
summerofhpc.prace-ri.eu

2020

A long hot summer is time for a break, right? Not necessarily!
PRACE Summer of HPC 2020 reports by participants are here.

HPC in the
summer of 2020?
Leon Kos

Challenging times with no travel over the summer! Going all virtual with 50 participants
and their mentors at 12 PRACE HPC sites working on 24 projects. No problem!

S ummer of HPC is a PRACE programme that offers
university students the opportunity to spend two
months in the summer at HPC centres across Europe.
The students work using HPC resources on projects

that are related to PRACE work with the goal to produce a
visualisation, presentation and a video.

This year, training week was in held all virtual by Vienna
Scientific Cluster (VSC) – PRACE partner from Austria! It
was a great start to Summer of HPC and set us up to have
an amazing summer! At the end of the summer videos were
created and are available on Youtube as PRACE Summer of
HPC 2020 presentations playlist. Together with the following
articles interesting code and results are available. Dozens of
blog posts were created as well. Therefore, I invite you to
look at the articles and visit the web pages for details and
experience the fun we had this year.

What can I say at the end of this wonderful summer?
HPC gave us exciting time and new outlook for a bright 2021
edition.

Contents

1 High Performance Machine Learning 3
2 Supernova Explosions Using HPC 6
3 When HPC meets integer programming 9
4 Anomaly Detection in High Performance Com-

puting Systems 12
5 Persistent Memory checkpoint 15

6 ARM tooling 18
7 How to make Python code run faster 20
8 Breadth First Search 23

8.1 BFS Graph Traversal with CUDA 23
8.2 GPU Acceleration of BFS 25

9 Deep Neural Networks for galaxy orientation 27
10 Visualization of Molecules 30
11 High Performance Quantum Fields 32
12 FMM-GPU Melting Pot 35
13 Quantum Computing 38
14 Matrix exponentiation on GPUs 40
15 Predicting Job Run Times 43
16 Boosting Dissipative Particle Dynamics 46
17 Monitoring HPC Performance 49
18 TSM of HPC Job Queues 52
19 Accelerating Particle In Cell Codes 55
20 When HPC meets integer programming 58
21 Drifting in aSubmarine? Hold On! 61
22 Novel HPC Models 64
23 Hybrid Programming with MPI+X 67
24 Biomolecular Meshes 71

PRACE SoHPC2020 Coordinator
Leon Kos, University of Ljubljana
Phone: +386 4771 436 E-mail: leon.kos@lecad.fs.uni-lj.si

PRACE SoHPCMore Information
http://summerofhpc.prace-ri.eu Leon Kos

2

https://www.youtube.com/playlist?list=PLhpKvYInDmFXs3uOSAVgWbflVLNHQW9YM
https://www.youtube.com/playlist?list=PLhpKvYInDmFXs3uOSAVgWbflVLNHQW9YM
https://summerofhpc.prace-ri.eu/blogs-2020/
mailto:leon.kos@lecad.si
http://summerofhpc.prace-ri.eu

Improving the performance of Decision Tree
CART algorithm (Machine learning algorithm)
using MPI and GASPI Parallelization

High
Performance
Machine
Learning

Machine learning is used to solve many complex real-world problems which are
beyond the scope of human beings. ML needs big data, often in hundreds of terabyte,
to make accurate predictions. Processing this data demands huge computational
power and hence, becomes computationally expensive. The aim of this project is to
improve the performance of a Decision Tree Machine Learning algorithm using High
Performance Computing (HPC) parallelization tools such as Message Passing Library
(MPI) and Global Address Space Programming Interface (GASPI). The results
demonstrate that the parallelization of the algorithm significantly increased the data
processing speed and efficiency of the algorithm.

The concept of Machine Learn-
ing (ML) has been around for
a long time (think of the WWII
Enigma Machine). The ability

to automate the applications of complex
mathematical calculations to big data
processing has been gaining momen-
tum over the last several years. Com-
panies like google, IBM, Pinterest and
Facebook etc are using ML to handle big
data related problems.

ML is basically a method of data
analysis providing a computer ability
to automatically learn from data with-
out being explicitly programmed. Once
a ML algorithm is trained by a large
enough input data set, it can interpret

unseen data to make predictions.

Types of Machine Learning

ML methods are broadly classified into
two main categories, Supervised and
Unsupervised Learning. Each category
contains many different methods and
algorithms used to solve wide range of
different problems. In supervised learn-
ing, labelled data is used to train the ML
model. Firstly, the model is established
by training the algorithm based on the
previously labelled data, and then, the
algorithm is used to make predictions
on unseen data. The working principle

of supervised classification is demon-
strated in Figure 1.

Figure 1: Machine Learning Based Classifi-
cation

There are many different types of
supervised learning algorithms such as
Decision Tree, Polynomial Regression,

3

Logistic Regression Naïve Bayes, and K-
Nearest Neighbors etc.

In Unsupervised learning, the data
of interest is not labelled. The algo-
rithm searches for previously unde-
tected patterns in the data set with
its self-organization. Figure 2 demon-
strates the working principal of unsu-
pervised learning.

Figure 2: Example of how unsupervised
learning works

Unsupervised Learning algorithms
can be further split into various cat-
egories such as Partial Least Square,
Fuzzy Means, K-Means Clustering, and
Principal Component Clustering etc.

Big Data and HPC

Big data is a term used to describe ex-
tremely large volume of data which is
impossible to be processed by using tra-
ditional methods. Even though it is hard
to handle big data, today it is crucial
component of predictive analytics.

HPC is the ability to perform com-
plex calculations with high speed in
parallel fashion. HPC tools like MPI,
OpenMP or GASPI allow us to process
big amount of data in highly efficient
way.

Today, High-performance data ana-
lytics built using HPC tools is highly de-
sirable. This is a result of highly grow-
ing demand for such tasks on supercom-
puter facilities.

Figure 3: A HPC facility

Decision Tree Classifier

Decision tree is a well-known super-
vised ML algorithm. It is a binary tree
that predictions are made from the root

(top of the tree) to the leaves(bottom
of the tree). It can be used for both
regression and classification problems.
Decision Tree algorithms can be further
classified as ID3, C4.5, C5.0 and CART
algorithm. In this study, we implement
CART algorithm.

In CART algorithm, each node is
assigned with a GINI index which de-
scribes the purity of the node. The aim
is to find optimal feature and threshold
couples such that GINI index is mini-
mized. The algorithm stops when the
maximum depth is reached or when all
the inputs are classified.

Gini index of n training samples split
across k classes is defined as

where p[k] is the fraction of samples
belonging to class k.

Working Principal of Serial
CART Algorithm

The program starts with a feature set
and iterates through the sorted feature
values for possible thresholds as shown
in table 1.

Table 1: Features and classes of the data

During this process, it keeps track
of the number of samples per class on
the left and on the right. The same pro-
cedure is repeated for each feature set.
The program then compares the Gini
indexes to find the best couple for split-
ting. The splitting process recursively
carries on at each node until the maxi-
mum depth is reached.

Larger training data set means that
more info to learn for algorithm and
this improves the prediction accuracy.
But Large data means more calculations
and hence it requites more computa-
tional power. Therefore, the ability to
handle big data becomes critical. HPC
tools can help in solving this problem.

MPI Based Parallellization Strat-
egy

MPI is one of the most popular tools
to develop parallel algorithms. It is a
“standard” message-passing library de-
signed for distributed memory systems.
It provides specifications for creating
separate processes on different compu-
tation units as well as establishing com-
munication between each units.

Our parallelization strategy is dis-
tributing features among different com-
putation units. In this approach, each
processor core is responsible for one or
more feature sets to survey all possible
splits and compute corresponding Gini
indexes to evaluate them. Therefore, in
every recursion, each core finds a best
feature and threshold couple minimiz-
ing the Gini index for their portion of
the data. Next, all the best feature and
threshold couples are gathered together
at the master core 0. The master core
compares them according to their Gini
indexes and broadcast the best result to
all the other processors.

Table 2: Feature set distributed according
to the

Because synchronization is crucial
for the calculations, communication be-
tween cores is established by standard
synchronous send/receive commands.
In addition, at the end of each recur-
sion, master core sends the best result
to all the other cores via broadcast com-
mand.

Results

The results shows that the higher
the number of cores used, the higher
the speed-up rates obtained. Figure 4
shows that total computation time is
decreasing with increasing number of
cores. Here, the computation time cor-
responds to run time of learning (data
fitting) process of the algorithm.

