (MC)

2
MI(MC)

2
MI(MC)

2
MI algorithm

with the non-uniform random distri-
bution, the batching and a successful
speed-up. As the number of processes
increase, the communication took more
time than others, however speed-up is
better as shown in the Figure 3’s Middle
and Right images. The further accelera-
tion methods for the algorithm can be
investigated by future generations of
Summer HPC participants.
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Performance evaluation of a dissipative particle
dynamics code for very large systems using latest
hybrid CPU-GPU architectures.

Billion bead
baby
Davide Di Giusto

Dissipative particle dynamics simulations
allow to overcome the length-scale limits
of molecular dynamics, while maintaining
the inner, discrete nature of matter. To
simulate realistic applications, a huge
system is necessary, where the number of
particles is proportional to some billions.
This project aim is to extend the current
size limits of the DL-meso DPD code and
scale it on a large GP-GPUs architecture.

The Dissipative Particle Dynam-
ics (DPD) method provides a
powerful tool to simulate phys-
ical phenomena of common in-

terest. The approach implies the defi-
nition of a particle size, which can in-
clude several small molecules or few
more complex ones. The action of three
forces, conservative, dissipative and
stochastic ones, allows this method to
be valid for the simulation of simple
and complex fluids. Finally, the DPD
deals with the mesoscale, between the
nanoscale, that describes the size of
the molecules, and the microscale, that
starts to measure the continuum me-
dia. Potentially, large scale simulations
based on the DPD can try and over-
come the distance that separates the
mesoscale and the microscale, while
still mantaining features derived from
the particle size, closer to the nanoscale
of matter: this could benefit both re-

search and industrial worlds. The DL
Meso DPD code (DL Meso) imple-
ments the Dissipative Particle Dynamics
method and, thanks to the usage of GPU
accelerators, we will explore its size lim-
its and extend them, in order to perform
large scale simulations.

The DL Meso DPD code is writ-
ten in Fortran but offers the possibil-
ity to transfer the calculations on GPUs
(Graphics Processing Unit), as the main
loop has been ported to CUDA C. Let
us consider the original version of the
code. Aim of the project was to target its
size limitations, so to extend the simu-
lation possibilities. From previous tests,
the largest number of beads that had
been deployed was two billions. Not
bad at all, we could say! But we should
be ambitious in our work and tried per-
forming a three billion simulation. For
it to run, several quantities needed to
be stored on the machine memory in

the corresponding variables, defined by
a size and a type. Moreover, many of
these were directly proportional to the
number of beads stocked for the simula-
tion, therefore we assumed straightfor-
wardly that such parameter was causing
integer overflow for the mentioned vari-
ables. In computer programming, over-
flow occurs when an integer value is
stored on a variable whose memory al-
location is not big enough for the cur-
rent necessity. For example, if a integer
value exceeds the typical value range
of a 4 bytes integer, which goes from
-2147483648 to 2147483647, the code
is trying to improperly access the system
memory, leading to its termination: for
sure this was happening for the variable
that stocked the total number of beads
in the system (3 billions), but sneakier
ones were hiding in the scripts.
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Figure 1: NVIDIA Tesla P100 representation: it is possible to observe the moltitude NVIDIA CUDA cores, organised in streaming
multiprocessors. The huge number of cores determines its inner parallelism.(Source: Link)

The complexity of this problem, to-
gether with the articulate structure
of the code, required proper tools
for debugging. The EclipseTM inte-
grated development environment and
the NsightTM Eclipse Edition were cho-
sen, as they allow a visual exploration
of the code lines while running in de-
bug mode: in this way, it was possible
to understand which variables needed
to be changed and which ones could
remain of the same integer type. Once
the code was ready to go, we could start
the strong scaling experiment. Basically,
consecutive runs of the same code exe-
cution were performed: the first was the
serial one, which set a reference time
that was required for its completion.
Then, the parallel executions were per-
formed, doubling the computational re-
sources each time. This was possible be-
cause the DL Meso DPD code is prone to
parallel executions, following the typi-
cal domain decomposition implemented
using MPI libraries: in essence, the sys-
tem volume is split equally between the
processes, while the particles jump from
one to the other as they move.

Figure 2: Typical domain decomposition for
4 parallel processes: each colour indicates a
different process identification number.

The comparison between the exe-

cution times returns the speedup in
function of the number of parallel ex-
ecutions. When the speedup is ideal,
meaning that for twice the processes
our execution will take half the time,
the code is said to scale well; but the
ideal scaling is undermined by the com-
munication between parallel processes.
As mentioned before, the particles move
through the system volume, while the
parallel decomposition scheme remains
static as the simulation progresses in
time. Therefore, every time-step mes-
sages between all the processes need
to be sent, in order to redistribute the
beads according to their most recent po-
sition.

Figure 3: DL Meso code scaling for MPI only
version. For a small number of particles the
system does not scale well.

Obviously, the larger the number of
parallel executions, the larger the total
amount of communication required.
Eventually, while scaling our code, the
communication time will be comparable
with the time spent for the calculations,
resulting in a deviation from the ideal
speedup. At this point, we just needed
a proper computer to work with. Our
basic necessity was a large GPU archi-

tecture. Luckily, we could obtain access
to Piz Daint: this is the largest super-
computer in Europe, currently 6th in
the top 500 list (Top 500 list), man-
aged by the Swiss National Supercom-
puting Centre (CSCS Piz Daint). More-
over, Piz Daint offers 5704 hybrid nodes,
equipped with one 12 cores CPU and
one NVIDIA R©Tesla R©P100 each. These
are indeed terrific numbers, but we
probably need to better define the dif-
ference between CPU and GPU.

Figure 5: Representation of the running con-
figuration: each electronic circuit consists of
one single task CPU-GPU hybrid node.

Whereas a CPU is the general elec-
tronic circuit which runs a computer
and can be multicore, presenting al-
ready a certain attitude towards par-
allelism, a GPU is a specialised device,
highly efficient in large data block ma-
nipulation. Originally GPUs were cre-
ated to accelerate image processing, but
eventually their potential in High Per-
formance Computing was clear. Since
then, they have been deployed as accel-
erators in the majority of the supercom-
puters.
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Figure 4: Dl Meso DPD code scaling on hybrid CPU-GPU nodes for a total number of particles of: left) 300 millions; right) 3 billions.

Table 1: CPU vs GPU: acceleration

CPU Time elapsed

Nodes CPU GPU

1 3401.98 195.82
2 2264.75 147.13
16 334.06 75.22
32 167.28 36.27

Figure 6: Dl Meso DPD code scaling on hy-
brid CPU-GPU nodes for 3 million particles

In table 1 is possible to appreciate
the acceleration granted when using
the GPUs. Our running configuration
was the following: we wanted one GPU
per process, so we would demand only
single task CPU-GPU hybrid nodes. In
figures 4 and 6 the scaling of the Dl
Meso DPD code is plotted, for system
sizes of 3 millions in figure 6, and 300
millions and 3 billions in figure 4, re-
spectively left and right. We can notice
that the reference case is not always
the serial version. This craftiness is nec-
essary, as the GPU memory is limited
to 16 Gb, whereas the size of the ar-
rays allocated during execution can be
larger. The obtained speedups show that
the code scales well for large numbers
of beads. The 3 billion case scales al-
most ideally up to 4000 nodes, meaning
this kind of big system simulations can

be accelerated efficiently. The result for
the 300 million case shows good scaling
too, providing also an indication for a
match between job size and number of
parallel tasks. Instead, when using only
3 million particles, the code does not
scale well. In conclusion, we have ac-
knowledged that GPU accelerators are
a great opportunity to benefit high per-
formance computing, as they can out-
class the GPU-less applications. Anyway,
even on the hybrid CPU-GPU nodes the
code could scale non-ideally. This is
not straightforward: the GPUs are vora-
cious in terms of total number of parti-
cles, as they require large amounts, but
grant brilliant speedup. Eventually, the
larger the number of particles stocked,
the larger the number of nodes whose
usage leads to good scaling: this is re-
ally meaningful as it confirms the pos-
sibility of efficiently accelerating large
scale simulations based on the Dissipa-
tive Particle Dynamics method. More-
over, the scaling possibilities are limited
on the minimum number of nodes that
are required in order to run the first ex-
periment. Clearly, this limitation is set
by the GPUs, as they posses a 16 Gb
memory, pretty low when compared to
the CPU one, that counts up to 64 Gb
per node on Piz Daint.

The results we obtained during
these two months suggest the possibil-
ity of efficiently simulating large system
size DPD simulations. This outcome can
eventually benefit both the industrial
world, as more realistic experiments
could be performed on the computers,
reducing costs and environmental foot-
print, and the research one, opening
new perspectives of study. Future devel-
opments could try performing simula-
tions for even larger number of particles.
Having already tried running simula-

tions for 6 billion particles, the commu-
nication between processes can become
critical and lead to failure, therefore
this should kept into account. Moreover,
some other features could be scaled,
like the Fast Fourier Transformate al-
gorithm, which can be tricky on large
hybrid architectures.

I would like to specially thank CSCS
for the preparatory access (request
2010PA5022) that allowed me to use
Piz Daint and for the support during the
whole summer.

References
1 M. A. Seaton, R. L. Anderson, S. Metz and W. Smith,

(2013). DL-MESO: highly scalable mesoscale simula-
tions, Mol. Sim. 39 (10) 796-821

PRACE SoHPCProject Title
Scaling the Dissipative Particle
Dynamic (DPD) code, DL MESO, on
large multi-GPGPUs architectures

PRACE SoHPCSite
STFC Hartree, United Kingdom

PRACE SoHPCContact
Davide Di Giusto, [University of Udine]
Italy

PRACE SoHPCMentor
Jony Castagna, STFC Hartree, U.K. Davide Di Giusto

PRACE SoHPCContact
Name, Surname, Institution
Phone: +12 324 4445 5556
E-mail: leon.kos@lecad.fs.uni-lj.si

PRACE SoHPCSoftware applied
Eclipse R©(IDE), Nvidia Nsight R©
PRACE SoHPCMore Information
Nvidia developer blog

PRACE SoHPCAcknowledgement
I would like to thank Leon Kos for the guidance that he
has granted all summer long; moreover, I am really
thankful to all the people at Prace for the organisation
of the SoHPC. Then, I have nothing but gratitude for
my mentor Jony Castagna, who is somebody to look up
to and managed to teach me so much in little time.
Finally, I would like to thank Nia for the organisation,
Vassil Alexandrov and Luke Mason and all the people at
the Hartree centre for the continuous support and
kindness.

PRACE SoHPCProject ID
1913

38



Investigating possibilities to accelerate
applications deployed on the edge that utilize
Deep Neural Networks.

Switching up
Neural
Networks
Igor Kunjavskij

Using the Intel Movidius Neural Compute
Stick, I researched on the possibilities of
switching models during runtime.

Smart devices permeate the fab-
ric of our daily lives, be it the
phone in everybody’s pocket or
the smart watches some of us

wear. But not only our daily lives are
filled with these devices, they also start
to appear in areas which used to be in-
accessible for humans. This could be
a device attached to satellites in space
running earth observation missions. Or
underwater robots conducting mainte-
nance on critical structures such as un-
derwater pipelines. In these areas, small
devices tend to take on more and more
compute intensive tasks such as pro-
cessing images that they capture. But
especially computer vision and process-
ing images encompass in general very
compute intensive tasks, even more so
if Deep Neural Networks are involved.
Lightweight devices that do not provide
too much compute power, as for exam-
ple the Raspberry Pi, can quickly be-
come overwhelmed with these tasks. A
solution to this problem would be to just
send the data that a device collects to a
data center. But given the fact that these
devices are deployed in regions with re-
stricted connectivity, sending data back
and forth for processing purposes is not
a viable option. That’s where the Intel
Movidius Neural Compute Stick comes
into play, an accelerator in USB format

that alleviates a lot of those problems,
making it possible for images to be pro-
cessed on the edge on the device itself.

Figure 1: The Intel Movidius Neural Com-
pute Stick.

Intel Movidius Neural Compute
Stick

The Intel Movidius Neural Compute
Stick was developed specifically for
computer vision applications on the
edge, with dedicated visual processing
units at its disposal. Once a Deep Neu-
ral Network was trained on powerful
hardware for hours or sometime days,
it needs to be deployed somewhere in a
production environment to fulfill its pur-
pose. This can be for example in com-
puter vision applications on the edge,
which can encompass detecting pedes-
trians or other objects in images or also

classifying objects in detected images
such as different road signs. The deploy-
ment of such an application can hap-
pen on a server in a data center, an
on-premise computer or an edge de-
vice. Now the crux with the latter is,
that applications such as computer vi-
sion tend to have quite a high computa-
tional load on hardware, whereas edge
devices tend to be lightweight and bat-
tery powered platforms. It is of course
possible to circumvent this problem by
streaming the data that an edge device
captures to a data center and process it
there. But the next issue that the term
“edge device” already implies is, that
these computing platforms are situated
in quite inaccessible regions, like on an
oil rig in the ocean or attached to a satel-
lite in outer space. Transmitting data is
in these cases costly and comes with a
lot of latency, rendering real time de-
cision making nearly impossible. Espe-
cially if this data encompasses images,
which as a rule of thumb tend to be
large. That’s where hardware accelera-
tors like the Neural Compute Stick bring
in a lot of value. Instead of sending im-
ages or video to some server for further
analysis, the processing of data can hap-
pen on the device itself and only the
result i.e. pure text is sent for storage
or statistical and visualization purposes
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to some remote location. Such an ap-
proach brings numerous benefits, but
most importantly alleviates latency and
communication bandwidth related con-
cerns. Now what is this Neural Compute
Stick all about? The Intel Movidius Neu-
ral Compute Stick is a tiny fan device
that can be used to deploy Artificial Neu-
ral Networks on the Edge. It is powered
by an Intel Movidius Vision Processing
Unit, which comes equipped with 12
so called “SHAVE” (Streaming Hybrid
Architecture Vector Engine) processors.
These can be thought of as a set of
scalable independent accelerators, each
with their own local memory, which al-
lows for a high level of paralleled pro-
cessing of input data.

OpenVino

Complementing this stick is the so
called Open Visual Inferencing and
Neural Network Optimization (Open-
Vino) toolkit, a software development
kit which enables the development and
deployment of applications on the Neu-
ral Compute Stick. This toolkit basically
abstracts away the hardware that an
application will run on and acts as an
“mediator”. To make use of the Neu-
ral Compute Stick, it is necessary to
first install the Open Visual Inferenc-
ing and Neural Network Optimization
(OpenVino) toolkit, which I briefly in-
troduced in my last post. This toolkit
aims at speeding up the deployment of
neural networks for visual applications
across different platforms, using a uni-
form API. Training a Deep Neural Net-
work is like taking a “black box” with
a lot of switches and then tuning those
for as long as it takes for this “black box”
to produce acceptable answers. During
this process, such a network is fed with
millions of data points. Using these data
points, the switches of a network are
adjusted systematically so that it gets
as close as possible to the answers we
expected. Now this process is computa-
tionally very expensive, as data has to
be passed through the network millions
of times. For such tasks GPUs perform
very well and are the de facto standard
if it comes to hardware being used to
train large neural networks, especially
for tasks such as computer vision. If it
comes to the frameworks used to train
Deep Neural Networks, so there are a
lot that can be utilized like Tensorflow,
PyTorch, MxNet or Caffe. All of these
frameworks yield a trained network in

their own inherent file format. After the
training phase is completed, a network
is ready to be used on yet unseen data
to provide answers for the task it was
trained for. Using a network to provide
answers in a production environment
is referred to as inference. Now in its
simplest form, an application will just
feed a network with data and wait for
it to output the results. However, while
doing so there are many steps that can
be optimized, which is what so called
inference engines do. Now where does
the OpenVino toolkit fit in concerning
both tasks of training and deploying
a model? The issue is that using algo-
rithms like Deep Learning is not only
computationally expensive during the
training phase, but also upon deploy-
ment of a trained model in a production
environment. Eventually, the hardware
on which an application utilizing Deep
Learning is running on is of crucial im-
portance.

Neural Networks, especially those
used for visual applications, are usually
trained on GPUs. However, using a GPU
for inference in the field is very expen-
sive and doesn’t pay off when using it in
combination with an inexpensive edge
device. It is definitely not a viable op-
tion to use a GPU that might cost a few
hundred dollars to make a surveillance
camera or a drone. If it comes to us-
ing Deep Neural Networks in the field,
most of them are actually running on
CPUs. Now there are a lot of platforms
out there using different CPU architec-
tures, which of course adds on to the
complexity of the task to develop an ap-
plication that runs on a variety of these
platforms.
That’s where OpenVino comes into play,
it solves the problem of providing a uni-
fied framework for development which
abstracts away all of this complexity.
All in all, OpenVino enables applica-
tions utilizing Neural Networks to run
inference on a heterogeneous set of
processor architectures. The OpenVino
toolkit can be broken down into two ma-
jor components, the “Model Optimizer”
and the “Inference Engine”. The former
takes care of the transformation step to
produce an optimized Intermediate Rep-
resentation of a model, which is hard-
ware agnostic and useable by the Infer-
ence Engine. This implies that the trans-
formation step is independent of the fu-
ture hardware that the model has to run
on, but solely depends on the model to
be transformed. Many pre-trained mod-
els contain layers that are important for

the training process, such as dropout
layers. These layers are useless during
inference and might increase the infer-
ence time. In most cases, these layers
can be automatically removed from the
resulting Intermediate Representation.
Even more so, if a group of layers can
be represented as one mathematical op-
eration, and thus as a single layer, the
Model Optimizer recognizes such pat-
terns and replaces these layers with just
one. The result is an Intermediate Rep-
resentation that has fewer layers than
the original model, which decreases the
inference time. This Intermediate Repre-
sentation comes in the form of an XML
file containing the model architecture
and a binary file containing the model’s
weights and biases.

After using the Model Optimizer to
create an Intermediate Representation,
the next step is to use this representa-
tion in combination with the Inference
Engine to produce results. Now this In-
ference Engine is broadly speaking a set
of utilities that allow to run Deep Neural
Networks on different processor archi-
tectures. This way a developer is capa-
ble to deploy an application on a whole
host of different platforms, while using
a uniform API. This is made possible by
so called “plugins”. These are software
components that contain complete im-
plementations for the inference engine
to be used on a particular Intel device,
be it a CPU, FPGA or a VPU as in the
case of the Neural Compute Stick. Even-
tually, these plugins take care of trans-
lating calls to the uniform API of Open-
Vino, which are platform independent,
into hardware specific instructions. This
API encompasses capabilities to read in
the network’s intermediate representa-
tion, manipulate network information
and most importantly pass inputs to the
network once it is loaded onto the tar-
get device and get outputs back again.
Now a common workflow to use the in-
ference engine includes the following
steps:

1. Read the Intermediate Represen-
tation - Read an Intermediate Rep-
resentation file into an application
which represents the network in
the host memory. This host can be
a Raspberry Pi or any other edge
or computing device running an
application utilizing the inference
engine from OpenVino.

2. Prepare inputs and outputs for-
mat - After loading the network,
specify input and output precision
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and the layout of the network.
3. Create Inference Engine Core ob-

ject – This object allows an ap-
plication to work with different
devices and manages the plugins
needed to communicate with the
target device.

4. Compile and Load Network to de-
vice – In this step a network is
compiled and loaded to the target
device.

5. Set input data - With the network
loaded on to the device, it is now
ready to run inference. Now the
application running on the host
can send an “infer request” to the
network in which it signals the
memory locations for the inputs
and outputs.

6. Execute - With the input and out-
put memory locations now de-
fined, there are two execution
modes to choose from:

(a) Synchronously to block until
an inference request is com-
pleted.

(b) Asynchronously to check the
status of the inference re-
quest while continuing with
other computations.

7. Get the output – After the infer-
ence is completed, get the output
memory.

Another problem that remains
though, even with the Neural Compute
Stick accelerating computations, is that
once a model is deployed on an edge
device, it’s hard to repurpose the device
to run a different kind of model. This
is where the “dynamic” part of the ti-
tle of my project comes into play. The
Neural Compute Stick is a highly paral-
lelized piece of hardware, with twelve
processing units independently running
computations. This way, it is possible
to not only have one, but several mod-
els loaded into its memory. Even more
so, it is possible to switch these mod-
els and load new models into memory.
This allows to adapt to new situations
in the field, like when the feature space
changes or the things that are supposed
to be detected change. The simplest
case of such an occurrence might be
the sun setting or bad weather condi-
tions coming up. Another motivation
to switch models might also be to save
power, as edge devices tend to have
limited capacities if it comes to energy
sources. Instead of deploying one big
model that is supposed to cover all cases

that could occur in a production envi-
ronment, it would be possible to have
many small models that could be loaded
in and out of memory at runtime.

Model switching prototype

In my project I investigated the feasibil-
ity of doing so and implemented a small
prototype that switches models at run-
time. This prototype switches between
two models detecting human bodies
and faces. These models are both so
called Single shot detector MobileNets,
networks that are better suited to be de-
ployed on smaller devices which local-
ize and classify an object in a single pass
through the network drawing bound-
ing boxes around it. I used OpenCV for
this task, which is a library featuring all
sorts of algorithms for image processing.
Next to OpenCV I had OpenVino run-
ning as a backend, a toolkit accompany-
ing the Neural Compute Stick, which al-
lows to utilize it in an optimized manner.
I eventually tested this model switch-
ing prototype by loading and offloading
models in and out of memory of the
Neural Compute Stick. I did this with a
very high frequency of one switch per
frame to determine what the latency
of such a model switch would be in a
worst-case scenario. The switching pro-
cess includes reading the input and out-
put dimensions of a model by using the
XML representation of its architecture
and then loading it into the memory of
the Neural Compute Stick. On average
this switch caused an extra overhead of
about 14 percent of the overall runtime.
To put this into absolute numbers, on
average it took my application half a sec-
ond to capture and generate an output
for an image, whereas a model switch
in between would add a little less than
a tenth of a second to this time.

Figure 2: Example of using a SSD MobileNet
in combination with the Neural Compute
Stick.

Of course, there is a lot of room
for improvement given these numbers.
One such improvement would be con-
cerned with the parsing of the model
dimensions. I used a simple XML parser
to do so and had to read in the input
and output dimensions of a model on
every switch. Doing this once for all
models that potentially will be used
on the Neural Compute Stick when
the application starts running and sav-
ing the dimensions into a lookup ta-
ble could cut the switch time almost
in half. Further speedup of this switch
could be achieved by conducting it asyn-
chronously, as while the model is loaded
onto the Neural Compute Stick the next
frame can already be capture instead
of waiting for the switching process to
finish. All in all, I found that although at
the current state this prototype would
not be applicable to real time applica-
tions yet, given the potential for im-
provement it could get there. Yet if no
hard conditions are imposed for it to
perform in real time as is the case for
many applications, it is deployable al-
ready.
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Distributed Memory Radix sort (DiMeR)

Fastest sorting algorithm
Jordy Ajanohoun

With nowadays large-scale data and large-scale problems, parallel computing is a pow-
erful ally and important tool. Parallel sorting is one of the important component in parallel
computing. The parallel Radix sort allows us to reduce the sorting time and to sort more
data, amounts that can’t be sorted serially. Indeed, it is possible when we want to sort a
huge amount of data that it can’t fit on one single computer because computers are mem-
ory bounded. Or, it may take too much time using only one computer, a time we can’t afford.
Thus, for memory and time motivations, we can use distributed systems and have our data
distributed across several computers and sort them in that way. But how?

Introduction

To make our applications and programs run faster, it is im-
portant to know where in our programs computers spend
most of the execution time. Then we have to understand
why and finally, we figure out a solution to improve that.
This is how HPC works.
Donald E. Knuth wrote in his book Sorting and Searching:
“Computer manufacturers of the 1960’s estimated that more
than 25 percent of the running time of their computers was
spent on sorting, when all their customers were taken into ac-
count. In fact, there were many installations in which the task
of sorting was responsible for more than half of the computing
time”.
In 2011, John D. Cook, PhD added: “Computing has changed
since the 1960’s, but not so much that sorting has gone from
being extraordinarily important to unimportant.”

Indeed, it is become rare to work with data without hav-
ing to sort them in any way. On top of that, we are now in the
era of Big Data which means we collect and deal with more
and more data from daily life. More and more data to sort.
Plus, sorting algorithms are useful to plenty more complex
algorithms like searching algorithms. Also, on websites or
software, we always sort products or data by either date or
price or weight or whatever. It is a super frequent operation.
The question is how can we improve that? What kind of
improvement can be done regarding sorting algorithms to go
always faster? This is where the Radix sort and my project
come into play.

It has been proved that for a comparison based sort, (where
nothing is assumed about the data to sort except that they
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can be compared two by two), the complexity lower bound
is O(Nlog(N)). This means that you can’t write a sorting
algorithm which both compares the data to sort them and
has a complexity better than O(Nlog(N)).
The Radix sort is a non-comparison based sorting algo-
rithm that can runs in O(N). Unfortunately, it is not so often
used whereas well implemented, it is the fastest sorting
algorithm for long lists. When sorting short lists, almost any
algorithm is sufficient, but as soon as there is enough data
to sort, we should choose carefully which one to use. The
potential time gain is not negligible. It is true that “enough”
is quite vague, but roughly, a length of 10000 elements is
already enough to feel a difference between an appropriate
and an inappropriate sorting algorithm.
Currently, Quicksort (a comparison based sort) is probably
the most popular sorting algorithm. It is known to be fast
enough in most of the cases, although its complexity is
O(Nlog(N)). The Radix Sort has a complexity of O(N ∗ d).
Thus, Radix sort is faster as soon as the number of keys
digits (d parameter) is smaller than log(N). This means the
more our list is huge, the more we should use the Radix
sort. To be more precise, from a certain length, the Radix
sort will be more efficient than any comparison based sorting.

My project was to implement a reusable C++ library with
a clean interface that uses Radix Sort to sort a distributed
array using MPI.

Serial Radix sort

Radix sort takes in a list of N elements with their sort-
ing key in a base b (the radix) and such that each
key has d digits. For example, three digits are needed
to represent decimal 255 in base 10. The same num-
ber needs two digits to be represented in base 16 (FF)
and eight in base 2 (1111 1111). This is the algorithm:

Data: A (array to sort), N (the array size), b (the keys
radix), d (the number of digits of the keys)

Result: A sorted according to the data keys
begin

for each key digit i where i varies from the Least
Significant Digit (LSD) to the Most Significant Digit
(MSD) do

sort A according to the i’th keys digit using
Counting sort or Bucket sort ;

end
end

Algorithm 1: Serial Radix sort

We first sort the elements based on the last keys digit (the
Least Significant Digit) using Counting Sort or Bucket Sort.
Then the result is again sorted by the second digit (from
right to left), continue this process for all keys digits un-
til we reach the Most Significant Digit, the last one on the left.

What if we want to sort a list of numbers having different
number of digits in base 10 like (10, 149, 2, 46, 135, 25)? In
practice, to avoid this problem, we often use base 256
to take advantage of the bitwise representation of the
numbers in computers. Indeed, a digit in base 256 corre-
sponds to a byte. Integers and reals are stored on a fixed
and known number of bytes and we can access each of

them. Therefore, the parameter d is fixed and known. For
instance, we can write a Radix sort function which sorts
int16_t (integers stored on two bytes) and we know in
advance (while writing the sort function) that all the num-
bers will be composed of two base 256 digits. Plus, with
templates-enable programming languages like C++, it is
straightforward to make it works with all other integer sizes
(int8_t, int32_t and int64_t) without duplicating the function
for them. From now, we assume that we use the base 256.

Why use Counting or Bucket sort?
Because we take advantage of knowing all the values a
byte can take and the range is small. The value of one byte
is between 0 and 255. And this helps us because in such
conditions, Counting Sort and Bucket Sort are simple and
fast. They can run in O(N) when the length of the list is
greater than the maximum of the list (in absolute value)
and especially when this maximum is known in advance.
When it is not known in advance, it is more tricky to make
the Bucket sort runs in O(N) than the Counting sort. They
can run in O(N) because they are not comparison-based
sorting algorithms, it is why the Radix sort too. In the Radix
sort, we always sort according to one byte so the maximum
we can have is 255. If the length of the list is greater than
255, which is a very small length for an array, Counting and
Bucket sorts in Radix sort can easily be written having O(N)
complexity.

Why not use only either counting or bucket sort to sort the
data all of a sudden?
Because we will no longer have our assumption about
the maximum as we are no longer sorting according to one
byte. The maximum of the list can’t be known in advance
and we don’t have an upper bound. In such conditions, the
complexity of Counting sort is O(N + k) and Bucket sort can
be worse depends on implementations. With k the maximum
of the list (in absolute value). In contrast, with the Radix
sort, we have O(N ∗ d) which is equivalent to O(N) because
d can’t be greater than 8 (biggest numbers are usually stored
on 8 bytes in computers). In other words, since the Radix sort
iterates through the bytes and always sorts according to one
byte, it is insensitive to the parameter k because we only
care about the maximum value of one byte. Unlike both the
Counting and Bucket sorts whose execution times are highly
sensitive to the value of k, a parameter we rarely know in
advance. It is dangerous because the maximum value can be
a big number. For instance, if we have only 1000 numbers to
sort and the maximum is 1000000, with Counting and Bucket
sorts, the sorting time is more or less the same as sorting a
list of 1000000 with them. Whereas it is not the case with the
Radix sort, sort a list of 1000 elements using it will always
take much less time than sorting 1000000 elements.

Problem the parallel Radix Sort can solve

The following is the problem more precisely define.

What we have

• P processors able to communicate between them-
selves, store and process our data. Each processor has
a unique rank between 0 and P − 1.
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• N data, distributed equally across our processors.
This means that each processor has the same amount
of data.

• The data are too huge to be stored or processed by only
one processor (for memory or time reasons).

What we want

• Sort the data across the processors, in a distributed
way. After the sort, the processor 0 should have the
lower part of the sorted data, the processor 1 the next
and so on.

• We want to be as fast as possible and consume the
lowest memory possible on each processor.

Parallel Radix sort

The idea of the parallel Radix Sort is, for each keys digit,
to first sort locally the data on each processor according
to the digit. All the processors do that concurrently. Then,
to compute which processors have to send which por-
tions of their local data to which other processors in
order to have the distributed list sorted across proces-
sors and according to the digit. Below is the algorithm.

Data: rank (rank of the processor), L (portion of the
distributed array held by the processor), N (the
distributed array size), P (number of
processors), b (the keys radix), d (the number of
digits of the keys)

Result: the distributed array sorted across the
processors with the same amount of data on
each processor

begin
for each key digit i where i varies from the LSD to
the MSD do

sort L according to the i’th keys digit using
Counting sort or Bucket sort;

share information with other processors to
figure out which local data to send where and
what to receive from which processors in order
to have the distributed array sorted across
processors according to the i’th keys digit;

proceed to these exchanges of data between
processors;

end
end

Algorithm 2: Parallel Radix sort

Each processor runs the algorithm with its rank and its
portion of the distributed data. Let’s go through an exam-
ple to understand better. We will run the example in base 10
for simplicity but don’t forget that we can use any number
base we want and in practice, base 256 is used as explained.