4

Figure 4: Performance plot of computation
time

It is also seen that the rate of change
is also decreasing with increasing num-
ber of cores. This is the result of in-
evitable communication overhead. In an
ideal world, workers can do their job in-
dependently. But in real world, synchro-
nization mostly is a must. There is no
chance to escape from communication
overhead required by synchronization
in MPI parallelism. So in reality, speed
up is always less than the increase of
the number of workers.

Figure 5 shows the portions of the
total computation time dedicated to cal-
culation and communication. As it is
seen that time spending for commu-
nication is increasing with increasing
number of cores. Higher number of
cores means that higher number of send
and receive commands and for each
command, cores should wait for each
other. On the other hand, chunks of data
which is transferred is getting smaller,
and this makes faster the data transfer.
Therefore, the increase in the communi-
cation time is not linearly increasing.

Figure 5: Performance plot of computation
and communication time

How Is The Performance Fur-
ther Improved?

As it is in the performance plots, time
spending for synchronization is an im-
portant issue for a parallel program.
In MPI’s standard send/receive com-
mands, cores blocks each other dur-
ing the communication. This is called
two-sided communication in which pro-
cessors should wait each other until

the message is successfully left by the
sender and delivered to the receiver. We
can’t completely get rid of communica-
tion overhead, but we can overlap com-
munication and computation task by us-
ing a different parallelization paradigm.
This is shown in Figure 6.

Figure 6: One-sided communication

An Alternative to MPI: GASPI

GASPI (Global Address Space Program-
ming Interface) is considered as an al-
ternative to MPI standard, aiming to
provide a flexible environment for de-
veloping scalable, asynchronous and
fault tolerant parallel applications. It
provides one-sided remote direct mem-
ory access (RDMA) driven communi-
cation in a partitioned global address
space. One-sided communication allows
a process to make read and write op-
erations on another processor’s allo-
cated memory space without the par-
ticipation of other processors. Unlike
two-sided communication, the proces-
sor whose memory is being accessed,
continues its job without any interrup-
tion. This means that the processors con-
tinue their computations alongside with
their communication. The working prin-
ciple is demonstrated in Figure 7.

Figure 7: Working strategy of GASPI

GPI-2 is an open source program-
ming interface allowing implementa-
tion of the GASPI standard. It is com-
patible with C and C++ languages to
develop scalable parallel applications.

Conclusion

In this study, we focused on a popular
supervised ML algorithm, Decision Tree
Classifier, to investigate possible ways to
improve its performance by using well-
known parallelization tools.

As we have discussed that MPI
parallelism has a great impact on
the performance of the algorithm. On
the other hand, the performance plot
clearly demonstrates that communica-
tion overhead is the inevitable part of
the communication. Performance can
be further improved by using a dif-
ferent parallelism approach allowing
asynchronous one-sided communica-
tion, such as GASPI/GPI-2 standard.
Even though communication overhead
is inevitable, it can be relieved by over-
lapping communication and computa-
tion.

References
1 http://www.gaspi.de/gaspi/

2 https://towardsdatascience.com/decision-tree-from-
scratch-in-python-46e99dfea775.

3 https://www.simplilearn.com/tutorials/machine-
learning-tutorial/what-is-machine-learning

4 https://medium.com/datadriveninvestor/tree-
algorithms-id3-c4-5-c5-0-and-cart-413387342164.

5 Parallel and Distributed Computing lecture notes by
M. Serdar Çelebi

6 javatpoint.com/machine-learning-decision-tree-
classification-algorithm

7 https://vs.sav.sk/

PRACE SoHPCProject Title
High-Performance Machine Learning

PRACE SoHPCSite
Computing Centre of the Slovak
Academy of Sciences, Slovakia

PRACE SoHPCAuthors
Cem Oran, Istanbul Technical
University
Muhammad Omer, Manchester
University

PRACE SoHPCMentor
Michal Pitoňàk, CCSAS, Slovakia

PRACE SoHPCContact
Cem Oran, Turkey
E-mail: cemoran.01@gmail.com
Muhammad Omer, Pakistan
E-mail:
eng.muhammad.omer@gmail.com

PRACE SoHPCSoftware applied
MPI

PRACE SoHPCMore Information
www.gpi-site.com/gpi2
www.open-mpi.org

PRACE
SoHPCAcknowledgement
We would like to thank our mentor
Michal Pitoňàk for his time and effort.

PRACE SoHPCProject ID
2001

Cem Oran

Muhammad Omer

5

Implementation of Parallel Branch and Bound
algorithm for combinatorial optimization

When HPC
meets
integer
programming
İrem Naz Çoçan , Carlos Alejandro Munar
Raimundo

Mixing mathematics and computers could
get a very good results in efficiency. It
could obtain the solution of a very large
problem that for a human being could be
unfathomable in a few minutes. And now,
imagine that you can do it even faster.

Branch and bound method is
one of the most used methods
for solving problems based on
decision making. In the partic-

ular case that concern us, is a discrete
case, this means that you have to decide
either A or B.

In order to understand this let us
explain the max-cut problem. Imagine
that you have a weighted graph and
you want to divide the vertices into two
subgroups. After that, the connection
between two nodes that are in different
subgroups is cut. The goal is to biparti-
tion the vertices so that the sum of the
weights on the cut edges is maximal.

Turning back to the branch and
bound algorithm, it is organised by a
rooted tree. All starts with root node,
where upper bound and lower bound
is set. In every step it has a node to
compute, and by updating the bounds
and checking them it is decided to
branch to another two nodes or prune
because you will not get any further go-

ing through that branch. An Figure 1
there is an example of this. With this,
you have fewer options to explore, and
it will take less time to obtain the opti-
mal solution to this problem.

Figure 1: Diagram showing rooted tree of
the branch and bound.

Notice that, we are working with
max-cut problem that is a NP-complete
problem, so we will need an heuristic to
get an approximation to an optimal so-

lution because getting the best solution
could get even longer.

Nevertheless, we want thing going
faster. As a consequence, this project
came up. The aim of the project is to
make exploration of the branch and
bound tree even faster by concurrently
exploring different branches. For that,
we have done two different approaches:
master-worker approach, and one-side
communication approach.

In every modern computer, there
is more than one core in a proces-
sor, so you can order every core to do
some work. So, the processor is an of-
fice where workers go to do their jobs.
Therefore, in master-worker approach
there is one master process (load co-
ordinator) who has all the information
about the underlying graph and sends
data and tasks to the workers. As a re-
sult, we change from a program that
computes everything serial this means
that all jobs are queued and done se-
quential; to a program that is more con-

6

trolled because all the jobs are assigned
to workers. In addition, this will be ex-
ecuted in the supercomputer sited on
the University of Ljubljana, Faculty of
Mechanical Engineering.

Nonetheless, we will see that this
will cause some idle time due to com-
munication issues.

For that reason, we tried to code one-
side communication. We thought that if
we delete the communication between
nodes by creating an area that can be
accessed by any of the workers without
needing a master, we could increase the
efficiency of the program. We will see
that this is not completely true; but as
with everything, if it is not tested, it is
not known if it will work. This area that
can be acceded for everyone is called
"window".
Used Methods
In the introductory part we have ex-
plained the project motivation, which is
the problem to be handled and the way
we will manage to get improvement of
the code. From now on, we will explain
both approaches in detail, their advan-
tages and disadvantages and the results
we have obtained.

Master-worker approach: The best
way to understand something is to see
something that you understand and
compare both. So, let’s make an anal-
ogy: imagine a very big company with
a lot of people working there, roles
are assigned to rank the responsibili-
ties of each worker. As a result, simple
scale, we have a director or manager
and workers or employees. The man-
ager assigns various tasks to employ-
ees, which fulfil them and/or send new
ones to coworkers and the process con-
tinues in this way. Then these jobs are
sent back to the manager to get them
together.

Our implementation is based on this
logic. One process is selected as mas-
ter, which has all graph instances, and
sends job requests to other worker pro-
cesses. When the worker processes fin-
ish their work, they send the results to
the master process and wait for the new
task. Master process is responsible for
controlling the entire process and keeps
track of the status of each worker. The
master creates a vector of the solution,
which is 0 or 1.

To communicate between load co-
ordinator and workers MPI Send and
Receive functions are used. In Figure 2
is a diagram that reflects this. Master
worker is at the middle and the work-
ers are connected to master to send and

receive information.
In our particular case, the nodes sent

by the master to the workers are the
ones to branch and evaluate, and the
nodes sent back to the master are the
evaluated children of this node. To do
this we have used c structures for nodes
in which we allocate: a fixing nodes
(which are already on the solution vec-
tor); fractional solution which is used
to get the next branch; the level of the
tree where is being evaluated; and the
upper bound.