Figure 1: Unsorted versus sorted distributed array across three
processors. Our goal with the parallel Radix sort is to get the sorted
one from the unsorted.

Figure 2: First iteration of the parallel Radix Sort on the distributed
array across three processors. The numbers are sorted according to
their base 10 LSD (Least Significant Digit). One iteration according
to their base 10 MSD is remaining to complete the algorithm and
get the desired final distributed sorted array.

Figure 3: Last iteration of the parallel Radix Sort on the distributed
array across three processors. The numbers are sorted according
to their base 10 MSD (Most Significant Digit). At the end, the
algorithm is completed and the distributed array is sorted.
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My implementation and performance results

I have used MPI for the communications between proces-
sors. As hardware, I have used the ICHEC Kay cluster to run
all the benchmarks. The framework used to get the execu-
tion times is google benchmark. The numbers to sort are
generated with std::mt19937, a Mersenne Twister pseudo-
random generator of 32-bit numbers with a state size of
19937 bits. For each execution time measure, I use ten dif-
ferent seeds (1, 2, 13, 38993, 83030, 90, 25, 28, 10 and
73) to generate ten different arrays (of a same length) to
sort. Then, the execution times mean is registered as the
execution time for the length. These ten seeds have been
chosen randomly. I proceed like that because the execution
time also depends on the data, so it allows us to have a more
accurate estimation.

Figure 4: Sorting time as a function of the number of items to
sort. The items here are 4 bytes integers. dimer::sort curve is the
execution times of my parallel Radix Sort implementation ran with
2 processors.

Figure 5: Same as figure 4 but in log-log scale.

We can notice that my implementation seems good for big
sizes. It seems to be faster than boost::spreadsort because
when the array is not distributed, I am using ska_sort_copy
instead of boost::spreadsort. ska_sort_copy is a great and
very fast implementation of the serial Radix sort. Actually, it
is the fastest I have found.

With the log-log scale we can see better what is happening.
We are able to tell that using dimer::sort we go faster than
anything else when the array is enough big and this is what
we expect when we use HPC tools. For small array sizes, we
are not really expecting an improvement because they can
be easily well managed serially and enough quickly. Plus,
we add extra steps to treat the problem in a parallel way,
therefore, when the problem size is small, it is faster serially
because we don’t have these extra steps. It becomes faster in
parallel when these extra steps are a small workload compare
to the time needed to sort serially.

Future work

I have presented here the LSD Radix Sort. But, there is a
variant called MSD Radix Sort which can be parallelized too.
The difference is:

• With the LSD, we sort the elements based on the keys
LSD first, and then continue to the left until we reach
the MSD

• With the MSD, we sort the elements based on the keys
MSD first, and then continue to the right until we reach
the LSD

For more information, feel free to read my blog posts on
PRACE Summer of HPC website. My project is more detailed
there and you can find everything you need to reproduce the
work or understand deeper.
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Study on how HPC systems can enhance and interact
with CFD at all stages: pre-processing, resolution and
visualization

CFD: Colorful
Fluid Dynamics?
No with HPC!
David Izquierdo Susı́n

It is typical to obtain some nice pictures of the
flow around an object after performing a CFD
(Computational Fluid Dynamics) simulation.
However, how much of truth is there behind
those colorful images? The project presented
here analyses how HPC systems can be used
to make CFD a more trustworthy tool, and
shows how some parameters can be optimized
for a specific application - a formula car.

ABOUT FLUID DYNAMICS

The Navier-Stokes equations
are the set of equations that de-
fine how a fluid moves, and are
based on principles such as the

conservation of mass and Newton’s
Second Law. When one is set to solve
an aerodynamics problem, solving these
equations will always be, somehow or
other, unavoidable. The only problem is
that these equations are actually impos-
sible to solve analytically in the vast
majority of practical cases, and the ac-
curacy of the results heavily depends on
the numerical method used.

Aerodynamics is about comput-
ing the forces that the air causes on
a given object -in this case, a Formula

Student car-. To get the forces, one
must first compute the pressure at many
points over the surface of the object,
and the pressure cannot be obtained
without computing the velocity in the
whole domain; the problem is coupled.

When solving the motion of a fluid
around an object, the objective is, there-
fore, to know the velocity and the
pressure of the fluid at many differ-
ent points. In order to obtain a re-
sult similar to that shown below in
(5), where the scale from blue to red
shows the values of the velocity on
the symmetry plane of the car, the vari-
ables must be solved at a very large
amount of points, in order to then be
able to paint each of these points with
a different colour, corresponding to the

value of the velocity at that point.

For a case like the Formula Student
car, around 100 000 000 of these points
are required to get an accurate enough
solution. If it is estimated that the com-
puter needs more than 100 operations
to solve a value single point/cell (the
equations are complex), and it is as-
sumed that we want the value of the ve-
locity at 1 000 time instants -to observe
how the flow evolves as time passes by-,
then the total number of computer op-
erations may be in the order of 10 000
000 000 000, or what is the same, ten
of the former UK billions.

All this constitutes just a rough or-
der of magnitude approximation to give
an idea of the size of the problem that
is being faced and its motivation.
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Figure 1: Visual state of the geometry at
some of the steps in the CFD workflow.

HPC IN OSTRAVA

Here is where HPC (High Performance
Computing) systems come in handy.
HPC systems are essentially computers
that consist of many smaller computers
that are able to work together to solve a
specific task. When such a large number
of operations is required to solve just
once the problem of interest, using a
personal computer is not an option: it
would not only be too slow -weeks or
even months would be needed to get
the first results of a complex problem-,
but possibly it would be incapable of
solving the problem, due to the large
amount of data that must be handled,
which in turn implies a very large re-
quirement in terms of memory.

The IT4Innovations National Super-
computing Centre in Ostrava offers two
of these very powerful systems that
can be used to better solve these kind
of problems. In particular, Anselm ma-
chine relies on more than 3 300 cores,
while Salomon has up to 24 192 cores.
To put it into context, a typical laptop
can typically be based on 4 processors
and 8 logical units, which is more than
3 000-fold less than Salomon.

WHAT IS THIS TRULY ABOUT?

The engineering problem to be dealt
with in this document is the aerody-
namic analysis of the TU Ostrava For-
mula Student car. The main objective
is building from scratch a robust sim-
ulation setup with which obtaining re-
sults for the aerodynamic forces on the
Formula Student car in an automated
manner. Apart from that, it is the aim
of this project to better understand the
capabilities of OpenFOAM when deal-
ing with external aerodynamics cases.

METHODS (HANDS-ON)

The approach used to solve the tasks
mentioned in the previous section con-
sists of using the Linux operating sys-
tem to install the corresponding soft-
ware and edit the files in a more ef-
ficient manner than what could be
achieved in a Windows operating sys-
tem, by means of vim and other editors
like sed.

The methodology followed in this
project is defined in several steps that
can be easily distinguished one from an-
other:

• Pre-processing of the geometry

• Meshing setup

• Simulation setup

• Post-processing of the results

The first step consists of getting the
initial car geometry designed by the
TU Ostrava Formula Student team and
transforming it into a surface mesh of
points that can be read by the CFD soft-
ware. Then, a proper mesh has to be
generated, in this case by means of the

Figure 2: Scalability Curves

snappyHexMesh
utility. There are
more than 50
parameters to
be adjusted, and
the suitability of
the mesh heavily
depends on the
choices made on
these parameters.
Above at the left,
in the images (1)
to (3) of Fig. 1,
the different steps
performed when
creating a mesh
can be observed: in (1) the mesh after
the first step (castellation) is shown.

It can be seen that the mesh is not
adapted to the surface geometry of the
car, since it is just made out of cubes.
This is solved in the next step (2), in
which the mesh is snapped to provide it
with the actual shape of the geometry.
Finally, in step (3) layers are added
near the surface of the body. This type
of cells are beneficial when trying to
solve the behaviour of the flow in the
boundary layer.

In the following step, it is necessary
to define the physical and numerical
parameters on which the simulation
will be based. The choices made at this
point will determine the degree of con-
vergence of the simulations, together
with the accuracy of the results. Again,
the number of parameters is very large
and it is of significant difficulty to find
the ideal configuration. The approach
followed to obtain an stable setup with-
out the need of adjusting one by one
all the parameters was to pick as a base
a reference case provided by the soft-
ware and based on a motorbike simula-
tion. In this way, even if the parameters
had to be adjusted (since the geometry
proposed for the project was far more
complex, and the requirements in terms
of accuracy were also more restricting),
the process was simplified to some ex-
tent.

Lastly, the huge bunch of numbers
obtained as an output from the simula-
tions must be post-processed in order
to gain some degree of comprehension
from the simulations performed. This
was done as an initial checking step in
ParaView, an example of which can be
seen in (5) above, but later the process
was migrated to EnSight, where further
and more involved post-processing was
conducted, including generation of iso-
surfaces and videos.

Given the complexity of the setup of
the simulations in terms of number of
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parameters to be defined, it is not possi-
ble to show or discuss here the full set
of parameters. But, in order to ensure
that the work is reproducible, some
extra detail is given in this blog post
and in the final presentation.

SCALABILITY AND MESH
CONVERGENCE

The first outcome of this project consists
of the scalability study. This study is
aimed at determine how OpenFOAM
works depending on the number of
cores used to run the cases. Results are
shown in Fig. 2, where it can be ob-
served that the solving algorithm (or-
ange curve) scales better than the mesh-
ing algorithm (blue curve). In the case
of the former, between 768 and 1536
the reduction in total computing time
is still of a 31.0 %, which is far from
the ideal 50 % but it is still significantly
large given the huge amount of cores.

Two approaches were considered to
run the simulations: a single-job ap-
proach, in which a single job would be
launch for each simulation, and a two-
jobs approach, that separates the mesh-
ing and solution algorithms execution
into two different scripts and two differ-
ent jobs.

Figure 3: Single-job Versus Two-jobs Ap-
proach

The results in Fig. 3 show that the
two-jobs approach, finally adopted in
the project, is a 12 % faster, which is a
significant reduction that does have an
impact, since it allows a more optimal
allocation of resources.

All these computations were per-
formed once the mesh convergence
had been proved. This is very impor-
tant, since it ensures that the results
of the aerodynamic study are approxi-
mately independent of the size of the
mesh elements. It was achieved via a

mesh convergence study for which first
several meshes are defined in Fig. 4.

Figure 4: Reference Meshes

For the reference meshes with the
number of cells shown in Fig. 4, the
mesh quality characteristics depicted in
Fig. 5. have been found.

Figure 5: Monitoring of Layers Creation and
Quality Check on Meshes

In terms of the number of layers
(referring again to the step (3) in Fig.
1 for the layer definition), the target

Figure 6: Mesh Convergence Study

was set to three.
One of the geome-
tries in which the
creation of lay-
ers is more com-
plex, due to its
geometry, is the
suspension of the
car. Therefore, the
number of layers
is monitored in
this part and it
can be checked
that, for the finer
meshes, the user
requirement is al-
most met. In terms
of illegal cells,
that are the cells
that do not pass
the user-selected
quality check, the number was also sig-
nificantly reduced with larger meshes

-although note that quality standards
were set very strict to perform this eval-
uation; not all cells that did not pass
are necessarily badly-shaped-.

Next figure, Fig. 6, shows the results
of the mesh convergence study. Several
coefficients of forces were monitored
for the different mesh configurations
with the already described characteris-
tics. In particular, these coefficients are
the total coefficient of lift (in absolute
value, it is actually negative), the to-
tal coefficient of drag of and the rear
coefficient of lift of the car, and the co-
efficients of lift and drag of the front
wing. By observance of the fact that the
value of the coefficients tends to be-
come constant as the mesh gets finer,
it may be concluded that the results
are mesh independent for the roughly
140-millions mesh used for the scal-
abitily report.

However, Fig. 6 also shows that,
even if the variations tail off, these do
not totally disappear, and in fact in
some of the coefficients (such as the to-
tal CL) these variations seem to slightly
increase with the step from fine to very
fine mesh with respect to the previous
steps.

All this may indicate that conver-
gence has not been achieved up to a
very high degree, and this is expected to
have something to do with the bound-
ary layer resolution and the y* value
-non-dimensional height of the centroid
of the cells touching the body surface;
i.e. size of the cells close to the surface-,
which should lie everywhere below six,
but that is not true for the whole mesh.

In fact, y* goes up to 17-20 in some re-
gions, making thus necessary the use
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of wall functions to cover the delicate
buffer layer and losing some of the ad-
vantages of the k-omega SST turbulence
model1 used in these simulations.

Figure 7: Static Pressure over the Surface
of the Car

The quality of some of the cells may
also be a reason for this imperfection in
the mesh convergence results.

In spite of that, the results are rea-
sonable in overall terms and meet the
accuracy requirements that had been
proposed. This allows to proceed to
the next part, in which the actual post-
processing results are going to be dis-
cussed by means of images of the car.

POST-PROCESSING

The final study entails analysing the
flow around the car, which is done by
looking at the results in terms of veloc-
ity and pressure fields.

Fig. 7 illustrates the pressure field
over the surface of the car. It is easy to
observe that the more drag-generating
parts -largest static pressure, in red- are
those exposed in a more perpendicu-
lar and direct way to the flow, such as
the tip of the nosecone, the driver, the
front tyres and the steepest zones of
the wings. The zones of smallest static
pressure (negative with respect to the
ambient pressure, i.e. suction) lie be-
low the car, specifically below the front
wing and the undertray, thanks to the

suction capabilities of those devices, al-
though these cannot be seen in this im-
age. What can be seen is the reduction
in pressure in the zones of high curva-
ture, where corner flows emerge. Exam-
ples of this are the lateral of the front
wheels and the lateral of the helmet of
the driver. The triangular blue zone in
the rear wing end-plates is also relevant,
since it shows how the wing-tip vortex
that arises at the edges of every wing
develops, growing towards the rear end
of the wing.

Finally, in Fig. 8 the wake of the car
can be observed from the bottom. It is
constructed by plotting velocity isosur-
faces for a range of values of the veloc-
ity going from 2m/s up to 15m/s (with
the free stream always 20 m/s, there-
fore all the values plotted are smaller).

Figure 8: Wake of the Car - Bottom View

A first remark to be made is that the
flow is not symmetry, since the geom-
etry is not symmetric. Even if the car
may look as if it had symmetry at first
sight, it turns out that the intake of the
engine and the cooling system (radiator
and fan) and highly non-symmetrical,
which leads to a wake slightly deflected
towards the left, from a driver’s perspec-
tive. Apart from that, the vortical struc-
tures created around each of the four
tyres are of extreme importance for the
whole aerodynamic vehicle concept due

to its influence in all the other aerody-
namic devices of the car, and therefore,
this kind of representations are essential
to understand them and manage them
properly.

DISCUSSION

Overall, the objectives of the project
were met and key conclusions were
drawn: (1) OpenFOAM solver simple-
Foam scales well -while the meshing
utility is the bottleneck-, (2) the two-
jobs approach is better than the single-
job one and (3) using HPC systems
helps to reach more meaningful and
trustworthy results with CFD for a same
amount of time available. The implica-
tions of these results are that a better
and more extensive knowldege about
the use of OpenFOAM in HPC systems
will be available for the development of
similar projects.
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Real time emotion recognition based on action
units using deep neural networks (DDNs) and
clustering algorithms. From High Performance
Computing (HPC) to the edge.

Emotion
Recognition
using DNNs
Pablo Lluch Romero

Visual context, particularly facial
expressions, play a key role in
understanding the intention of a message.
However, visually impaired individuals lack
this context. An application able to detect
7 basic emotions in real time with an
accuracy of 74% is introduced to
compensate for the lack of visual context
in conversations.

In order to make a machine under-
stand facial expressions we need
a way to encode an image, an ar-
ray of pixels, such that its emotion

is easily classifiable. Many different ap-
proaches can be used to make this en-
coding but, I will be using a facial action
coding system that classifies sets of mus-
cle movements in bundles called action
units. Any facial expression can be en-
coded using this framework. However, I
used 17 different action units, as shown
in figure 1, which are enough to encode
the emotions I trained the application
to predict: happiness, sadness, surprise,
anger, disgust, fear and neutral.

I used a deep neural network to
predict the action units from faces. A
neural network is a computer algorithm
that imitates biological neurons with
many interconnected layers that is able

to find underlying patterns in data. A
nearest neighbour approach is used
from the output of the trained network

Figure 1: Action units used1

to classify new images as a part of the
final application.
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Figure 2: Sample layers from superficial [top] down to deeper ones [bottom] from fine-tuned VGGFace

From HPC...

Data gathering and preprocessing
The data I needed to train the neu-

ral network came from four existing
datasets that consisted of video footage
of spontaneous emotions with the ac-
tive action units annotated frame by
frame. These were The Cohn-Kanade
AU-Coded Facial Expression dataset2,3,
MMI facial expression database col-
lected by Valstar and Panticand4,5, the
Denver Intensity of Spontaneous Fa-
cial Action Database6,7, and BP4D-
Spontaneous8,9. The choice of datasets
was not trivial, as they had to be con-
sistent with the way the actions units
were annotated.

Once I combined these four datasets
into one with a total of 300K images,
I went through an array of different
processes to improve its quality. The
first issue that I faced was class imbal-
ance. The most popular action unit in
the combined dataset (upper lip riser)
was present in 80,000 images, while the
least popular (lip presor) was in only
3,000. Using such unbalanced data to
train a machine learning model is a very
bad practice as these models learn the
statistical footprint of the classes. So,
very popular classes would yield a lot
of false positives and less popular ones
a lot of false negatives. Secondly, the
contiguous frames were removed from
the dataset to prevent the model from
overfitting –memorising the individual
patterns of a dataset without gaining
the ability to generalize on unseen data.
Finally, in order to increase the size

of the dataset and add more variabil-
ity to the classes I augmented the data
by applying random rotations, shears,
zooms, and brightness shifts to each im-
age before feeding it into the network,
as shown in Figure 3.

Figure 3: Data augmentations from a single
image c©Jeffrey Cohn

Training
I built the Neural Network using Trans-

fer Learning. This is a common practice
that involves reusing existing networks
that were devised to solve problems in a
similar domain. I took the convolutional
layers from a network called VGGFace,
which was originally developed for face
detection. A convolution can be under-
stood as a filter that is applied to an
image. So, convolutional layers are just
a set of these filters acting both in paral-
lel and in sequence. Superficial convolu-
tional layers encode low level concepts
like edges or corners and deeper ones

encode meaning related to the class of
the image. A sample of these layers are
shown in figure 2. I also fine-tuned the
weights of these convolutional layers to
match the problem of action unit de-
tection better. The output of the last
convolutional layer (conv5_3 as shown
in Figure 2) could be thought of as the
high-level features that define a face. In
order to classify these features I added
an array of dense and dropout layers
to the network. Dense layers are fully
connected layers of neurons that fire
an output only if their inputs are high
enough, the same way neurons behave
in our brain. Dropout layers disable a
random fraction of the connections be-
tween neurons during the training pro-
cess.

During the training of the neural net-
work, I explored a number of hyperpa-
rameters and settings such as the learn-
ing rate, the batch size, the number and
size of dense and dropout layers, and
different preprocessing of the data. I
found that using dropout layers before
and after every dense layer reduced
overfitting considerably. However, the
model achieved the best validation ac-
curacy when the first dropout layer kept
a larger portion of units than the others.
The learning rate –a parameter that
specifies how fast a model reacts to new
information– was also key. Too high or
too low of a learning rate wouldn’t let
the model arrive to a decent solution
in a reasonable time. I also found out
that the larger the size of the dense
layers, the lower the learning rate had
to be for the model to converge. The
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data preprocessing mentioned before
also reduced overfitting, as it increased
variability and removed similar images.
The final setting produced a model able
to identify action units with a recall of
64.5% and a precision of 73.6%. For
the training process described above I
used Keras and Tensorflow as the en-
vironment, and I ran it on the NVIDIA
DGX-2 cluster of the IT4Innovations
supercomputer center. I only used a
single slice (a single GPU) of the DGX-2
but that was already 30x faster than
the CPU of my development system.

Figure 4: Topology of the final neural network that uses VGGFace’s convolutional layers

... to the edge

Inferring the emotions in real-time
The action units predicted using the

deep neural network were translated
to the corresponding emotion using a
nearest neighbour approach.

The peak emotion images in the
Cohn-Kanade dataset were fed into
the trained neural network and the
output –the probability of the image
containing each action unit– was stored
in a small dataset of around 300 im-
ages. Kohn-Canade also included the
corresponding emotions, so I stored this
alongside the action unit prediction.
Inferring the emotion that corresponds
to a new image is just a matter of
getting the vector of action unit prob-
abilities from the network, finding the
most similar probability vectors in this
small dataset and looking at the most
common emotion among them. This
could be understood as looking at the
neighbours of the action unit probabil-
ity vector in a hyper-dimensional space
where each dimension corresponds to
one of the 17 action units. Another
more straightforward approach would
be checking the action units whose
probabilities are larger than 0.5 and
comparing them to a table of the com-
mon action units that are archetypal in
each emotion. However, the approach
I followed is better for two reasons:
A) it allows for a wider variability in
the emotions, as not every emotion fits
within these prototypical definitions
and B) it helps mitigate biases that the
model might have. Even if the action

unit prediction is not perfect, as the
small dataset was created using this
biased model, the imperfection will be
accounted for when the new prediction
is compared to the existing points in
the hyperspace.

Application pipeline

Faces are cropped from a live cam-
era feed using Python OpenCV’s Haar
Cascade Classifier face detection algo-
rithm running at approximately 60ms
per image. Images are downscaled be-
fore they’re fed into the algorithm

for speedup reasons and then the
face position is inferred in the orig-
inal image so no resolution is lost.
Faces are fed asynchronously to the

Figure 5: 2D representation of the emotion hyperspace corresponding to the action unit
predictions

trained model that predicts the action
units only once the model has finished
processing the previous image. The
action units predicted by the model are
then compared to the small dataset of
Kohn-Canade predictions to find the 10
closest neighbours using cosine simi-
larity, and the most common emotion
among them is chosen.

Both cosine similarity and euclidean
distance were tried but cosine similarity
yielded a better result. In an ideal world
the neural network would only return
values very close to 0 (when the action

unit is not present) or values very close
to 1 (when the action unit is present
at any level of intensity), as a sigmoid
function is used on the final layer of the
DNN to polarise the probabilities.

However, this is not the reality for
my model. The reason for why cosine
similarity gave a better result is that all
we care about for classifying an emo-
tion is the ratios between the different
action units, not the size of the action
unit vector itself –as this would encode
the intensity of the emotion. Using eu-
clidean distance would result in differ-
ent intensities considered as different
emotions, which would make it harder
to classify new predictions.

This approach needs a way to deter-
mine when no emotion is present (or
the emotion is neutral). For this I set
a threshold in the probabilities of the
action units so that if every action unit
is below this threshold then the emo-
tion had to be neutral. The emotion dis-
played in the application is the most

common emotion over the last five in-
ferences (i.e. frames) to avoid flickering
and foster stability. In order to produce
the audio saying the emotion, I used
python’s gTTs text to speech module.
The audio message is only fired once
the emotion has settled to avoid con-
stant interruptions.

The original idea of the project was
to deploy the application to the In-
tel Movidius Neural Compute Stick 2
(NCS2). This was achieved using Open-
VINO and Intel’s own model optimizer.
A working application was made but
the NCS2 was giving incorrect infer-
ence results, probably due to the lack of
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compatibility with some neural network
operations. The older NCS 1 was used
instead, yielding an inference time of
900ms. Another version of the applica-
tion was deployed using the CPU of my
development system where Keras and
Tensorflow were used for the inference.
This version was able to infer the emo-
tions in 200ms.

Figure 6: Screenshot of the working application with the action units showing at the left

Discussion & Conclusion

I believe a very important part of this
work is its scalable nature. Making
the application detect a new emotion
wouldn’t require any further training of
the neural network as long as the ac-
tion units present in the emotion are
included in the 17 action units which
the network is able to detect. All that
would be needed is to add a few new
data points corresponding to the predic-
tions of the model on images containing
that new emotion to the small action
unit-emotion dataset that I used for the
multi-dimensional comparison.

In order to assess the accuracy of the
application, I compiled a dataset of im-
ages taken from Google corresponding
to the 7 target emotions. This dataset
contains faces with clearly identifiable
unambiguous emotions in good light-
ing and resolution. It includes different
ages, genders and ethnicities. The ap-
plication predicted the correct emotion
on this dataset with an accuracy of 74%.
The app doesn’t perform as well with im-
ages that are ambiguous, unclear or con-
tain cues other than muscle movements
(for example the application wouldn’t
categorise a person with tears in their
eyes as sad). It’s important to bear in
mind that the live application delivers a
slightly better accuracy than the individ-
ual predictions, as not only one picture
is considered to determine the emotion

but a sequence of them. An objective
metric of the accuracy of the applica-
tion is still a matter for further analysis.
This just serves as a quick verification
of how the application is able to infer
the emotion on different and diverse
subjects.

During the training process of the
neural network it’s important to have a

robust metric of how good a model is.
This is true because multiple combina-
tions of hyperparameters are tried dur-
ing training, so multiple versions of the
same model are produced. Even though
the neural network is being trained to
detect action units in faces, the ultimate
goal of these action units is to serve as
a basis to infer the emotion on images.
Thus, I will suggest a way to evaluate
a model by examining how well these
action units serve to predict emotions.
If we go back to the action unit hyper-
space that was discussed before, it can
be seen that emotions form clusters in
it. A good way of assessing how easily
separable these emotions are is to eval-
uate how little the clusters overlap with
each other. Thus, very separate and iso-
lated clusters mean easily classifiable
emotions and higher accuracy overall.
That’s why, a metric to evaluate this
lack of overlap could be introduced to
evaluate the possible models and deter-
mine which will yield the best accuracy
in the final application. Another pos-
sible optimization would be to reduce
the dimensionality of the small action
unit-emotion dataset to reduce the time
taken to find the nearest neighbours.
This could be done using algorithms like
PCA that, as shown in Figure 5, are able
to reduce data dimensionality while still
showing separable clusters, which as ex-
plained above, translate to easily classi-
fiable emotions.

References
1 Facial Action Coding System, accessed

30th/August/2019, imotions.com/blog/facial-
action-coding-system/

2 Kanade, T., Cohn, J. F., & Tian, Y. (2000). Compre-
hensive database for facial expression analysis. Pro-
ceedings of the Fourth IEEE International Conference
on Automatic Face and Gesture Recognition (FG’00),
Grenoble, France, 46-53.

3 Lucey, P., Cohn, J. F., Kanade, T., Saragih, J., Am-
badar, Z., & Matthews, I. (2010). The Extended Cohn-
Kanade Dataset (CK+): A complete expression dataset
for action unit and emotion-specified expression. Pro-
ceedings of the Third International Workshop on
CVPR for Human Communicative Behavior Analysis
(CVPR4HB 2010), San Francisco, USA, 94-101.

4 M.F. Valstar, M. Pantic, “Induced Disgust, Happiness
and Surprise: an Addition to the MMI Facial Expres-
sion Database”, Proceedings of the International Lan-
guage Resources and Evaluation Conference, Malta,
May 2010

5 M. Pantic, M.F. Valstar, R. Rademaker and L. Maat,
“Webbased database for facial expression analysis”,
Proc. IEEE Int’l Conf. on Multimedia and Expo
(ICME’05),Amsterdam, The Netherlands, July 2005

6 Mavadati, S.M.; Mahoor, M.H.; Bartlett, K.; Trinh, P.;
Cohn, J.F., "DISFA:A Spontaneous Facial Action In-
tensity Database," Affective Computing,IEEE Transac-
tions on , vol.4, no.2, pp.151,160, April-June 2013 ,
doi:10.1109/T-AFFC.2013.4

7 Mavadati, S.M.; Mahoor, M.H.; Bartlett, K.; Trinh,
P., "Automatic detection of non-posed facial ac-
tion units," Image Processing (ICIP), 2012 19th
IEEE International Conference on , vol., no.,
pp.1817,1820, Sept. 30 2012-Oct. 3 2012 , doi:
10.1109/ICIP.2012.6467235

8 Xing Zhang, Lijun Yin, Jeff Cohn, Shaun Canavan,
Michael Reale, Andy Horowitz, Peng Liu, and Jeff Gi-
rard, “BP4D-Spontaneous: A high resolution sponta-
neous 3D dynamic facial expression database”, Image
and Vision Computing, 32 (2014), pp. 692-706 (spe-
cial issue of the Best of FG13)

9 Xing Zhang, Lijun Yin, Jeff Cohn, Shaun Canavan,
Michael Reale, Andy Horowitz, and Peng Liu, “A high
resolution spontaneous 3D dynamic facial expression
database”, The 10th IEEE International Conference
on Automatic Face and Gesture Recognition (FG13),
April, 2013.

PRACE SoHPCProject Title
Emotion Recognition using DDNs

PRACE SoHPCSite
IT4Innovations, VŠB - Technical
University of Ostrava, Czech Republic

PRACE SoHPCAuthors
Pablo Lluch Romero, The University
of Edinburgh, United Kingdom

PRACE SoHPCMentors
Georg Zitzlsberger and Martin
Golasowski, IT4Innovations, Czech
Republic Pablo Lluch Romero

PRACE SoHPCContact
Leon, Kos, University of Ljubljana
Phone: +12 324 4445 5556
E-mail: leon.kos@lecad.fs.uni-lj.si

PRACE SoHPCSoftware applied
Python, Tensorflow, keras

PRACE SoHPCAcknowledgement
Thanks to IT4Innovations and my mentors Georg
Zitzlsberger and Martin Golasowski for providing me
with access to the supercomputer facilities and support
throughout my project. Also thanks to PRACE for
creating this opportunity and allowing us to get closer
to the incredibly interesting and power field of HPC. I
would also like to thank the owners of the datasets I
used as I was given them for free.

PRACE SoHPCProject ID
1917

53



Implementing a Tasking Framework in CUDA for
the Fast Multipole Method

FMM: A
GPU’s Task
Noé Brucy

Is you graphics card able to run N-body
simulations in a smart way? A complex
tree algorithm, a sophisticated tasking
system, is all that a task for a GPU? No,
some will say, a graphics card can do only
basic linear algebra operations. Well,
maybe the hardware is capable of much
more...