The master determines which node
will be sent to which process and when
the results will be received. Therefore,
idle time occurs while processes are
waiting for to send back the work done.

Figure 2: Diagram showing master-worker
approach.

One-sided approach: Now that you
are familiar to the company and you
know well the roles that are assigned
and the master-worker approach is well
understood, let’s restructure the com-
pany.

First of all, now there is no manager
or director nor employees, everyone is
responsible for its own work. Everyone
is a manager and an employee at the
same time. So, the idle time on pro-
cesses waiting to send back the work
done is no more a problem. You may
think that this is like freelancers, and
you are right; it is like a lot of people
not related with the same porpoise: get
the solution of max-cut probelm.

When one of the processes needs
help by sharing one of its branch and
bound nodes, other workers realise this
and can get to its work directly, without
waiting for the target process to send
the message.

Accessing someone’s work is done
through the MPI Window allocated at
the start of the algorithm. Note that
this window is the determined area
that other processes can reach and ac-
cess data without involvement of the

its owner. This section need to be im-
plemented very careful to avoid race
conditions. In our problem, this method
is applied as shown in Figure 3.

All starts when process 0 branches
the first node, and when it notices that
it has more than one node in its queue,
a free process reaches this node and
evaluates it.

So, in this model, each processes can
share its nodes with others. To get more
points of view, we have developed two
different versions for this access part
shown in Figure 4.

As a consequence, we have version
1 which is the processes which are free
inform to the others that are free, and
allocates free nodes in his queue. But,
version 2 processes finds which one is
free and put the node in free process
queue.

In order to send and retrieve data
from the windows we used MPI Put
and Get functions. However, if two pro-
cesses access the same window at the
same time it generates a race condition.
This means that if they update the same
value at the same time one of these val-
ues will be lost on the process.

Therefore, these operations needed
to be executed in a way to prevent this
situation. Managing this timing is what
caused the idle time of the workers.

Figure 3: Shows the work of the one-sided
approach.

Figure 4: Two approaches for sharing infor-
mation in one-sided communication.

Results
What we have done so far is to ex-

plain by facts the methods we have
used and their behaviour. Neverthe-
less, these words mean nothing without
some benchmarks to support them. Let’s
take a look at the numerical results of
these approaches.

7

First of all, the benchmarks have
been done by testing proposed paral-
lel algorithms on 130 graph instances
with a different number of vertices and
edge weights. We took 5 instances for
which the sequential branch and bound
algorithm needed the longest time to
obtain the optimum solution.

Notice that in Figures 5 and 6 ara
tables displayed. These tables are the
timing results of executing the master-
worker approach and one-sided commu-
nication approach, respectively. All the
graph instances contain 100 vertices.

These tables show the scalability re-
sults with both approaches when run-
ning the same instance with an in-
creased number of workers.

As we can notice, from Figure 5
when increasing the number of pro-
cesses the time decreases; being the se-
rial version the one that takes longer
times to solve the same problem.

Out of the number of running pro-
cesses, one of them acts as a master pro-
cess and the remaining workers evalu-
ate the nodes. In other words, 1 master
and 5 worker processes work in the case
when 6 processes are assigned.

Figure 5: Reported timings of master-
worker approach vs serial version.

Looking at the results of one-sided
communication approach (Figure 6), oc-
curs the same that in master-worker ap-
proach: we are getting a good improve-
ment of the time that takes to solve
the problem from serial to parallel ver-
sion. Yet, they are not better than the
results obtained on the master-worker
approach.

Figure 6: One-sided vs Serial version

What’s more, as a curious thing, we
notice that if we use 48 processes or
more the execution was like serial ver-
sion. So, in that case we will not get
any advantage of parallel communica-
tion when the workers increase. By way

of comment, we think that this situation
could be interesting to be study case.
Discussion & Conclusion

As we have been exposing, we
proposed two different parallelization
schemes of serial branch and bound al-
gorithm, to solve a combinatorial prob-
lem. The first one is based on master-
worker approach while the other utilises
one-sided communication.

Looking at the results we can affirm
that the parallelization was found to be
successful, since the proposed algorithm
could vastly reduce the computational
time of the serial solver.

As we see, master-worker approach
is more efficient when the problem is
bigger, but when is not that big one-
sided communication approach is also
very useful.

It has been observed that, for the
max-cut instances for which the opti-
mum solution was obtained in short
time, (i.e. the branch and bound tree
is smaller) parallelization gives worse
results as it requires more processing
and more time is spent on communi-
cation. This means that if it is a small-
sized problem is also suitable using the
serial version; because the parallel ver-
sion will not get much more advantage
than serial.

Nonetheless, when we look at the
five examples given in Figures 4 and
5, we see that the times are shortened
in the two approaches compared to the
serial version.

Although there is a constant de-
crease by looking at the tendency pat-
terns, the results of the master-worker
approach are better than the one-sided
approach. The red line shows the result
for the master-worker, while the blue
line is the results of the one-sided ap-
proach. Results of the longest running
instances were taken into account.

Figure 7: Graphical comparation between
master worker approach and one-sided ap-
proach.

Despite the fact we thought that
the one-sided approach would take less
time than two-sided, the results did not

come out as we expected. We think that
the reason for this is that the processes
need to do more control in order to pre-
vent race conditions.

Acknowledgement
First of all,we’d like to thank our men-

tor Timotej Hrga for all support and in-
terest through the two months, Univer-
sity of Ljubljana, Faculty of Mechanical
Engineering for the use of their facil-
ities. PRACE for giving us a place on
the Summer of HPC programme.Many
thanks to Leon Kos, Pavel Tomsic for
all their work, in the first time online
program they did everything well by or-
ganizing the training week, emails and
weekly meetings .

References

1 Franz Rendl, Giovanni Rinaldi, Angelika Wiegele.
(2010). Solving Max-Cut to optimality by intersecting
semidefinite and polyhedral relaxations

2 Loc Q Nguyen. (2014). MPI One-Sided Communica-
tion

3 William Gropp, Ewing Lusk, Anthony Skjellum.() Us-
ing MPI Portable Parallel Programming with the
Message-Passing Interface

PRACE SoHPCProject Title
Implementation of Parallel Branch and
Bound algorithm for combinatorial
optimization

PRACE SoHPCSite
HPC cluster at University of Ljubljana,
Slovenia

PRACE SoHPCAuthors
İrem Naz Çoçan , Carlos Alejandro
Munar Raimundo

PRACE SoHPCMentor
Timotej Hrga, University of Ljubljana,
Faculty of Mechanical Engineering

PRACE SoHPCContact
İrem Naz Çoçan,Dokuz Eylül
University
E-mail: iremnazcocan@gmail.com
Carlos Alejandro Munar Raimundo,
University of Almerı́a
E-mail: caamura@gmail.com

PRACE SoHPCProject ID
2020

İrem Naz Çoçan

Carlos Munar

8

Visualisation of supernova explosions in an
inhomogeneous ambient environment using the
CINECA HPC facility in Bologna

Supernova
Explosions
Using HPC
Cathal Maguire & Seán McEntee

Recent developments in HPC has made it
possible for the first time to simulate the
full evolution of a massive star towards a
highly-energetic supernova explosion, and
also the subsequent expanding supernova
remnant. Modelling these events can
provide insight into the physics of
supernova engines and can also explain
the non-uniform distribution of heavy
elements in the Universe.

Supernova (SN) explosions rep-
resent the violent death of mas-
sive stars and are one of the
most energetic phenomena in

the universe. These events are also the
primary source of heavy elements in the
universe.1 When the star explodes, its
matter is expelled into the surrounding
environment, thus enriching it.

Supernova remnants (SNR’s) are the
outcome of SN explosions, and are dif-
fuse extended sources with a rather
complex morphology and a highly non-
uniform distribution of ejecta. On SN
explosion, the stellar material is ejected
from the star, and travels freely un-
til it reaches the circumstellar medium
(CSM). The CSM contains the mass-loss
from the progenitor star in the years
leading up to the explosion.

When the expanding SN ejecta inter-

acts with the CSM, some of the material
will continue to propagate outward in
what is known as the forward shock.
Conversely, some of the material will
travel backwards into the freely expand-
ing ejecta after colliding with the CSM.
This is known as the reverse shock.

The remnant morphology reflects,
on one hand, the highly non-uniform
distribution of ejecta due to pristine
structures developed soon after the SN,
as well as the imprint of the early inter-
action of the SN blast with the inhomo-
geneous circumstellar medium (CSM).

In Figure 1, we can see a schematic
diagram showing the density profile
of a spherically symmetric blast wave
expanding in a uniform ambient envi-
ronment. This represents a 2D slice of
our 3D model, and the different regions
are easily distinguishable, such as the

reverse and forward shocks that were
mentioned earlier.