GPU

The Fast Multipole Method
(FMM) is an algorithm to com-
pute long-range forces within
a set of particles. It enables to

solve numerically the N-body problem
with a linear complexity, where it would
otherwise be quadratic. Doubling the
number of particles only doubles the
computation time instead of quadru-
pling it. However the FMM algorithm
is hard to parallelize because of data
dependencies. Tasking, meanings split-
ting the work into tasks and putting
them into a queue helps a lot to give
work to all threads. A working tasking
framework for the FMM has been im-
plemented on Central Processing Units
(CPU) by D. Haensel (2018). Will such
a tasking framework run efficiently on
General Purpose Graphical Processing
Units (GPGPUs or more simply GPUs)?
The answer is not obvious at all, be-
cause CPU and GPU have a very differ-
ent architectures. My goal this summer
was to shed some light on that topic.

A smooth start

Let me first introduce the problem
that we will use to test the tasking

framework. It is a simplified version
of one of the operators of the FMM,
and we named it the accumulation tree.

1 11 1 1 11 1 1 11 1 1 11 1

4 4 4 4
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The principle is very simple: the content
of each cell is added to its parent. So
one task is exactly "adding the content
of a cell to its parent". You already see
that dependencies will appear since a
node needs the result from all children
before having its tasks launched. Imag-
ine we have 10 processing units (GPU
or CPU threads), the computation of
the accumulation will be as follows.

Initialisation

FPUthreads (GPU or CPU) FPU FPU FPU FPU FPU FPU FPU FPU FPU

1 11 1 1 11 1 1 11 1 1 11 1

All leaves are initialised with 1. All

tasks that are ready, that is all tasks
from leaves, are pushed into the queue
(blue tasks). Now we are ready to start.

Round 1

FPUthreads (GPU or CPU) FPU FPU FPU FPU FPU FPU FPU FPU FPU

4 4 2

1 11 1 1 11 1 1 11 1 1 11 1

Ten blue tasks are done. Two new green
tasks are ready; so they are pushed into
the queue.

Round 2

FPUthreads (GPU or CPU) FPU FPU FPU FPU FPU FPU FPU FPU FPU

8

4 4 4 4

1 11 1 1 11 1 1 11 1 1 11 1

The last six remaining blue tasks are
done as well as two green tasks. The
last two green tasks are ready and
pushed into the queue. Here we can see
that the tasking permits to maximise
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the threads usage since all tasks that
are ready can be executed.

Round 3

FPUthreads (GPU or CPU) FPU FPU FPU FPU FPU FPU FPU FPU FPU

4 4 4 4

16

1 11 1 1 11 1 1 11 1 1 11 1

The last two green tasks are executed.
We get the correct result, hip hip
hooray!

And on a GPU?

As said in the introduction, such a task-
ing system works well on a CPU. Why
can’t we just copy-paste the code, trans-
late some instructions and add some
annotation to make it work on a GPU?
Because many assumptions we can rely
on CPUs do not hold anymore on GPUs.
The biggest of them is thread indepen-
dence. You can compare the CPU to a
barbaric army: only few strong soldiers,
any of them being able to act individu-
ally.

credits: Wikimedia CC-BY-SA

A graphics card however is more like
the roman army, with a lot of men di-
vided into unit. All soldiers within the
same units are bound to do exactly the
same thing (but on different targets).

credits: https://patricklarkinthrillers.files.wordpress.com

Many of the problems caused by the
special nature of the GPU were already
tackled when I joined the project. In-
deed, I was provided with a working
version of the tasking framework ap-
plied to the accumulation tree example.
However, it had serious performance is-
sues, since the accumulation took 700
ms on an octree of depth 5. An octree is
a tree where each node has 8 children,
and an octree of depth 5 has 37449
nodes, which is not that much.

Time to speed things up!

In this section I will tell you my strate-
gies to improve the performance. Let’s
begin by describing how the tasking
framework I was provided with worked.

The starting point

queue

mutex

The protagonists of our story are
the following. The threads are our ro-
man soldiers. They are working on a
Floating Point Processing Unit (FPU)
and they do the computation. They
are grouped in units of 32 threads
called warps. Threads within the same
warp should execute the same instruc-
tion at the same time, but on differ-
ent data. Warps are themselves grouped
into blocks. Threads within the same
block can communicate fast through
shared memory and they can synchro-
nise together. However, no inter-block
communication or synchronisation is al-
lowed except through the global mem-
ory which is much slower.

The tree is another player. He lives
in the global memory since all threads
should be able to access it. At last thre
is the queue, also living in the global
memory. It is implemented by a chained
list, meaning that its size can adapt to
the number of tasks it contains. To avoid
race conditions, access to the tree and
the queue are protected with a mutual
exclusion system (mutex). We rely on
a specific implementation of a mutex
for GPU. It allows only one thread to
access the data protected by the mutex
at a time. To avoid deadlocks (a kind
of infinite loop when two threads wait
for an event that will never occur), only
one thread per warp tries to enter the
mutex. We call it the warp master, and
in this early version, only the warp mas-
ters can work, as follows:

1. Fetch a task from the queue
2. Synchronisation of the block
3. Execute the task
4. Synchronisation of the block
5. Push new tasks (if any)

Step 5 is done only if the task done at
step 3 resolves a dependency and cre-
ates a new task.

Cutting allocations

queue

mutex

A B

The first improvement was to
change the queue implementation with
my own relying on a fixed sized queue.
The reason behind this is that memory
allocation is very expensive on a GPU,
and with adaptive size queue you are al-
locating and freeing memory each time
a thread pushes and pops a task.

Reestablishing private property

mutex

A AAB

private queues

shared queue

mutex mutex

The second idea was to reduce the
contention on the global queue since
working threads are always trying to ac-
cess it. I added small private queues for
each block, that can be stored either in
the cache or in the shared memory for
fast access. The threads within a block
use the block’s private queue in prior-
ity, and the global queue as a fallback if
the private one is full (push) or empty
(pop).

Solving the unemployment crisis

mutex

A AAB

private queues

shared queue

For now only a few threads (the
warp masters) are working. It’s time to
put an end to that. First, since threads
within a block are synchronised, access
to the private queue is done at the same
time thus performed sequentially be-
cause of the mutex. I decided that only
one thread per block will access the
queue, and will be in charge to fetch
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Left: approximate timings for the accumulation kernel for an octree of depth 5 on a Tesla P100 GPU, excluding initialisation.
Right: total thread execution time for several depths on the Tesla P100

the work (step 1) and solve dependen-
cies (step 5) for all the threads.

Breaking down the wall

m
u
te

x

A AAB

private queues

shared queue

atomics

Now that all threads are working,
they are all waiting to enter the mutex
protecting the tree, even if they are try-
ing to access different parts of it. So I
removed the mutex, and ensured that
all operations on the tree are atomic.
That’s a bit like if there was a mutex on
each node in the tree, making it possi-
ble to several threads to access the tree
concurrently.

Fighting inequality

m
u
te

x

A AAB

private queues

shared queues

atomics

m
u
te

x

Removing the mutex from the tree
resulted in a huge gain on time, so I
tried to also get rid of it for the shared
queue access. First I did split the queue
so that there is one shared queue for
each block. Because the queue is fixed
in size, the operations of pushing and
popping a task are independent. One
block master can pop only from its own
queues (private and shared) and can

push to its own private queue, its own
shared queue and also other block’s
shared queue. Thus, we do not need
mutex protection for the popping oper-
ation.

Last but not least, the work must
be equally shared between blocks (that
is called load balancing). I provided a
function that tells a calling thread in
which shared queue a newly created
task should be pushed.

Was it worth it?

Now it’s time to evaluate how much
time we saved with our drastic politics.
And the answer is: a lot! The top-left fig-
ure shows how much time the computa-
tion of the accumulation octree of depth
5 took for each of the above mentioned
steps. The results are quite impressive,
as my work reduced the execution time
from 700 ms down to 1.5 ms, resulting
in a speedup of approximately 450.

It also scales pretty well if we in-
crease the size of the tree. Indeed one
would expect that the total execution
time (the measured time multiplied by
the number of threads) increases eight-
fold if the depth is incremented by 1.
That is because by adding one tree level,
we increase the number of task approx-
imately by a factor 8. The top-right
graph shows that the scaling seems to
be just as expected from the depth 3.

An important step to get this result
was to parallelize the allocation and
the initialisation of the tree, gaining a
speedup of 900 for depth 5 and thus en-
abling runs with a depth up to 8. There
is not enough memory on the GPU for
higher depths. I also wrote a specific
Python benchmarking programme to
compare different versions of the code.

Towards a full GPU FMM solver

M2M L2LM2L

The accumulation tree example is
very close to an operator of the FMM
called M2M. There are two other
tree operators in the FMM algorithm:
M2L that compute interaction between
nodes at the same level and L2L that is
pretty like M2M but from the top of the
tree to the bottom. I also implemented
operators that have the same execution
scheme as M2L and L2L. They work cor-
rectly and have execution times within
the same order of magnitude as the ac-
cumulation tree. Therefore we are not
very far from a taskified FMM algorithm
running on GPU. The remaining work is
the replacement of the simple addition
in the tree by the the complex mathe-
matical operations of the FMM.
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High Performance Lattice Field Theory uses the
computational power of supercomputers in order
to produce a high accuracy lattice field simulation
which cannot be created on conventional
computers due to its computational
expensiveness

High Perfor-
manceLattice
Field Theory
Andreas Nikolaidis

Motivation of project: Understanding how
the lattice simulation works in order to
solve mass problem that occurred during
the simulation for the propagation of a
meson particle

The image above shows a subatomic particle composed
by three quarks, it can be a neutron or a proton

Quantum chromodynamics (QCD).
QCD theory is a quantum field the-

ory that describes the strong interaction
between quarks and gluons. Quarks
are the subatomic particles composing
the well known neutrons and protons
and they occur in six flavours up, down,
strange, charm, top and bottom. The
proton for example is a composition of
three quarks, 2 up quarks and 1 down
quark. If the story ended here then

we would be talking about quantum
flavourdynamics. Due to the very small
mass of the quarks they should have
been constantly moving with speeds
close that of light, so how are they
bound together? At this point the
strong force is introduced and it is
called strong because it is indeed strong
so that it can hold the quarks bounded
together and it is the strongest of all
four of the fundamental forces.

Figure 1: The small sphere is the gluon carrying an anti-
red and blue colour. Once it reaches one of the big red
spheres representing the quarks the anti-red with red will
be annihilated and the quark will be blue

Carrier of the strong force
is the gluon. Analogous to
electric charge, in QCD, is
the colour charge and in-
stead of having positive
and negative charge there
are three colours represent-
ing it, red, green and blue
(though colour has noth-
ing to do with the real
colours). Lattice QCD is
a non-perturbative method
for solving QCD problems,
but why we use non-
pertubative methods? The

reason lies with the highly non-linear
nature of strong force and the large cou-
pling constant at low energies which
makes it impossible for an analytical or
perturbative solution to be found.

Problem

When there is a big project taking place
the project breaks down to smaller parts
and i was tackling one of the problems
occurred during this project. The main
project was lattice field simulation of
how a meson ( a subatomic particle
composed by a quark and an anti-quark)
propagates from a point X at a point
X’ and what concerns the simulation is
what path the particle has used to get
from X to X’. The data contains the num-
ber of measurements taken between
these two points which is denoted by
tmax (i.e. tmax= 28 means 28 mea-
surements have been used). Now, while
the simulation had been running just
fine for two different data inputs the

57



results showed different rest mass for
the same meson particle. So that tells us
that there should be a point where there
is an error which might occur by a vari-
ety of reasons i.e. mistake either at the
data input or at the initial parameters
added to the code or at the simulation.

Methods to tackle the problem

Firstly, out of the number of measure-
ments taken that is mentioned above
(tmax) some range of this data gives bet-
ter confidence of results i.e. if tmax=28
instead of using the full range of mea-
surements from 0-28 we get a range
out of it, as an example from tmin=
5 to tmax=25 and observe what con-
fidence, rest mass and error in mass
this data provides. Now since we get
different answers for different ranges it
is reasonable that the results needed to
be analysed in order to extrapolate the
mass, error in mass and confidence for
each of the tmin values and for different
tmax values. This task was executed
with the help of a bash script as follows.
The script iterated over all tmin values
for different fixed values of tmax and
for each range the quantities mentioned
above where extrapolated into a file.

Continuing, initial plots for the two
data inputs were produced for mass
vs tmin for a fixed tmax value where
produced as shown in the figures 2 and
3 below.

Figure 2: Initial plot of the smpt
file which is one of the data inputs
of the simulation code (tmax=28)

Figure 3: Initial plot of the smsm file
which is the other input file of the
simulation code (tmax=28)

Results and discussion

In order to understand where the prob-
lem occurred we can compare the two
figures already mentioned. It is rather
obvious from the two figures that figure
2 is at least to a certain degree consis-
tent with the rest mass results while
figure 3 shows very unstable results.
Based on this deduction, the problem
seemed to lie only with the one data
input. So, by checking the input param-
eters for that file the error found to lie
with the order that masses were fed to
the fit-code, but what does that even
mean? Well, the rest mass that fed the
code was larger than the mass of the
first excited state which cannot be the
case since in the first excited state the
particle holds more energy and thus
it is heavier. After arranging that issue
the above figures where re-plotted in
order to see if the problem has at last
been solved and this time with various
values of tmax. The final and most im-
portant plot is one that shows the two
results of the files on a single graph and
the tmax values that were selected are
the ones providing the greatest confi-
dence. This is the figure 4 shown below

Figure 4: It should be noted that the
circles shown on the graph symbolise
the confidence of the data

So, by observation of figure 4 we can
see that apart from some issues at the
small values of tmin which are pretty
reasonable due to the way that the
simulation works, the data for both files
is pretty stable and at the same range.
We can thus conclude that the problem
with the rest masses of the two input
files has been solved.

Another two graphs were produced
that include all the tmax values
that were used to analyse the data.

Figures: The figures above were plotted in
order to show conformance of the results after
the mistake was solved.

Conclusion
The analysis of the data was successful and it
showed directly where the errors. Though, at the
beginning the issue was thought to exist with
the range of values that it was used for the two
files and at the end the error occurred due to the
program not analysing the correct data. The error
of the program was that it did not check whether
the mass of the ground state was smaller than the
one of the first excited state and that caused all
the issues.
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Configuring and using encrypted disks in an HPC
environment

Encrypting
disks in HPC
Kara Moraw

Supercomputers which are publicly
available have relaxed security measures
by default. When it comes to processing
sensitive data, further steps towards data
security have to be taken. One possible
measure is working on encrypted disks
which, according to our findings, has an
acceptable impact on performance.

There is an increasing de-
mand for processing confiden-
tial data, such as the genetic
makeup of humans, personal

data, and data that, if leaked or mod-
ified, could have serious legal con-
sequences. Normally, supercomputers
and clusters are shared by many users,
which makes it difficult to meet strict se-
curity requirements. Furthermore, net-
work restrictions hinder the flexibility
and the open character that make clus-
ters popular.

PCOCC (Private Cloud On a Com-
pute Cluster) is a promising technol-
ogy that enables creating private HPC-
clusters on existing clusters, by automat-
ing the setup of KVM virtual machines,
connected with an overlay network.
These guest private clusters can be tai-
lored to the security requirements per
project, whilst maintaining the flexibil-
ity and openness of the host cluster.

A security weakness in the current
PCOCC software is that disk images that
are used for storing persistent cluster
data are not encrypted. Because the disk
images reside on the host cluster file sys-
tems, confidential data could be read by
users with enough privileges on the sys-
tem. Since PCOCC is an open-source

python-based tool, it could be modified
to run virtual machines on encrypted
disks.