Figure 1: Schematic diagram of a spherically sym-

metric SNR in a uniform ambient environment at

a time of 1,000 years after SN explosion.

What is also noticeable is that within

9

the dense mixing region (shown in red),
we can see the fingerprint of hydrody-
namic instabilities developing. SNR’s
can span for 10’s of parsec (1 parsec =
3.3 light-years) and are observable for
thousands of years,2 with this particular
snapshot taken 1,000 years after SN
explosion.

Motivation
Our project’s aim was to develop com-
plex SNR models with key features that
are present in real-life, observable rem-
nants. This was achieved by introducing
asymmetries into our models, and thus
expanding on the spherically symmetric
case depicted in Figure 1. Asymmetries
in SNR’s offer the possibility to probe
the physics of SN engines by provid-
ing insight into the anisotropies that
occur during the SN explosion. These
asymmetries also offer the possibility
to investigate the final stages of stellar
evolution by unveiling the structure of
the medium immediately surrounding
the progenitor star.

One SNR that we investigated was
the case of Cassiopeia A, which ex-
ploded approximately 350 years ago3

at a distance of 3.4 kpc away from
Earth.4 In this case, asymmetries de-
veloped within the blast wave shortly
after explosion while the ambient en-
vironment was approximately uniform.
This formed the basis of our first asym-
metric simulation, which we denoted
as ’Model A’. The details about the im-
plementation of the asymmetries in our
models will be discussed in the next
section.

Figure 2: Cassiopeia A (Courtesy NASA/JPL-

Caltech).

Another SNR that was of interest to
us was the case of SN1987A. This super-
nova was observed on February 23rd,
1987, by two independent astronomers,
Ian Shelton and Albert Jones.5 It was
also the brightest and nearest Super-
nova to occur in roughly 350 years,
and thus has since been the subject of

intense investigation and modelling. In
this remnant, the initial blast wave was
approximately spherically symmetric,
while the asymmetries were present in
the surrounding CSM.6 Figure 3 shows
a ring structure surrounding SN1987A,
and we attempted to emulate this in
our second asymmetric model which
was denoted ’Model B’.

Figure 3: SN1987A (Credit: NASA/ESA, R. Kish-

ner, and P.Challis).

Methods

All the simulations conducted in this
project were run on the GALILEO sys-
tem at the CINECA facility in Bologna
(shown below). This supercomputer
contains 1022 nodes, with 36 cores-per-
node. Nodes are individual computers
that consist of one or more CPUs (Cen-
tral Processing Units) together with
memory. For comparison, a Personal
Computer is considered to be a single
node and has a CPU with 4 cores.

Figure 4; Galileo supercomputer rack at CINECA

Source: https://en.wikipedia.org/

wiki/Galileo_(supercomputer)

The supernova explosion models were
run using The PLUTO Magnetohydro-
dynamic Code,7 a freely-distributed
software for simulating astrophysical
fluid dynamics (see Software Applied
& More Information). The input pa-
rameters for the code were: the mass
of the progenitor star, the initial rem-
nant radius, the forward shock velocity,
the density of the CSM, and also the
pressure of both CSM and ejecta. The
outputs of PLUTO were the velocity,
pressure, and density distributions at
different stages of the evolution over a
duration of 2,000 years.

Model A was created by introducing
dense, high velocity clumps within the

initial remnant to mimic post-explosion
anisotropies of Cassiopeia A. Model B
was constructed by introducing two in-
homogeneous features of high-density
in the ambient environment: the first
was a torus, or ’doughnut-shaped’ fea-
ture encircling the blast wave, such as
that present in SN1987A. A molecu-
lar cloud of high-density was also in-
troduced, and this feature was offset
against the origin of the blast wave.

Once the 3D simulations were com-
pleted, data visualisation of the 2D
slices of our models was performed
using the Interactive Data Language
(IDL).8 To get a better understanding
of the models, we employed the 3D
visualisation software Paraview. Our
final models were also uploaded onto
SketchFab, a platform for publicly shar-
ing 3D models.

Results
Once we were happy with the efficiency
of our code, as well as the final structure
of our models, we began comparing
the symmetric and asymmetric cases. In
order to probe the inner and outer struc-
ture of the models, two-dimensional
slices of the three-dimensional density
profiles were taken, at various stages
in the models’ evolution. In doing so,
we could examine the models’ diverse
regions of high and low density, caused
by the abnormalities introduced in the
asymmetric cases.

The comparison between the spher-
ically symmetric case and Model A is
shown below in Figure 5. Notice the
voids of low-density in Model A on the
left. These are produced as a result of
the propagation of the initial clumps to-
wards the mixing region. These clumps
also appear to cause a slight protrusion
of the outer remnant, distorting the left
side of the remnant in the process.

Figure 5: A 2D slice at the centre of Model A’s

3D density profile (left), alongside a 2D slice at

the centre of the symmetric model’s 3D density

profile (right), both at t = 2000 years.

This figure shows the density struc-
ture of the centre of the model approxi-

10

mately 2,000 years after the initial stel-
lar explosion. These regions of low den-
sity, or voids, relative to the symmetric
case, are a key feature which is known
to exist in Cassiopeia A.

The effects of the asymmetries intro-
duced in the surrounding environment
of the expanding blast wave, such as
that present in Model B, were also
evident in the final model’s density
structure. Clear regions of high density
arose from the interaction of the blasted
ejecta with the regions of high density
(i.e the torus and cloud structures) in
the blast wave’s ambient surroundings.
These regions of high density, relative
to the unshocked ejecta, are shown
in Figure 6. We can clearly see strong
interaction between the blast wave and
the high density regions, resulting in
clusters of relatively high density in
these areas.

Figure 6: A 2D slice at the centre of Model B’s

3D density profile (left), alongside a 2D slice at

the centre of the symmetric model’s 3D density

profile (right), both at t = 2000 years.

These regions of high density are analo-
gous to the torus-like feature encircling
SN 1987A. This occurs when the ex-
panding blasted ejecta interacts with
material which was previously ejected
into the CSM from the progenitor in its
final stages of evolution.

The final structure and morphology
of Model A and Model B may be diffi-
cult to visualise from the figures above,
therefore we have also uploaded our
final models for public access on Sketch-
Fab.com. The links to the respective
models can be found in the Appendix,
but examples of what you can expect to
see are given in Figures 7 & 8 below.

Figure 7: 3D visualisation of the density profile

of Model A at a time of 2,000 years after SN

explosion.

Figure 8: 3D visualisation of the density profile

of Model B at a time of 2,000 years after SN

explosion.

Discussion & Conclusion
The significance of asymmetries, ei-
ther within the blast wave, or in it’s
surrounding environment, can clearly
not be understated. As outlined in the
results above, the morphological and
structural differences of the two models
with respect to the symmetric cases is
evident.

Figure 5 shows clear regions of
low density ejecta emerging within the
confines of the blast wave of Model A,
whereas Figure 6 shows clusters of high
density resulting from the interaction
of the blasted ejecta with regions of
high density in the surrounding CSM.
These two models clearly display the
impact of structural asymmetries, at
early stages of a SN’s evolution, on the
final morphology of the resultant SNR.

Knowing the result of these effects,
one could input real-world, observa-
tional parameters of Supernovae such
as Cassiopeia A or SN 1987A, into the
framework of our models, and attempt
to evolve these models forward in time,
in order to determine how they might
look hundreds or thousands of years
into the future. An evolutionary model
such as this would also give us an in-
sight into the various conditions and
processes which produce the majority
of the heavy elements in the Universe,
via the r-process in supernova nucle-
osynthesis.

Acknowledgements
We would like to extend our utmost
gratitude to our supervisor, Prof. Sal-
vatore Orlando, as well as all the very
helpful staff at CINECA, in particular

Massimiliano Guarrasi. We would also
like to thank the coordinators of the
Summer of HPC 2020, and PRACE, for
providing us with not only a unique
opportunity, but also an exceptional
learning-curve.

References
1 Burrows, A. (2000). Supernova explosions in the uni-

verse. Nature, 403(6771), 727-733.

2 Reynolds, S. P. (2008). Supernova remnants at high
energy. Annu. Rev. Astron. Astrophys., 46, 89-126.

3 Stover, D. (2006). Life In A Bubble. Popular Science,
269(6), 16.

4 Fesen, R. A., Hammell, M. C., Morse, J., Chevalier, R.
A., Borkowski, K. J., Dopita, M. A., ... & van den Bergh,
S. (2006). The expansion asymmetry and age of the
Cassiopeia A supernova remnant. The Astrophysical
Journal, 645(1), 283.