Working in an HPC environment,
performance is always a priority. So to
evaluate the practicability and useful-
ness of adding the feature described
above to PCOCC, we decided to run a
series of benchmarks on a simple setup
of KVM virtual machines with LUKS en-
crypted volumes.

LUKS encryption format

LUKS is short for Linux Unified Key Setup
and provides a standard for encrypt-
ing disks in Linux operating systems.
It takes care of the key management
with a two-level key hierarchy: A strong
master key is generated by the system
and used to encrypt or decrypt the hard
disk. The master key itself is encrypted
by a user key and only this encrypted
version is stored. To decrypt the hard
disk, the user must provide his user key
which is used to decrypt the master key
which in turn decrypts the hard disk.
This way, the user key can be changed
frequently - this is fundamental for se-
curity - without re-encrypting the hard

disk every time. Only the master key
has to be re-encrypted which saves a lot
of overhead.

LUKS makes use of a series of fur-
ther security measurements to impede
attackers calculating the keys, such as
AF-splitter and PBKDF2 [REFERENCES].
The details are not relevant for this
project and are therefore not discussed
here.

It is possible to use different encryp-
tion algorithms, modes, key sizes and
hash functions within LUKS. In this case,
we limited our tests to the algorithms
AES, Twofish, Serpent and CAST5 in the
modes CBC, ECB and XTS. The follow-
ing gives a short overview.

All four of the considered algorithms
remain unbroken and are therefore se-
cure. It is out of the scope of this report
to explain their details, but the main
thing to know in order to understand
the significance of encryption modes
is that they are all block ciphers. This
means that they work with a key of a
predetermined length and this key can
only encrypt a message of the same
length. For a short message, this might
be alright, but when looking to encrypt
a 500 GiB hard disk, a 500 GiB long key
is hardly of use. Instead, the data is split
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<secret ephemeral=’no’ private=’yes’>
<description>Example secret</description>
<usage type=’volume’>

<volume>/guest_images/vol.img</volume>
</usage>

</secret>

(a) XML file for secret object

<volume>
<name>vol.img</name>
<capacity unit="G">7</capacity>
<target>

<path>/guest_images/vol.img</path>
<format type=’raw’/>
<encryption format=’luks’>
<secret type=’passphrase’ uuid=’dcb67’/>
<cipher name=’aes’ size=’256’ mode=’ecb’ hash=’sha256’/>
</encryption>

</target>
</volume>

(b) XML file for volume

(c) Electronic Code Book mode

(d) Cipher Block Chaining mode

(e) XTS mode

Figure 1: On the left: XML files for configuration.
On the right: different encryption modes.

into data blocks of the same length as
the key (e.g. 256 bits). There are differ-
ent possibilities to apply the encryption
algorithm to those blocks, i.e. different
modes:

ECB

The Electronic Code Book mode, de-
picted in 1c, is the simplest and fastest
way to encrypt blocks of plaintext. Ev-
ery block is encrypted separately with
the chosen algorithm using the key pro-
vided. This can be done in parallel.
However, it is highly deterministic: iden-
tical plaintexts have identical cipher-
texts.

CBC

The Cipher Block Chaining mode, seen
in 1d, is less deterministic, but slower.
The encryption is randomised by using
an initialisation vector to encrypt the
first block. Every subsequent block’s en-
cryption depends on the block before,
i.e. also on the initialisation vector. This
cannot be done in parallel.

XTS

The XEX-based tweaked-codebook
mode with ciphertext stealing, seen in
1e, uses two keys and supports encryp-
tion of sectors which cannot be divided
into equal-length blocks.

Test environment

PCOCC itself creates a set of virtual ma-
chines working together as a cluster,
with KVM as their hypervisor. Our test
setup lies on the HPC-Cloud [REFER-
ENCE], a service offered by SURFsara.
It lets users create virtual machines run-
ning on SSDs. One test instance consists
of two virtual machines on the HPC-
Cloud: One acts as the host for the vir-
tual machine to be benchmarked, and
one acts as an NFS-Server which will
contain the encrypted disk.

Within the virtual machine acting
as a host (we will be calling it “host
VM” from now on), we recreated what
PCOCC does in a simpler way by just
defining one virtual machine instead
of a cluster. Details on doing this can
be found in the REDHAT DOCUMEN-
TATION, but the essential steps for cre-
ating the encrypted virtual volume the
machine should run on are:

1. Define a secret.

2. Define encryption to be used.

Defining a secret
With libvirt, an object of type “secret”

can be created from an XML file like the
one in 1a.

Attributes ephemeral and private de-
scribe that the secret is only kept in

memory as opposed to being stored
persistently and that the value to
be associated is never revealed. This
definition also declares which vol-
ume is to be protected by the se-
cret. Note that this definition does
not contain the actual passphrase. It
has to be set afterwards by calling
virsh secret-set-value.
Defining the encryption
Telling libvirt which encryption to use
is part of the volume definition. Again,
a new encrypted virtual volume can be
created from an XML file like the on in
1b.

Here, format, secret and cipher to
be used are declared. The secret ob-
ject points to the secret created above.
There are different encryption algo-
rithms, modes, key sizes and even
hashes available.

Benchmarks

To evaluate the performance, we set up
eight differently encrypted volumes and
had a virtual machine transcode a 17-
minutes long video on each of them.
The configurations we considered are
listed in table 1. The results displayed
in 2 and 3 show the average time and
the standard deviation after five runs
on each configuration.

The results in 2 show that there is
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no significant impact on the user time.
The average performance is decreased
by 0.2 − 3%. There is a higher impact
on the system time as seen in 3. The
performance is decreased by 13− 30%.
Due to the small number of runs, it

Table 1: Configuration of volumes

Volume No. Cipher Mode Key Size Hash
1 None None None None
2 AES ECB 256 SHA256
3 AES XTS 256 SHA256
4 AES CBC 256 SHA256
5 AES CBC 128 SHA256
6 Twofish CBC 256 SHA256
7 Serpent CBC 256 SHA256
8 CAST5 CBC 128 SHA256

Figure 2: Average user time when using encrypted disks (blue) compared to a
non-encrypted disk (green).

Figure 3: Average system time when using encrypted disks (blue) compared to a
non-encrypted disk (green).

is not possible to make a general
statement on which algorithm and
mode have the lowest or highest im-
pact on performance. Nevertheless, the
results indicate that the details of the
configuration affect the performance.

Discussion

Looking back at the process, we find
it was fairly simple to set up an en-
crypted disk for a virtual machine.
While we could not verify the configura-
tion within PCOCC itself due to the time
constraints, it looks like encrypted disks
could be added in after minor changes
to the PCOCC code. The benchmark
results show that the encryption does
impact the performance, but only to a
moderate extent. Also, they suggest that
performance demands can be balanced
with security demands since different
configurations of the encryption lead to
different timings. Further work could re-
search the impact of encryption modes
or algorithms on overall performance
and work towards the incorporation of
encrypted disks in the PCOCC code.
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Processing and visualising meteorological data
for an improved understanding of bird migration
patterns

A data
pipeline for
weather data
Allison Walker

For ecologists studying bird movement,
new data sources can contribute a deeper
understanding of migratory patterns. This
project focused on building a data pipeline
enabling ecologists to efficiently access
and visualise a new stream of
meteorological radar data.

Birds have amazing capabili-
ties for migration, with some
species capable of travelling
vast distances each year. While

ecologists have traditionally focused on
GPS tracking when studying migratory
patterns, it is increasingly important to
integrate additional data sources. In par-
ticular, ecologists at the University of
Amsterdam are beginning to work with
a new stream of weather radar data to
track flocks of birds, and answer ques-
tions like: how and when are birds most
active? How does weather impact when,
where and how birds migrate?

These questions are important to
answer for various reasons. Migrat-
ing birds share airspace with airplanes,
windmills, and other man-made struc-
tures like high-rise buildings. It’s im-
portant for both the birds’ safety and
the longevity of these aircraft and struc-
tures that we are able to accurately pre-
dict when flocks will be migrating and
where. Some of the real-world implica-
tions of accurately predicting bird mi-
gration are:

• The aviation industry as well as
Air Forces across the globe adjust-
ing the scheduling of flights.

• Wind farms stopping or slow-
ing their wind turbines when a
large number of birds are flying
through.

• Switching off lights in tall build-
ings and communication towers,
which have been known to con-
fuse birds flying at night.

Figure 1: A falcon with GPS tracker, the tra-
ditional means for capturing data on bird
migration.

Project Overview
The aim of this project was to improve
the accessibility of this weather data so
that ecologists can more readily study
weather patterns and local bird migra-
tion for a given radar.

Where the researchers are used to
working with relational databases, this
project explored the suitability of replac-
ing these with static storage along with
an accompanying working environment
and practices that would form a virtual
lab. The intention was that querying
this static database still feels natural,
with ecologists able to apply their ex-
isting IT knowledge. This project was
also intended as an investigative anal-
ysis into the potential infrastructures
for data sources beyond weather and
GPS. A set of scientific workflows and a
guide for best practice for storing and
working the data stream will provide
a foundation for future solution design.
For the purposes of this internship, how-
ever, the use case was meteorological
weather data.

The solution developed allows ecol-
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ogists to select the metric, the time pe-
riod, the elevation angle and the visu-
alisation format desired for the output.
The final visualisation is efficiently gen-
erated, giving researchers more time to
focus on ecology.

Key tools used in developing this
pipeline include: Parquet storage format
for efficient filtering and loading, Spark
for distributed computation, Python
as the key programming language,
Wradlib, Geoviews and Holoviews li-
braries for visualisation of the trans-
formed data. The following sections of
this paper will explain in greater detail
the application of these tools.

Learning the Domain
The domain specificity of this project
required a deep-dive into the world of
radar. A critical first step in this project
was understanding the way in which
radars capture and store data, the meta-
data collected at each sweep, and the
prevailing methodologies for reading
and visualising these data.

Figure 2: HDF5 file structure for radar data.

Radar collects information about ob-
jects in the surrounding area by using
radio waves. The returned echoes can
be used to identify aircraft, weather
patterns, and even flocks of birds. Ev-
ery time a radar completes a sweep, a
significant amount of metadata is cap-
tured and stored. Examples of this meta-
data are: radar latitude, radar longi-
tude, radar height, sweep elevation an-
gle, sweep range, and timestamp. In
terms of the actual data, information is
captured for up to 16 different metrics
in each sweep and stored into an array

of dimensions (azimuths, radius). All
of these data and metadata need to be
considered in order to correctly project
the data captured into an accurate visu-
alisation.

A typical radar might perform a
fresh sweep every 15 minutes, mean-
ing 96 sweeps per day. Data collected in
each sweep is stored in its own file, in
an HDF5 format. HDF5s are hierarchical
files, and somewhat complicated to nav-
igate. The highest level is the elevation
angle, and nested within each angle is
further nested information about the
different metrics and their associated
metadata. In the prevailing approach,
the most time-consuming step in pro-
cessing these files was filtering through
the multiple layers and metadata to re-
trieve only the data arrays for the ele-
vation angle and metric of importance.

Spark and Parquet

The many complexities of the radar
measurement system meant that it was
important that the solution built could
easily filter and return only the data that
the researcher is interested in for their
particular question. Parquet was the
most sensible format for these purposes.
Parquet is a column-oriented data stor-
age format that is efficiently filtered,
and highly compatible with Spark, the
next key tool in this project’s toolbox.

Figure 3: Parquet fields.

Therefore, the critical first step in
building the data pipeline was to con-
vert HDF5s to Parquet for a year’s worth
of data from a handful of European
radars. This process required an under-
standing of which metadata would be
required to accurately visualize the data,
to ensure that all relevant information
was transferred from HDF5 to Parquet.
The structure of these Parquet files can
be seen in figure 3.

Figure 4: A PPI visualisation from the
Wradlib library.

With the radar data formatted into
Parquet and saved in Minio - the object
storage software used in this project -
the next step in the data pipeline was to
load the relevant data. Spark - a general-
purpose cluster-computing framework -
was critical in this step. Functions for fil-
tering and loading data were written in
pyspark, and run in a Kubernetes cluster.
This cluster has 25 machines, each with
4 nodes. Already by this stage the effi-
ciencies of the new infrastructure were
clear. Where 200 seconds are needed to
filter, load and perform a groupby func-
tion over relevant data from a series
of HDF5 files, only 120 seconds were
required for the same process from Par-
quet.

Radar Visualisation
Transforming a data array and metadata
into simple visualisations came next.
Wradlib, a python library for Weather
Radar Data Processing, was very impor-
tant to understand the conventions used
for transforming polar data (where the
dimensions are azimuths and radius)
into gridded data that can be more eas-
ily visualised. Again with the help of
Spark, the Wradlib library was used to
produce visualisations as seen in figure
4. These were further expanded into
time series visualisations in a gif format
(which unfortunately cannot be demon-
strated in this article format).

Georeferencing
While these visualisations are use-
ful, ecologists also require information
about the geographic location of these
weather patterns. In order to maximise
the usability of the radar data, it was
therefore important to add a geographi-
cal representation to the visualisations.
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Key tools used in this stage of the
pipeline were: Geoviews, Holoviews
and Xarray. These are all python li-
braries that allow us to place the visu-
alised radar data exactly where it be-
longs on the map.

Geoviews and Holoviews expect geo-
graphical data to be in an Xarray format.
These are essentially Numpy arrays, but
with the addition of dimensions that
summarise the geography and time of
each datapoint. Utilising the principles
from Wradlib, the raw data arrays were
transformed into a gridded format, and
converted to Xarray. In fact, this step
removed the reliance on the Wradlib
library altogether.

Finally, the Xarray datasets were
converted into Geoviews Images and
then projected onto a Cartolight map.

The final visualisation, with zoom
and time-slide interactivity is shown in
the figure above. Geoviews is capable
of projecting information for multiple
radars in the one view, so this solution is
easily scalable for multiple radars, once
that data is also transformed to Parquet
format.

Final Product
The final output is, as intended, a func-
tional data pipeline allowing ecologists
to query and visualise radar data based
on their desired filters. Though the ex-
act timings of the previous approach are
unconfirmed, it is clear that the solution
developed cuts hours of time from the
process to develop these weather visu-
alisations.

Future Work
A number of further optimisations re-
main. Firstly, the role of colour in
radar visualisations cannot be underes-
timated. The current colourmap is not
consistent with what the researchers are
familiar with, so needs to be changed.
Next, the ecologists often chop out data
from the furthest scans due to loss of
accuracy, but all data has been included
in the current solution. Next, there is a
need to optimise the structure of the Par-
quet files and bring in additional meta-
data from the HDF5s. Finally, this data
pipeline can be adapted to produce ver-
tical profiles; a separate visualisation
derived from the same HDF5 files.
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Visualising the enormous amount of data from
plasma fusion simulation, by creating an
open-source visualization software.

A glimpse
into plasma
fusion
Arsenios Chatzigeorgiou

Plasma fusion simulations have the potential to guide a minimisation of the plasma
microturbulences and make plasma fusion viable. GENE is an open-source code that
performs such simulations. The output, however, is visualised with a proprietary-IDL
software. In this project, we reproduced the IDL plotting schemes, using open-source
alternatives.

Plasma fusion is the holy grail of
the energy science. By mimick-
ing the sun’s procedure, a nu-
clear fusion reactor can produce

enormous amounts of energy with no
significant waste and using only iso-
topes of hydrogen as substance (2H
and 3H). In order to produce such en-
ergy however, very high plasma temper-
atures are needed.