5 Kunkel, W., Madore, B., Shelton, I., Duhalde, O., Bate-
son, F. M., Jones, A., ... & Menzies, J. (1987). Super-
nova 1987A in the large magellanic cloud. IAUC, 4316,
1.

6 Dwek, E., Arendt, R. G., Bouchet, P., Burrows, D. N.,
Challis, P., Danziger, I. J., ... & Slavin, J. D. (2010).
Five years of mid-infrared evolution of the remnant
of SN 1987A: The encounter between the blast wave
and the dusty equatorial ring. The Astrophysical Jour-
nal, 722(1), 425.

7 Mignone, A., Bodo, G., Massaglia, S., Matsakos, T.,
Tesileanu, O., Zanni, C., & Ferrari, A. (2007). PLUTO:
a numerical code for computational astrophysics. The
Astrophysical Journal Supplement Series, 170(1), 228.

8 Bowman, K. P. (2006). An Introduction to Program-
ming with IDL: Interactive data language. Elsevier.

Appendix
Final Morphology of Model A:
https://rb.gy/5p37jf

Final Morphology of Model B:
https://rb.gy/lknxwu

PRACE SoHPC Project Title
Visualisation of supernova explosions
in a magnetised inhomogeneous
ambient environment

PRACE SoHPC Site
CINECA, Italy

PRACE SoHPC Authors
Cathal Maguire & Seán McEntee
Trinity College Dublin, Ireland

PRACE SoHPC Mentor
Prof. Salvatore Orlando, CINECA,
Italy

PRACE SoHPC Contact
Name, Surname, Institution
Phone: +12 324 4445 5556
E-mail: leon.kos@lecad.fs.uni-lj.si

PRACE SoHPC Software applied
PLUTO, Paraview, Blender,
and SketchFab

PRACE SoHPC More Information
PLUTO User Guide
Paraview
Blender
SketchFab

PRACE SoHPC Project ID
2003

Seán McEntee

Cathal Maguire

11

Anomaly Detection of System Failures in
HPC-Accelerated Machines Using Machine
Learning Techniques

Anomaly Detection in
High Performance
Computing Systems
Nathan Byford
Stefan Popov
Aisling Paterson
Energy efficiency and power usage are the
main concerns for the effective operation
of a HPC cluster infrastructure. This work
describes the creation of visual
dashboards through the usage of Bokeh,
Grafana and Redash to monitor the state
of HPC clusters and the retrieval of a data
set with Apache Spark’s package Delta
Lake.

1 Background

The development of exascale high performance comput-
ing (HPC) systems brings enormous potential to accelerate
progress in scientific research. Protein docking, molecular
modelling and simulation of physical phenomena are just a
few computationally-expensive applications which are accel-
erable through the use of HPC. However, with the develop-
ment of such powerful machinery come ineluctable hurdles.
In the context of supercomputing, this means limitation of
peak performance by extensive power consumption, and
challenges in system management due to fallible software
and hardware.

While performance limitation due to power consumption
necessitates large changes in infrastructure, the detection
and analysis of system failures presents a much more man-
ageable task. The inspection of particular properties of the
system, such as power consumption, CPU and GPU tempera-
ture, and drain status can all help one identify system failures
and better our understanding of the system’s behaviour. This
understanding is invaluable to the design of more reliable,
energy efficient computing systems in the near future.

At the CINECA database, the development of an exascale
monitoring infrastructure, named ExaMon, entails collection
of data of two types. Firstly, the collection of physical pa-
rameters of system components, such as the temperature
of a particular CPU, and further, workload information, for
example the computing resource requirement for a particular
user. ExaMon is able to collect up to 70 GB per day of teleme-

try data from the CINECA supercomputer system.1 The vast
amount of data collected present great potential for machine
learning monitoring techniques and automation of the data
centre management process.

One example where these techniques are especially ap-
plicable concerns data on the power consumption of previ-
ous jobs run on the supercomputer system. With large data
sets ideal for training, machine learning models, based on a
random forest, allow for prediction of the power consump-
tion of a HPC job with good accuracy, proving 9% average
error of predicted against experimentally observed power
measurements.2

Another aspect of data centre monitoring process is cus-
tom modification of the software and hardware used. That
approach can discover power variations at the cluster and
node level down to the millisecond scale 2. And, it is achieved
with no impact on the computing resource availability as the
power monitoring is carried out outside the computing nodes
of the cluster.

Another use of machine learning techniques lies in the
detection of anomalies in system operation. Identification
of faults in a supercomputer system composed of many var-
ious components is a demanding task, however, a model
which, following training, can recognise healthy versus faulty
states in components presents the opportunity for automated
anomaly detection. Previous data collected by Examon was
used for a semi-supervised model which created a model of
the normal state of the supercomputer system, allowing for
determination of anomalous system states.2 Such anomalous

12

states and the metrics which allow us to monitor them are
outlined in this research.

2 Methods

In order to infer suitable parameters to track for anomaly
detection, the first task was to visualise data from Marconi
100, the new cluster that is part of CINECA’s exascale su-
percomputer. The ExaMon framework is depicted in Figure
1.

Figure 1: Exascale Monitoring Framework

Investigation into the data collected on Marconi 100
utilises the tailored query language ExaMon query language
(ExamonQL), to obtain data from MQTT brokers. MQTT bro-
kers are bound by the ’publish-subscribe’ messaging pattern,
whereby as information becomes available from sens_pub,
the plugin which will publish the data, it is received by the
broker and passed onto a subscriber, here MQTT2Kairos. Fol-
lowing the communication layer, the data can be stored by
the time series database KairosDB. This database is built on
the NoSQL database Apache Cassandra nodes. Finally, the
collected data is available for manipulation and visualisation.
An ongoing theme in this project concerns the visualisation
of data collected by the ExaMon framework in Grafana, a
web application for the design of monitoring dashboards
illustrated with such data, with capability for an interactive
user interface and updates in real-time.

Development of the monitoring dashboard necessitated
prior generation of plots in a web page. Bokeh was used
to provide this server and deliver the output of the Exa-
monQL queries which demanded information on a given
metric. The plots served by Bokeh were made possible via a
Python script, containing ExamonQL queries, which retrieves
the data through a KairosDB server. The Bokeh server with
its specific HTML was then used to load content into the
Grafana dashboard.

Similarly, another aspect of the project was to integrate
the data visualisation tool Redash into the ExaMon frame-
work. This would lie amongst the other current application
and visualisation tools as shown in Figure 1. This allows
visualisation of the time series data of the Marconi 100, with
particular focus on job-scheduling data. Predictions made
by an anomaly detection machine learning could be usefully
visualised also through Redash.

A particularly useful feature of Redash is its flexibility for
queries in the query language native to the data source. As
mentioned, the data on the Marconi 100 utilises the tailored
query language ExaMonQL. To integrate Redash with the
ExaMon framework it was necessary for Redash to be able to
gain access to and read from the NoSQL data storage used by
the ExaMon framework, namely the KairosDB database. This
involved the creation of a query runner from Redash to the
data source, which instructed Redash how to access KairosDB
as well as connecting the query language ExaMonQL.

A third aspect of the project was to investigate the possi-
bility of training a model for detecting anomalies in real-time
and alerting the system administrators. To that end, we first
had to obtain a data set from the ExaMon framework. We
have chosen to transfer the ExaMon data for this task into a
more suitable format. We have used Delta Lake, a package
within Apache Spark that brings ACID transactions to its
processing engine. Delta Lake offers numerous features and
advantages to Spark. Most importantly, it guarantees schema
enforcement and evolution, meaning that it prevents data
corruption through insertion of illegal values and offers to
possibility for the data to "evolve", i.e. with time, there may
be some other columns we might want to add to our table
and Delta Lake enables this seamlessly. Another great aspect
of Delta Lake is that it utilises the Apache Parquet format for
storing the data. Apache Parquet is a column-oriented for-
mat, introducing much faster seek time for analytical queries
and efficient and effective compression schemes, effectively
reducing the amount of storage needed compared to the tra-
ditional row-based format in ExaMon. Moreover, Delta Lake
does not make distinction between table and stream read or
write queries: its tables can be used for both scenarios with
no overhead. Figure 2 illustrates the architecture of Delta
Lake.

Figure 2: Delta Lake architecture. Taken from delta.io

Here, we can observe the different logical views of tables,
Delta Lake’s compatibility with major cloud storage solutions
(Microsoft Azure, Amazon S3, and Hadoop) and its ignorance
towards the batch and streaming setting. As such, Delta Lake
is one of the most popular packages within Apache Spark
and is being used by many companies worldwide.