Research on plasma fusion for en-
ergy generation started back in 1940.
However, until today, a functional re-
actor able to generate power have not
become available. The major problem
is the inability to create steady state
plasma fusion. This means that plasma
is kept stable and at high temperatures
for long periods of time during which
the energy is being constantly emitted".
Until now the plasma process duration
is being measured in milliseconds and
getting plasma in steady state for just a
few seconds is challenging.

One of the reasons the plasma
doesn’t reach steady state, is the plasma
microturbulences. It is what happens
when you mix plasma of different tem-
peratures together. Cold plasma absorb

heat from hot plasma, and the average
temperature is lower than desired.

Research on plasma fusion reactors
is also very time-consuming, expensive
and a lot of resources (human and ma-
terial) are needed to build a one. A
reactor that could potentially generate
enough energy has bigger size than a
middle shaped human, making the cre-
ation even more expensive. Therefore a
valid prediction of the reactor’s function
is crucial, essential and mandatory.

The scientific problem

In order to foresee and avoid plasma
microturbulences, plasma behavior is
being investigated through plasma mod-
eling or plasma fusion simulations.

Scientists try to find the ideal reac-
tor’s characteristics (the geometry of the
reactor, the properties of the magnets
that will speed plasma etc), that min-
imises plasma microturbulences and
therefore maximise the energy pro-
duced.

One of such plasma simulation
utilities is GENE, a Gyrokinetic
Electromagnetic Numerical Experiment,

an open-source code that can simulate
among other things, the plasma micro-
turbulences detected in reactors. These
simulations demand big computational
power, and may only run in HPC clus-
ters. GENE, uses MPI (Message Passing
Interface) for the parallelized part of
code.

The GENE algorithm, generates
some numerical ASCII files but mostly
big, complex binary files as an output,
but no visualisation occurs.

Current GENE status

In the GENE suite, the option offered
for analysing and visualising the results
is an IDL plugin. This plug-in uses the
output files and produces a large list of
plots (around 40 different plots) that
can be accessed via the IDL GENE diag-
nostics GUI.

IDL however, is not publicly avail-
able. In order to fully analyse and
visualise the results, a licence is re-
quired. The user interface, is also very
old-fashioned, and a lot of configura-
tion needed makes the GUI less user-
friendly.
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Figure 1: On the left, the our GUI is presented, with selected plot Geometry which stands for geometric elements of the reactor. Top right
plot is balloning modes, and bottom right is toroidal representation.

Our accomplishments

In this project we managed to repro-
duce some of the IDL plotting schemes,
in a more simple, modern and open-
source GUI. The code was written in
Python 3.7 and PyQt5 was used.

PyQt5 is a Python Toolkit based on
the C++ Qt5 application framework.
It utilises widgets as graphical inter-
face elements, and provides the abil-
ity to create layouts of GUIs (Graphical
User Interface). For plotting the data we
employed the matplotlib library and
numpy was used as well. For some plots,
we used some scripts from a python im-
plementation that existed in the GENE
git repository, but was not currently in
development.

One of the biggest difficulties we
came up to, was that we didn’t know
enough about the GENE output files. Ini-
tially, we weren’t able to access the bi-
nary files of the results. Also, formulas
that produced the plots were not men-
tioned and the number of different vari-
ables surpassed the greek alphabet sym-
bolism. To make matters worse, the IDL
scripts were also poorly documented.

The deux-ex-machina was the afore-
mentioned python scripts. Those scripts,
were able to read the files, manipu-

late the data, and draw many of the
IDL plots, but there was not GUI. De-
spite the bugs, the chaotic and undoc-
umented way there were written, and
some incompatibilities, we managed to
use them and provide some valid plots
and animations from the GENE output
files. Animations that weren’t available
in the IDL plug-in since the GUI didn’t
support live video or animation repre-
sentation.

To be fair, the number of differ-
ent plots we finally provide is not big
enough. We managed to produce 13 out
of 40 plots, but we didn’t have enough
time to reproduce all of them. Also,
since the GENE IDL plug-in is a propri-
etary program, we also found difficul-
ties about running benchmark cases.
The native HPC in University of Ljubl-
jana didn’t have an IDL license and
GENE or IDL were not installed in the
supercomputer. Thankfully, my mentor
had access to the MARCONI HPC clus-
ter, in Bologna, where GENE and IDL
are installed and licensed, and we were
able to run a few benchmark cases.

Initially, apart from the GUI imple-
mentation, we planned to create a man-
ual to help the user navigate in our
program. But a different approach pre-
vailed. What if we made the GUI so

ridiculously simple, that the manual
would be redundant? So, we made ev-
erything automated, and the user has to
select only the GENE results folder and
choose a plot to visualise. The simple
instructions needed are printed in the
GUI.

Don’t get me wrong, the repro-
duction of IDL is far from done. Re-
implementation of the GENE Python
scripts, enrichment of the plotting
schemes available, and different bench-
mark cases are some of the things need
to be done. However, solid foundation
for an open-source visualisation of gy-
rokinetic data has been laid.
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Building Electricity Consumption Prediction Model
using R and Hadoop to enable Smart Planning

Predicting
Electricity
Consumption
Khyati Sethia

Global electrical energy consumption is
increasing rapidly. In order to make
accurate electricity buy for selected time
interval and enable smart planning, a
predictive model is built for the
consumption of end-user electricity.

The consumption for electrical
energy is increasing rapidly.
The selected Slovene company
which sells electricity to its cus-

tomers wants to build a customer elec-
tricity forecasting system in order to
make better spending forecasts from
the consumer’s consumption history
and data on influential related factors,
thereby making it more accurate to
know how much electricity should be
bought for the selected time interval,
which will ultimately save energy and,
increase the profits for the company and
decreases costs for the end-users.

Here, different influential external
factors like geography-wise weather,
holidays and time are examined and
study is done to find the correlations
for the prediction of energy consump-
tion over time. Process is developed
for predicting consumption, which en-
ables smart ordering and planning of
energy consumption and thus great sav-
ings. Algorithms for predicting electric-
ity are developed in the R environment
and then adapted to work over big
data databases and NoSQL MongoDB
databases. This will serve as a basis for

developing a new billing system for end
consumers. The following figure shows
the project flow schema:

Figure 1: Process Flow

Data Sources

The dataset is a 15 minutes Electricity
Consumption data spanning one year
for 85 end-users. Fields are:

1. Date of Consumption
2. Time of Consumption
3. Region ID
4. Consumer ID
5. Consumption in KW

After the identification of data and
their sources; the influential external
factors for the consumption of end-user
electricity are investigated. The focus is
on the calendar and the weather. For
this, the consumption data is fused with
data about influential external factors
and exploratory analysis is performed
to understand how the selected factors
influence the energy consumption. The
weather data is downloaded from the
Environmental Agency of the Republic
of Slovenia (ARSO) website. The holi-
days in Slovenia information is obtained
from the Time and Date Slovenia we-
blink.
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Data Preprocessing

Data preprocessing is a data mining
technique that involves transforming
raw data into an understandable for-
mat.

• The files are extracted from the
nested zipped folder (received as
input data from the Slovene Com-
pany) and bind-ed together into
one file.

• The column formats are changed:
European number format is con-
verted to US number format, the
date format is changed.

• Date related columns are derived:
Week number, day of week, parts
of the day, etc.

• Similar data processing as above
is done for external factors -
Weather & Holiday datasets.

• Special characters are replaced in
Region names.

• Weather columns are normalised.

• All the three datasets are then
merged.

• Day Type information is derived
whether it is a Holiday, Weekend
or a Working day.

• The long holiday information is
derived i.e. suppose Thursday is a
holiday then it is highly likely that
most of the people take Friday
also as a leave day, thus making
it a long holiday. A similar case is
considered for Tuesday.

Data Analysis

Data analysis is the process of evaluat-
ing data using analytical and statistical
tools to discover useful information and
aid in business decision making. We per-
form data analysis using two methods -
Data Mining and Data Visualisation.

Total Consumption Analysis: Con-
sumer 33 has maximum consumption
compared to other consumers.
Day Analysis: Consumer 33 has max-
imum consumption for all day types;
with 65% on working days and 29%
on weekends. But the Consumer 35 has
the highest overall 31% consumption on
weekends and Consumer 7 has highest
94% consumption on Working days. Ma-
jority of consumers (except few) have
high consumption on weekdays and less

on weekends.
Period Analysis: We find that 67% of
the consumers have highest consump-
tion during noon while 29% of con-
sumers have highest consumption in
night. No consumer has highest con-
sumption during evening.

In Figure 2, the consumption varies
with temperature; more electricity is re-
quired at very low and very high tem-
peratures.

Figure 2: Variation of Consumption with
Temperature

Figure 3 shows the correlation of
various weather factors with consump-
tion. Here the temperature is scaled by
subtracting 10 and taking the absolute
value. It can be seen that Consumption
has high correlation with (scaled) tem-
perature and radiation.

Figure 3: Correlation of various weather
factors with consumption

Though, there are many consumers
who don’t exhibit similar temperature
vs consumption behaviour.

In Figure 4, it is shown how the con-
sumption varies in a week day (every
15 mins, hence a total of 96 data points
in a day). The consumption is low dur-
ing the night and high in the day with
peak in the early morning. It has also
been observed that the consumption de-
creases significantly on weekends.

Figure 4: Electricity Consumption by Day

Unsupervised Learning

Clustering is a Machine Learning tech-
nique that involves the grouping of sim-
ilar data points while data points in dif-
ferent groups should have highly dissim-
ilar properties.
In this project we perform Hierarchical
and K-Means Clustering.
Cluster analysis is performed to gener-
ate clusters of days with similar kind of
electricity consumption with Euclidean
Distance and other custom distance met-
rics. The euclidean distance among data
points is calculated using the following
formula:

EuclideanDistance =

√√√√
n∑

i=1

(qi − pi)2

(1)
We tried these methods to find the

optimal number of clusters for all con-
sumers - Elbow Method, Gap Statistics
and Hartigan. The method that gave the
least prediction error is Hartigan index.
The Hartigan index is computed using
following equation:

hartigan =

(
trace (Wq)

trace (Wq + 1)
− 1

)

(n− q − 1)

(2)

Where
Wq =

∑q
k=1

∑
i∈Ck

(xi − x̄k) (xi − x̄k)
T

is the within-group dispersion matrix
for data clustered into q clusters, q ∈
(1, ..., n-2).
xi = p-dimensional vector of objects of
the ith object in cluster Ck,
xk = centroid of cluster k,
n is the number of observations in the
data matrix.

In Figure 5, we have obtained these
highlighted groups or clusters for one
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consumer using statistical methods.
Here the dendrogram visualize his daily
consumption which is divided into three
different groups of days.

Figure 5: This dendrogram shows various
clusters for one customer.

Figure 6 below, shows the clusters
obtained using the K-Means Clustering
for one consumer. This graph explain
the data point variability using PCA (the
method that minimises the error orthog-
onal (perpendicular) to the model line).

Figure 6: This clusplot shows various clus-
ters for one customer.

The clusters are formed with simi-
lar consumption pattern in same cluster
and very different from other clusters.
We also studied that relationship exists
between the clusters with day of week
& holidays

Cluster Data Prediction

Using this cluster information, the re-
lation among various factors like day
of the week and the holidays is found.
We get better results using K-Means
Clustering than Hierarchical Clustering.
For now, a process has been developed
which uses this cluster information to
predict consumption. To measure the
prediction accuracy, the error percent-
age is calculated between the actual
and predicted consumption. This error
is equal to the difference in area be-
tween the two curves and is given by

below equation and represented using
Figure 7:

Area =

∫ b

a

[f1 (y)− f2 (y)] dy (3)

Adaption to NoSQL Database

NoSQL MongoDB is used to store the
dataset for enhanced scalability in terms
of storing large volumes of data, for flex-
ibility with JSON-like documents and
for faster retrieval, ad-hoc queries, in-
dexing, replication and MapReduce pro-
grams. R ‘Mongolite’ package is used to
work with NoSQL MongoDB Database.
Using this package following was per-
formed: data retrieval, manipulation,
and analysis using the data stored in
MongoDB.

Adaption to Big Databases

Hadoop is used which is mainly useful
for large datasets, that can’t be man-
aged by single pc. It has distributed
storage and any time any number of
computers can be added or removed
from this cluster. The files have replicas
on different nodes thus making the sys-
tem very reliable & resilient to failure.
It solves the problem by divide and con-
quer approach and achieve parallel pro-
cessing. Some of the algorithms have
been adapted to big databases for paral-
lel processing on multiple nodes using
MapReduce Hadoop scripts in R envi-
ronment.

MOOC "Managing Big Data with R
and Hadoop" :
PRACE FutureLearn MOOC is a course
on how to manage large amounts of
data using Hadoop MapReduce in R
environment. The data has been made
available in HDFS. The script developed
is how to do data formatting, aggrega-
tion and calculating mean and standard
deviation. Then plotting the results.

Conclusions and Future Work

Figure 7: Area under the Actual and Predicted Curve

In this project, we use
the electricity consump-
tion data received from
the Slovene company. We
collect Weather and Holi-
days information and find
their influence on electric-
ity consumption. We per-
form clustering to find
groups of days with similar
consumption pattern. Us-
ing this clustering informa-
tion, we construct a predic-
tion model. We also adapt
the data to NoSQl and

RHadoop MapReduce framework for
large datasets & parallel processing.
As a future direction, analysis can be ex-
tended to larger amounts of data which
will improve the predictions many folds.
Also, Advanced Clustering Algorithm
(ACA) can be explored to reduce the
cluster variances.
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Enhancing energy consumption reporting capabilities in HPC
centres by developing a Slurm plugin for NVIDIA GPUs

Energy reporting
in Slurm Jobs
Matteo Stringher

HPC and Supercomputing centres are very intensive
energy consumers. Energy reporting in such centres is
a key feature of the system, especially for operations
staff. During this project we have worked towards the
implementation of a plugin to enhance the Slurm
energy reporting capabilities.

Energy consumption is one of
the main concerns in the HPC
world. As order of magni-
tude, the power demand in the

largest HPC centres is about 5 to 10
megawatts. In the race to Exascale-level
systems, the HPC facilities have set a
cap on the total power available, to en-
sure both efficient and economically-
viable systems.

The power used for cooling the sys-
tem can be roughly equal to the power
consumed to keep up the nodes while
under user workload. It is clear that
measuring the consumption for each
component of the system allows to bet-
ter understand and optimise the work
performed on the system. In the past
years, more and more attention has
been paid not only on performance pa-
rameters, but also on efficiency, such
as a system’s Gigaflops per watt metric,
which is used for the Green500 ranking
of supercomputers.

Tool set and project description

Slurm
Slurm is one of the main job sched-

uler and resource management system
in HPC centres. It is adopted by most
of the computer systems listed in the
TOP500.

Energy consumption can be re-
trieved in two different ways: external
sensors and internal monitoring. The
project focused on the second method-
ology. Slurm, natively, provides support
for IPMI and RAPL. The former is fo-
cused on baseboard management and
consumption retrieval, while the latter
operates at a more fine-grained level for
Intel chips.
Slurm plugin development
Slurm allows external interaction with
its functions in two different ways: the
Slurm plugin API or SPANK. As regards
the first one, Slurm provides a different
interface for each type of task the plugin
is meant for (e.g. accounting storage,
energy).

SPANK which stands for Slurm
Plug-in Architecture for Node and job
(K)control, provides an easier approach,
where there is no need to access the
source code. In the project the latter has
been chosen, since our requirements
were satisfied by the SPANK capabili-
ties (e.g. possibility to spawn a metrics
collection process for the duration of a
user’s task).