Consider for example a question that might arise from
this data: Plot the temperature of node X for May through
August 2020 and check if there are any anomalies (unusually
high or low values) in it? In the traditional row-oriented
format, the processing engine would have to read a batch of
rows, and for each row it should scan up to it’s N-th column
(where the temperature is stored) and this could take a while,
considering that there might have been many columns in
between that can be large in memory and force the engine
to read more disk blocks.

13

3 Results

The graphic in Figure 3 is exemplary of a time series plot for
a given metric over a specified time period, here the temper-
ature of a CPU of a particular node of the Galileo cluster of
Marconi 100 over a period of two days.

Figure 3: Time Series for the Metric CPU1_Temp

The time series plot shows fluctuations in CPU tempera-
ture, with a large drop in temperature during the morning
of 04/07/2020. This could indeed be the kind of anomaly
characteristic of a system failure which the machine learning
algorithms should observe.

Similarly, the graph in Figure 4 below displays of the
frequency of job failures for the nodes of the Galileo cluster
of Marconi 100 over a period of a day.

Figure 4: Frequency of job failures for given nodes

Approximately 168 metrics are being monitored for the
Marconi 100 cluster in the summer of 2020. Many of these
metrics are associated with the environmental parameters of
the hardware, but there are others that concern the jobs that
users submit to it. The task of exporting Marconi 100 data to
Delta Lake is rather straightforward (or is it?). We just query
ExaMon and save the data returned from it into Delta Lake

table. Sounds great, (almost) doesn’t work. As already men-
tioned, Delta Lake works on top of Spark, which is optimised
for distributed data processing. But being remotely connected
to a HPC machine and from there remotely accessing a data
source and saving it to a third remote place is obviously a
recipe for problems. And problems there were. From having
reached disk quota limit, getting schema specification errors,
waiting for SLURM resource allocation, reaching wall-time
on the submitted job and restarting from a checkpoint, to
finally carrying out the final execution, I had ran into quite
some problems during this task.

The final result is a 106 GB of Marconi 100 data from 1st
of May to 3rd of August 2020 in two tables. One of the tables
concerns numerical data, such as temperature values, mem-
ory allocation, number of idle/allocated/drained/downed
nodes/CPUs etc. and another for string logs from the differ-
ent plugins that are set up within ExaMon. Because Delta
Lake saves data in Parquet format (column-oriented), each
column value is stored right next to each other and read-
ing the column data can be very fast (fewer disk reads) for
the analytical queries that we will be are dealing with. Also,
took up less storage space for the data, because there are
techniques for compressing it (each column contains homoge-
neous data). In big data scenarios, column-oriented storage
is the way to go.

References
1 A. Bartolini, A. Borghesi, F. Beneventi, A. Libri, D. Cesarini, L. Benini and C. Cavaz-

zoni, Paving the Way Toward Energy-Aware and Automated Datacentre, ICPP 2019,
August 5–8, 2019, Kyoto, Japan, doi:10.1145/3339186.3339215

2 A. Bartolini, A. Borghesi, A. Libri, D. Gregori, S. Tinti, C. Gianfred and P. Altoè,
The D.A.V.I.D.E. Big-Data-Powered Fine-Grain Power and Performance Monitoring
Support. In Proceedings of the 15th ACM International Conference on Computing
Frontiers, CF 2018, Ischia, Italy, May 08-10, 2018 (2018), pp. 303–308.

PRACE SoHPCProject Title
Anomaly Detection of System Failures in HPC-Accelerated
Machines Using Machine Learning Techniques

PRACE SoHPCSite
CINECA, Bologna, Italy

PRACE SoHPCAuthors
Nathan Byford, Imperial College London, UK.
Stefan Popov, International Postgraduate School Jožef
Stefan, Slovenia
Aisling Paterson, Trinity College Dublin, Ireland

PRACE SoHPCMentor
Andrea Bartolini, University of Bologna, Italy
Andrea Borghesi, University of Bologna, Italy
Francesco Beneventi, University of Bologna, Italy

PRACE SoHPCContact
Stefan Popov, International Postgraduate School Jožef
Stefan, Slovenia
E-mail:popovstefan@live.com

PRACE SoHPCSoftware applied
Virtuoso

PRACE SoHPCMore Information
www.virtouso.org

PRACE SoHPCAcknowledgement
We are thankful to all the mentors and colleagues from the
University of Bologna for their help, guidance and support
throughout this project.

PRACE SoHPCProject ID
2004

14

Exploit persistent memory to improve existing
Charm++ fault tolerance

Persistent
Memory
checkpoint
Petar Dekanović, Roberto Rocco

Charm++ is a message passing framework with multiple features,
including fault-tolerance. Instances can be saved to disk, but if it is
replaced by persistent memory, it might be possible to maintain the
same functionality with major gains in terms of the performance.

Fault tolerance is the field of dis-
tributed computing aimed at the
design of algorithms and sys-
tems able to deal with faults.

In the past it used to be not related
to High-Performance Computing (HPC)
but, due to the evolution of the architec-
tures, nowadays more and more efforts
are exploring the intersection of the two
fields.

It used to be irrelevant before since
failures happened rarely in a controlled
environment typical of HPC. But, with
the increase in the number of machines
which led to the enlargement of this
eventuality, it must now be considered:
programs are likely to encounter one
fault (at least) and must be able to han-
dle them.

This fact has been analyzed by

other efforts in the field: Schroeder
and Gibson1 have collected data at two
large high-performance computing sites,
showing failure rates from 20 to more
than 1000 failures per year. Future sys-
tems will be hit by error/faults much
more frequently due to their scale and
complexity.2

Fault tolerance can be achieved
following many different approaches.

Charm++ checkpointing scheme

Among all the efforts pro-
duced, the most used tech-
nique used for implement-
ing fault-tolerance in an ap-
plication is Checkpoint and
Restart (C/R). It consists of
the periodic creation of sav-
ing points from which the
execution can safely restart
in case of failure. While
standard C/R doesn’t need
to deal with the continua-

tion of the application (upon fault, ex-
ecution will stop), online C/R goes fur-
ther: it allows the program to recover
from the failure right away and proceed
like nothing bad happened. Nowadays,
more and more high-performance pro-
grams are using some kind of system for
C/R, and Charm++ is one of them.

Charm++ is a parallel program-
ming framework written in C++ based

on abstracting fundamental units of se-
quential code which can be executed
simultaneously into Chare objects. Each
chare encapsulates its state and com-
municates with other chars by invoking
their so-called entry methods: this can
be seen as asynchronous message ex-
changes. The framework has been in
production use for over 15 years and
has been used by multiple successful ap-
plications. It contains multiple features
ranging from automatic load balancing
to online C/R which aren’t common in
other similar frameworks.

The main drawback of using C/R is
the overhead it introduces: the status
must be written to persistent storage
periodically which heavily impacts the
performance of the application. The fo-
cus of this effort is to try to leverage the
recent improvements in the persistent
storage field to reduce the mentioned
overhead.

Persistent Memory

Data storage plays a core role in every
computing system: without it, it would
be impossible to do any meaningful op-
eration. The field evolved by special-
izing in different tasks, depending on
the characteristics it must provide to

15

the system. This, as a consequence, cre-
ated a fracture: on one side there is fast
storage able to keep up with the speed
of the processor; on the other, there is
reliable one able to maintain its infor-
mation even after power-off. The first
led to the development of various kind

of volatile memory: processor register,
caches and main memory (also known
as RAM – Random Access Memory). The
other produced devices like magnetic
tapes, HDDs (Hard Disk Drives), SSDs
(Solid State Drives).

This basic scheme hasn’t been
changed since the beginning of the era
of modern computers and although de-
vices from the first group had become
more spacious and the second group
had become faster with the introduc-
tion of SSD technology, there always
was a huge gap between these two. Per-
sistent Memory (PMEM) tries to tackle
this everlasting problem by promising
performance near main memory and
persistence like disk devices.

Usage

Persistent memory, due to its hetero-
geneous nature, exposes the possibil-
ity to use the storage in different ways
depending on the use-case. Intel’s rep-
resentative, Optane Persistent Memory,
offers two distinct run configurations:

• Memory Mode – uses persistent
memory as volatile main memory,
where existing RAM functions like
slower cache;

• App Direct Mode – uses persis-
tent memory as a permanent data
store that is available like any
other disk device.

The first configuration immediately
gives a transparent increase in terms

of main memory size that can re-
duce page swapping for programs with
large memory footprints. However, it
reduces the overall memory respon-
siveness due to slightly slower speed
compared to RAM which should be
considered when choosing this option.