Moreover, the installation is rather
straightforward: once compiled the
code into a shared library, the plugin
can be easily mounted by adding a
line to an internal configuration file

- plugstack.conf, which controls where
plugins are loaded from and how Slurm
should deal with their exit states. It is
suggested to compile it every time the
Slurm installation on the operational
system is updated. The configuration
must be identical on each node where
the plugin will be run.
NVML
In the past decade GPUs have been in-
creasingly requested by scientific users,
in fact, they allow to speed up a variety
of codes, from molecular dynamics ap-
plications to training of deep neural net-
works. Deep learning training phases
can be costly, especially, when an hyper-
parameter analysis is needed to fine-
tune the model. GPU spot power con-
sumption can be retrieved for NVIDIA
GPUs through IPMI or NVML (provided
by NVIDIA). According to the NVIDIA
documentation, it is possible to retrieve
the power usage for the GPU and its
associated circuitry.

To our knowledge, Slurm does not
provide an integration for GPU power
consumption recording, so we decided
to build and experiment a plugin able to
collect data and summarise the results
to the user, such as the total consump-
tion of his tasks that use GPUs.
Hierarchical Data Format
HDF5 is a popular file format in the
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Figure 1: Left image: Simplified workflow of the SPANK functions that can be called inside the slurmd and slurmstep daemons. Right
image: Demo run in the second test phase (before the installation of the plugin) on the Iris cluster to compare the use of different
sampling frequencies.

scientific fields to store heterogeneous
and large amounts of data in a single
file. Moreover, it integrates with MPI for
writing/reading data in parallel up to
large scales.

Project development

Virtualized system and Slurm architec-
ture
To develop the plugin a virtualized sys-

tem has been adopted in order to work
in a safe testing environment, without
relying on a phsyical cluster. We have
leveraged the Vagrant-VirtualBox com-
bination in order to to deploy a virtual-
ized HPC infrastructure. This improves
debugging and development time. More
information about the setup and micro-
cluster composition is available in the
repository documentation.1

The Slurm infrastructure is mainly
composed by 3 entities: manage-
ment, front-end and computation nodes.
When launching a job, Slurm allocates
the number of nodes requested by the
user. One node with relative ID equal
to 0 (a job’s ’head node’) manages task
launches. Each computation node runs
its own copy of the slurmd daemon,

which is in charge of starting a slurm-
stepd daemon for each of a job’s steps.
Our plugin interacts with the slurmd
daemons thanks to the SPANK library.
Slurm inbuilt energy accounting

Data collected through SLURM’s
IPMI/RAPL mechanisms is retrieved
during the computation and the value
of the final consumption is stored on
the slurm database. This is actually a
tunable option that must be set in the
proper configuration file.

The slurmdb library offers differ-
ent functions to query the database.
Our plugin retrieves the value from the
database at the end of the job and in-
forms the user. The Slurm documenta-
tion highlights that the value must be
considered only if the node has been
reserved in exclusive mode, such that a
job’s consumption is accurately tracked.
SPANK integration

SPANK easily allows to modify the
job behaviour. Our plugin can be in-
voked from the sbatch command, when
launching the job script. Along with
the –energy-reporting flag - which ac-
tivates energy measurements - the user
can specify the sampling frequency (ex-
pressed in hertz), otherwise a default

value of 20 measurements per second
will be used.

SPANK provides an interface, which
must be used to let the slurmd and
slurmstepd daemons to invoke the plu-
gin. SPANK plugins are loaded in up to
five separate contexts: local, remote, al-
locator, slurmd, job_script. Remote was
the mainly used one, since most of oper-
ations are executed inside the step level.
The image 1 at the left shows the dif-
ferent calls that can be used with the
SPANK interface.

At each step of the job script, a pro-
cess is forked on every node, which is in
charge of storing on the HDF5 format
file the timestamp and the measured
power consumption, i.e. one times-
tamp and one measurement for each
GPU mounted on the mainboard. The
sampling frequency must be equal or
greater to 1. All the samples are stored
on a buffer which is flushed to the HDF
file every second.

When the user task ends, the forked
monitoring process is stopped. The HDF
file will then contain several datasets,
one for each step and for each GPU.

In each dataset, two sequences of
n samples can be used to calculate
the consumption over the time. Given

1puppet-slurm: github.com/ULHPC/puppet-slurm
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Figure 2: MNIST convolutional NN training test.

P1,...,n the samples collected at each
timestamp t1,...,n, the total consumption
can be approximated by the equation:

Etot =
n∑

i=2

(ti − ti−1)
Pi + Pi−1

2

Using the equation above the consump-
tion of each GPU of each node reserved
will be computed, and the final value is
shown to the user expressed in Joules.

Results & further work

The implemented plugin can seamlessly
interact with the Slurm execution. Fig-
ure 1 at the right shows the power con-
sumption for the same run with differ-
ent sampling frequencies. It can be seen
that the choice of the sampling rate has
a notable effect, the blue curve has a lot
of spikes, which can not be highlighted
with a lower frequency. It must be un-
derlined, that the precision of the mea-
surement provided by the NVML library
is subject to error.

The plugin has been developed and
tested through three stages.

• In the first one we have used the
virtualized cluster to ensure to
run a safe code on the physical
one. This development part took
most of the project time.

• In the second one a prototype
of the code has been run on the
Iris cluster without affecting the
Slurm configuration. The results

are shown in Figure 1 at the right.
The core data retrieval functions
at this stage were able to collect
information from all the GPUs on
the mainboard.

• In the last phase the plugin was
fully assembled and tested by in-
stalling it on the cluster and exe-
cuted on compute nodes featuring
dual Skylake CPUs and quad Volta
V100 GPUs.

Figure 2 shows a Slurm job executing a
Singularity container with GPU-enabled
Tensorflow 1.12 and Python3. The same
code has been tested on a longer run
achieving similar results. In detail the
job steps are:

• 0-5s: loading software environ-
ment (lmod), Singularity con-
tainer initialization

• 5-12s: TensorFlow-GPU initializa-
tion, data load disk to memory

• 12-36s: training for 10 epochs

• job spindown

Future work could study and under-
stand the overhead of the retrieval pro-
cess. This runs mostly on the CPU, so
we expect the overhead to be low for
GPU-intensive processes.

Conclusions

We have prototyped a new Slurm plu-
gin for energy reporting of a user’s tasks,

which can interact with NVIDIA GPUs
through the NVML interface, allowing
for GPU energy consumpton retrieval -
a novel development to our knowledge.
The code is available as open-source.2

The energy consumption data is
stored for further analysis if needed.
The HDF5 file format supports large
datasets and compression, and is used
by our plugin to store timestamped en-
ergy measurements. The plugin man-
ages parallel jobs and all the contained
steps. The user is informed about the
energy usage for each job step and pre-
cise identification of hot spots is pos-
sible (together with other information
from Slurm accounting).
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Performance analysis of Distributed and Scalable Deep
Learning

Benchmarking Deep
Learning
Sean Mahon

This project deals with different ways of evaluating
the performance of distributed training of Deep
Learning models and comparing the efficiency of
multiple widely used Frameworks. In particular,
experiments were run to determine the scalability
of training Resnet models on the CIFAR10 Dataset
using both CPU and GPUs.

Deep learning is becoming an
extremely prominent method
of solving problems both in
academia and in industry.

However, training deep neural net-
works, which often contain hundreds
of thousands, if not millions of parame-
ters, can be extremely computationally
expensive. Therefore, it is natural to
attempt to distribute this training over
multiple processors where possible.
There are multiple ways of approaching
this task with the simplest and most
common being data parallelism.1

Put simply, data parallelism involves
splitting up the sample of the data,
or batch, used in each training step.
between all available processors. The
resulting changes in the trainable pa-
rameters of the model are then aver-
aged across all processors before the
process is repeated. However, due to
the high number of parameters to be
communicated between processors, it is
rarely optimal to keep the same hyper-
parameters when adding more devices.
Normally, this is achieved by fixing the
batch size per device and adjusting
other parameters to compensate.

This creates a problem when consid-
ering how to evaluate how well a
model is performing. Calculating the
speedup in throughput, or the number

of data points processed per second, is
a common approach taken by chip man-
ufacturers but may not be helpful if the
model does not train as effectively on
too many devices. For this reason, many
existing ML benchmarking efforts, such
as MLPerf, place considerable emphasis
on time-to-accuracy results. This in-
volves measuring the walltime required
for the model to reach a certain level of
accuracy.

Further complications arise from the
fact that a number of different libraries
and frameworks exist for deep learning,
many with very similar functionality. It
is important to note that, while these
frameworks share many of the same
functions, the implementation can vary
somewhat between frameworks. While
there have been some efforts to cre-
ate benchmarking tools which work
with multiple frameworks, such as
Deep500,2 there does not seem to be
any individual benchmarking platform
which provides comprehensive support
for all of the most common frameworks
in use.

Structure of the Code

In order to compare the performance of
different frameworks on the University
of Luxembourg’s Iris Cluster, software

was written train models in a variety
of frameworks while collecting data
relevant to benchmarks such as those
described previously between epochs.
The current version allows the user
import a model and dataset and supply
a config file with details of the train-
ing before it automatically distributes
everything it across the hardware spec-
ified, trains it for some given number
of epochs, and collects common bench-
marking metrics at the end of the run.
In addition, there is also a script to sort
parse the config file and produce a suit-
able SLURM batch script to ensure that
resources allocated match what is spec-
ified. The frameworks supported are
Tensorflow (distributed with Horovod),
Keras (native multi_gpu_model
and Horovod), MXNet, and PyTorch
(DistributedDataParallel Mod-
els with Gloo backend)

As mentioned in the last section, there
are multiple variables which affect
whether the training process can be
parallelised efficiently. Some research
and experimentation was required to
find sensible default settings for the
scaling of hyperparameters. However,
in general, it was found that current
best practice as described in the liter-
ature3 (and well summarised in this
article) was effective.
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(a) Speedup in Throughput for all Frameworks Considered
(b) Time-to-Accuracy curves for Tensorflow and Torch

Figure 1: Results from GPU Experiments

Sample Problem: Resnet and
CIFAR10

While the code written for this project
could in principle be used for a variety
of different models and tasks, it may
be insightful to consider a well known
example for experiments. The dataset
used was CIFAR10,4 a standard collec-
tion of 32×32 pixel images featuring 10
categories. The dataset contains 50,000
images to train a model on in order to
correctly identify the category of object
in a further 10,000 unseen test images.

Figure 2: Sample Images from CIFAR10

The model used to classify these images
was a version of Resnet,5 a well known

example of a Convolutional Neural net-
work for image classification problems.
In particular, a 44 layer network, with
over 600,000 trainable parameters was
used. While training such a model may
sound like a substantial task, this would
be considered to be a medium sized
problem in deep learning. While it
would be inadvisable to attempt to train
this model on a normal laptop, it would
not necessarily take several hours to get
meaningful results when using more so-
phisticated hardware.

GPU Results

This model was trained for 40 epochs
with a local batch size of 256 using the
frameworks mentioned for using vary-
ing numbers of GPUs. It should be noted
that the same data pipeline was used to
load and perform simple augmentations
on each batch to ensure inconsistencies
in data used do not affect training re-
sults. The mean speedup in throughput
is shown in figure 1a. The main trends
visible for each framework were:

• The PyTorch results (found using
the DistributedDataParallel
functionality and gloo backend)
seem to scale very well and only
begin to substantially deviate
from ideal predictions once more

than one node (4 GPUs) is used.

• Tensorflow distributed using
Horovod also scales well though
inefficiencies are visible at a lower
number of GPUs than for py-
torch. It should be noted that,
once serial code has been im-
plemented, distributing training
with Horovod requires very little
extra code compared to other
frameworks.

• Throughput for MXNet increased
at a slightly lower rate than Ten-
sorflow and PyTorch with moder-
ate inefficiencies visible when us-
ing just 4 GPUs. Distributed train-
ing was also less user-friendly
to setup than for other frame-
works, meaning support for mul-
tiple nodes has yet to be imple-
mented.

• The experiments for Keras did not
appear to scale well. This is not
surprising as it is the most high
level of the frameworks consid-
ered and Horovod was originally
designed to work with Tensorflow.
There is also the issue that the na-
tive multi_gpu_model only ex-
ecutes training steps in parallel
rather than loading data, poten-
tially creating extra bottlenecks
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As mentioned previously, while exam-
ining the throughput is a very concise,
scientific, way to determine how fast
a program is running, it does not give
much indication as to whether the
efficiency of the training has been ad-
versely effected by adding more devices.
For this reason, plots of the walltime
required for the model to reach various
test accuracies for the two frameworks
with the highest throughput are shown
in 1b. From examining these graphs, it
appears that once 4 or more GPUs are
used, the benefits of adding more seem
somewhat limited. Note that Tensorflow
seemed to actively slow down and did
not reach 80% accuracy in its 40-epoch
run once 12 GPUs were used. This is
likely due to the fact that the changes to
the training hyperparameters, such as
increasing the global batch size, even-
tually start to prevent the model from
training effectively.

It also appears that the curves for
Horovod are not quite as smooth as
those for PyTorch. A possible explana-
tion of this is that Horovod does not
synchronise non-trainable weights in
the model’s batch normalisation layers.
While these weights should converge
to common values eventually, it is
plausible that discrepancies between
processors would add noise to results
from the early stages of the training.

CPU Results

In the case of the two most promising
frameworks, similar experiments were
run using CPUs instead of GPUs for com-
parison. To avoid memory errors, the
batch size had to be reduced to 16 per
CPU. As may be expected, these took
much longer to run. However, as can be
seen in figure 3, the throughput seems
to scale much at least as efficiently as
the GPU version. PyTorch seemed to
stay within a reasonable margin of er-
ror to ideal scaling, up to the 4 nodes
(112 CPUs considered). A likely reason
for this is that, as using a single CPU for
training would be substantially slower
than one GPU, communication is taking
up a smaller fraction of the total train-
ing time in these experiments.

Figure 3: Throughput Speedup from CPU
Experiments

However, as before, the efficiency of
training seemed to be impacted signif-
icantly by the high global batch size
which accompanies the use of many pro-
cessors. As seen in figure 4, improve-
ment in time-to-accuracy results is negli-
gible when more than 56 CPUs are used.
Note also that y axis scale suggests that
the performance in this limiting case is
similar to what would be expected from
using two GPUs.

Figure 4: Throughput Speedup from CPU
Experiments

Conclusions

While some aspects of the results found
are likely to be specific to this par-
ticular neural network, it appears
that, for problems of this type. The
DistributedDataParallel fea-
tures in the PyTorch library seem to
be the most efficient of the frameworks
considered for distributing the training
process across many devices. Tensor-
flow with Horovod also scales well and
was easy to use but it appears that
some of the shortcuts taken to improve
throughput had a negative effect on test
accuracy. The other frameworks tried
generally did not scale as well as these
two. It should be noted that, for both
PyTorch and Tensorflow, it was evident
that some of the common changes to
hyperparameters, such as increasing the

batch size, caused the time-to-accuracy
results to stop improving once too many
processors were used, at least in this
case.

Similar results were found when us-
ing CPUs and GPUs. In the case of the
former, little improvement was seen
in the time-to-accuracy results once
more than 56 CPUs were used. How-
ever it was noted that, despite being
lower than the GPU case in general,
the speedup in throughput when more
CPUs were used was very close to ideal,
likely due to the proportion of time
spent on communication being lower.
From this fact, it may be reasonable to
claim that, if the problem is sufficiently
large and is not particularly sensitive
to changes in batch size and other hy-
perparameters, it would be possible
to achieve near ideal scaling using the
correct framework.
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