Memory hierarchy diagram

The other configuration
achieves data persistency
while providing bandwidths
multiple times larger than
other existing disk options.

The second mode also
allows to access the stor-
age in different ways, like
FSDAX (File System Direct
Acc(X)ess), where the de-
vice will be accessed us-
ing standard file I/O op-
erations; or PMDK (Persis-
tent Memory Developer Kit)
which fully exposes device
hardware to a programmer

and allows customizing applications for
the most performance.

Changing Charm++

Persistent Memory can be configured
and used in a lot of different ways de-
pending on the specific need. The first
mode, although interesting, was shown
to be irrelevant simply because of the
fact it lacks a crucial feature – persis-
tence. On the other hand, App Direct
Mode, which turns the device into a re-
ally fast non-volatile memory, proved to
be the one useful. With that, both FS-
DAX and PMDK approaches for memory
access became viable options and were
exploited during the implementation.

Being able to understand and

Persistent memory module

utilize this new kind of tech-
nology has been only half
of the story. The other has
probably been even more
challenging due to a neces-
sity for deeper exploration
of the already rounded sys-
tem of checkpointing to find
a way to incorporate new
approaches.

As with every other big system, a
great chunk of time was spent on code
analysis, but also on comprehending the
ways the fault-tolerance module is en-
tangled and connected with other parts
of the framework. This turned out to
be very important especially when the
PMDK approach was introduced.

Performance results

The performance of the changes has
been evaluated by running a built-in
stencil application that uses the Jacobi
method to determine the solutions of a
strictly diagonally dominant system of
linear equations. This application peri-
odically stores a checkpoint, also print-
ing the time needed for the operation.

The test has been performed many
times with different configurations
which consist of the number of chares
participating in the computation and
number of processors and nodes that
are available to the application. Test fea-
tures all of the newly added checkpoint-
ing schemes alongside the ones already
present. Worth mentioning is there is
also the O_DIRECT mode, which ig-
nores default disk caching.

Graphs in Figure 1 show the results
obtained with all the hardware con-
figurations. The number of application
chares and time needed to checkpoint
(in logarithmic scale) are represented
on the axis.

All modes tend to follow the same
pattern with configuration changes and
also show the same order in terms of
performance: Memory is always the
fastest, followed by the two from persis-
tent memory, and at the end are the disk
(with O_DIRECT being very far behind).
The closeness of the methods leverag-
ing persistent memory can be analyzed:
usually FSDAX tends to be slower than
PMDK due to relying on the operating
system as a mediator for all operations.
The overhead impact can be reduced by
performing operations on big chunks of
data, and checkpointing tends to do so.

Performance of the disk can also

be analyzed: the O_DIRECT mode
achieves really bad times compared
to all the other solutions, while the
normal disk mode tends to have sim-
ilar performance with persistent mem-
ory. However, only O_DIRECT mode is
completely persistent: normal disk uses
memory as cache, and in case of failure
all the data cached and not flushed will
be lost, leaving obsolete information in

16

32 128 256 512
0.01

0.1

1

10

100

chare number

Ti
m

e
[s

]
Checkpointing times on single node, 16 processes

32 128 256 512
0.01

0.1

1

10

100

chare number

Ti
m

e
[s

]

Checkpointing times on two nodes, 32 processes each

32 128 256 512
0.01

0.1

1

10

100

chare number

Ti
m

e
[s

]

Checkpointing times on single node, 32 processes

32 128 256 512
0.01

0.1

1

10

100

chare number

Ti
m

e
[s

]

Checkpointing times on four nodes, 16 processes each

Memory FSDAX PMDK Disk Disk Direct

32 128 256 512
0.01

0.1

1

10

100

chare number

Ti
m

e
[s

]

Checkpointing times on two nodes, 16 processes each

32 128 256 512
0.01

0.1

1

10

100

chare number

Ti
m

e
[s

]

Checkpointing times on four nodes, 32 processes each

Figure 1: The graphs represent the results obtained with the tests under the specified configurations.

the persistent storage. This proves that
the disk alone cannot reach both speeds
comparable to memory and persistency,
while persistent memory can do so.

Future work

All the performance obtained with
checkpointing via persistent memory
can be used to introduce new function-
alities into the framework. Transaction-
ality is one of those. It is based on ACID
properties - a set of constraints that limit
the effect of a failure in a system. The
name comes from the acronym of Atom-
icity, Consistency, Isolation, and Dura-
bility: the first ensures that each opera-
tion is treated as single even when com-
posed by sub-parts, the second assures
that only consistent states are reached,
the third states that operation are in-
dependent of each other and the last
guarantees that all the changes caused
by the operations won’t be lost.

The concept of transactionality
comes from the database field and
hasn’t been used often outside of it due
to the strictness of the constraints. To
introduce transactionality into a check-
pointing system, process execution must
be treated like a query in a database: all
the messages exchanged must be consid-
ered alongside the shared data manipu-

lation. In Charm++, there is no shared
data, so the focus is only on message
passing: given this point, the introduc-
tion of transactionality can be obtained
by sending all the messages of a chare
only when execution is completed suc-
cessfully. Checkpointing shall be used to
ensure that the messages are delivered
correctly and without missing anything.

This effort managed also to produce
the first version of transactional check-
pointing, in which it was possible to
postpone the sending of all the message
to the end of a chare, ensuring that no
message is sent in case of failure. This
should be enough to introduce trans-
actionality with the addition of asyn-
chronous checkpointing, but this last
feature proved to be hard to implement:
Charm++ doesn’t support it by default
and a deeper analysis of the framework
is needed.

Transactional checkpointing, while
being difficult to incorporate, intro-
duces functionalities that may become
useful for today’s and future HPC de-
velopers. It may be possible to exploit
the performance obtained with persis-
tent memory to realize this feature with
acceptable overhead in the future.

References
1 B. Schroeder and G. A. Gibson, (2010). A Large-Scale

Study of Failures in High-Performance Computing Sys-

tems

2 Cappello, Franck (2009). Fault tolerance in petas-
cale/exascale systems: Current knowledge, challenges
and research opportunities

PRACE SoHPCProject Title
Charm++ Fault Tolerance with
Persistent Memory

PRACE SoHPCSite
EPCC,
University of Edinburgh,
The United Kingdom

PRACE SoHPCAuthors
Petar Dekanović,
University of Belgrade,
Serbia
Roberto Rocco,
Politecnico di Milano,
Italy

PRACE SoHPCMentor
Dr. Oliver Thomson Brown,
EPCC,
The United Kingdom

Petar Ðekanović

Roberto Rocco

PRACE SoHPCContact
Petar Ðekanović, University of Belgrade
Phone: +381 65 2526 445
E-mail: petar.djekanovic@gmail.com
Roberto Rocco, Politecnico di Milano
Phone: +39 333 9955 469
E-mail: roberto2.rocco@mail.polimi.it

PRACE SoHPCMore Information
If you need any additional project-specific information,
do not hesitate to contact any author (Petar or Roberto)
as well as Oliver, the mentor.
Hardware was provided for this project by NEXTGenIO.
The NEXTGenIO system was funded by the European
Union’s Horizon 2020 Research and Innovation
programme under Grant Agreement no. 671951.
Other than that, you can find useful information on this
and other interesting topics about high-performance
computing at Summer Of HPC and PRACE sites.

PRACE SoHPCProject ID
2005

17

ARM aid tools for benchmarking and research

ARM tooling
Irem Kaya and Jerónimo Sánchez

Through the last years, ARM has proven to
be a competent computer architecture for
servers. This project aims to improve the
ecosystem in which researchers are
working, providing them with tools that
right before this affair were not ported to
ARM or, simply, did not exist.

In recent times, the ARM server ap-
plication ecosystem has been ex-
plored in order to help ARM to
reach its full potential on said

space.

Notwithstanding that this analysis
has proven that the ecosystem is rich, it
is not mature enough for the common
usage on servers, thus is not attractive
for companies.

Owing to this vast issue, there has
been an exponential growth in the num-
ber of research facilities about this ob-
stacle around both the fields of com-
puter architecture and applications port-
ing.

As an outcome of this R&D, three
convenient proposals have been devel-
oped throughout the last few months
on the EPCC, resulting on the following
projects: Firestarter, IOR-parser and
dmgler.

Each of this utilities has run on the
Fulhame cluster which consists of 64
compute nodes, each of them with 32
cores an up to SMT4, based on the Cav-
ium ThunderX2 ARM processor; com-
posing the cluster with up to 8192 hard-
ware threads and 128 GiB of RAM[1].

As shown in the Figure 1, each com-
puter of the Fulhame cluster is made of
2 compute nodes.

Figure 1: Fulhame computer blade scheme.

Firestarter

Firestarter is an open source tool that
is designed to create near-peak power
consumption for processors. It uses as-
sembly routines optimized by taking the
specific microarchitecture of Fulhame
into account. Firestarter tests the most
important power consumers of compute
nodes: CPU (cores + uncore compone-
nents such as caches), GPUs, and main
memory of Fulhame.

Firestarter was originally written
for x86 instruction set architecture and
the project had to be converted into
AArch64 instruction set architecture so
that it would run properly on ARM-
based Fulhame. There is no direct con-
version between two ISA’s, but after
benchmarking results come, rest can be
tuned with the output from the HPC.

IOR-parser

When working with IOR, it outputs files
with information about the system I/O
performance with lots of data. When
there are plenty of nodes and plenty
of configurations, it is possible to au-
tomatise all the process of testing every
possible configuration with a script, but
how about the results?

IOR-parser, which repo is iorbench-
tool, is the tool that allows in a automa-
tised way, to create reports with charts
about the performance of the system
from its IOR results.

Figure 4: IOR report chart example.

IOR-parser can be also configured
to get a customised report, with a dif-
ferent chart, or with more and different
data. All is stated on the repo wiki.

18

Figure 2: Firestarter example code of initializing x86 registers.

Figure 3: dmgler usage. This CLI allows an easy integration within an slurm script thus making this tool very useful in the already set
pipeline of EPCC.

dmgler

dmgler is also CLI tool designed to
solve a problem related to the use of
OpenMPI on ARM systems.

The aforementioned problem con-
sists in the following. When a program
is wanted to be executed in a variety of
computers, it needs some special code
to share the operations of said program
to the different computers of the cluster.
OpenMPI is the de facto library for this
type of task.

When the OpenMPI has to be ini-
tialised, it gathers the set of computers
it can run on, and for each computer,
the number of threads in which the pro-
gram can be finally executed.

However, OpenMPI expects an Intel
numbering style, in which every thread
of each core from both sockets has an
unique identifier on the whole com-
puter blade, but the numbering it re-
ceives is the ARM one, which does not

have an unique ID.

Table 1: Numbering style per architecture.

4 Threads

Core Intel ARM

1o 0-3 0,32,64,96
2o 4-7 1,33,65,97
3o 8-11 2,34,66,98

As shown, ARM does not follow the
ascending ordering Intel has per core
but spanned among the cores.

Once discovered which rules follows
ARM on its ordering, a CLI tool was cre-
ated. This tool, dmgler, is written in
Rust, a systems programming language,
focused on secure memory control with-
out the hassle of mallocing and freeing,
and also without a Garbage Collector.

dmgler outputs a OpenMPI com-
mand line to run the desired threads
on a ARM system with no need of extra-

thinking. The tool is used as Figure in
3.

The primary utility of dmgler is to
be useful in an already existing environ-
ment, being said environment slurm.

PRACE SoHPCProject Title
Porting and benchmarking on a fully
ARM based cluster

PRACE SoHPCSite
EPCC, Edinburgh, Scotland

PRACE SoHPCAuthors
Irem Kaya and Jerónimo Sánchez,
Turkey and Spain.

PRACE SoHPCMentor
Nick Johnson, EPCC, Scotland

PRACE SoHPCContact
E-mail: leon.kos@lecad.fs.uni-lj.si

PRACE SoHPCSoftware applied
Visual Studio Code

PRACE SoHPCMore Information
Visual Studio Code

PRACE
SoHPCAcknowledgement
We thank Phil Ridley from ARM for his
advice and input to this project.

PRACE SoHPCProject ID
2006

19

Various Optimisation Techniques for Python
Programs Benchmarked on HPC Systems

How to make
Python code
run faster
Alexander J. Pfleger
Antonios-Kyrillos Chatzimichail

There are several techniques that can be
applied to speed up Python codes. The
goal of this project is to investigate
optimisations for Python programs that run
not only on CPUs but also on GPUs.

Nowadays, the use of Python
is getting popular, mainly be-
cause it’s user-friendly and
saves quite a lot of develop-

ing and debugging time. In this project
a short Python programme is investi-
gated. The program performs a Compu-
tational Fluid Dynamics (CFD) simula-
tion of fluid flow in a cavity. The Fluid
Dynamics problem is a continuous sys-
tem that can be described by the partial
differential equations∇2ψ = 0. In order
for a computer to run simulations, the
calculations need to be put into a grid
(discretisation). In this way, the solution
can be approached by finite difference
method, which means that the value of
each point in the grid is updated using
the values of neighbouring points. The
update scheme can be seen in fig. 1.

The program can be parameterised
by specifying the variables below:

Scale Factor (sf) affects the dimen-
sions of the box cavity and con-
sequently the size of the array(s)
in which the grid is stored.

Number of Iterations affects the num-
ber of the steps in the algorithm,

the larger it is the more accurate
the result will be.

Reynolds number (Re) defines the vis-
cosity which affects the presence
of vertices (whirlpools) in the
flow.

Figure 1: The blue point of the grid is up-
dated using the cyan top, bottom, left and
right points.

The simulation result is visualised by
arrows and colours drawn in an im-
age representing the grid. The arrows
demonstrate the direction of the fluid at

each point, while the different colours
indicate the fluid’s speed, with blue be-
ing low speed and red being high speed.
The title picture of this report shows the
result of a simulation with Re = 0 and
sf = 4. The pictures were exported af-
ter different numbers of iterations (50,
500, 2000, 100000).

As a baseline serial code, we se-
lected the fastest Python program that
was developed by last year’s student,
Ebru Diler. The program uses the
Numpy module to make fast array cal-
culations. But it turns out that there are
several ways to further optimise the ex-
isting serial code.

CPU optimisations

The following methods are directly ap-
plied on (excerpts of) the baseline code.
They describe general concepts and can
be easily adapted to any other Python
project.
Choosing the right implementation
For the first method, the performance

of some built-in functions are compared.
We will discuss this issue on the basis of
the square function A2. In the project it

20

is used in the distance function:

dp,q =

√∑

i

(pi − qi)2

It calculates a scalar dp,q from the
equally sized matrices p and q.The dis-
tance function quantifies the difference
between the two matrices. It is used to
stop the iterative process when the out-
put is merely changing and therefore a
minimum is reached. In this example
four different implementations for the
expression A2 are looked at:

• for i in range(m):
A[i]*A[i]

• numpy.power(A,2)

• A**2

• A*A

A random NumPy array is created
with A = numpy.random.rand(m),
where m denotes the size of the array.

The four different implementations
for the square function A2 were timed
for different matrix sizes m ∈ [22, 226].
The results can be seen in fig. 2.
Unsurprisingly the for-loop is rather
slow. The simple multiplication may
be up to one-hundred times faster.
The numpy.power() function is some-
where between. This may be more
of a surprise. The numpy.power()
function may be written especially for
NumPy arrays. Of course, it provides
more options and is faster for larger ex-
ponents (> 70). For simple expressions
like the square, an inline implementa-
tion should be chosen.

101 103 105 107
100

103

106

Matrix Size m

It
er

at
io

n
Ti

m
e

(m
s) for numpy

A**2 A*A

Figure 2: Execution time over matrix size m
for different implementations of A2.

Python Binding - C inside of Python
The second method is about Python

bindings. In a Python binding, C-code
is called from Python. There are several
different libraries to achieve this. One of
the most popular libraries is pybind11.
It is rather compact and requires only a
few additions to existing C-code. Also,

many marvellous C++ features can be
used, since pybind11 uses a C++ com-
piler.

Again, we will use the square func-
tion A2 to explain this method. Firstly,
we use only single values for A. In C++,
the function can be written like this:

int square(int A){ return A*A;}

In order to use this function in Python,
it needs to be converted to a Python
module. This can be done by altering
the code like followed:

#include <pybind11/pybind11.h>

int square(int i){ return i*i;}

PYBIND11_MODULE(bind_sq,m){#
m.def("squareCPP", &square,
"NOTE: squares integers");}

In the first line, the pybind11 library is
included in C++. The second line is the
already implemented square function.
The last lines generate the actual mod-
ule. Also, short documentation can be
added. After compiling the C++ code,
the module can be loaded and used in
Python:

from bind_sq import squareCPP
squareCPP(A)

To use more advanced functions, the
same concepts need to be applied. To
use NumPy arrays like in the previous
example, some further additions need
to be made in the C++ code. About
three lines need to be added for each
array. Those cases are well explained in
the pybind11 documentation.1

The performance boost of pybind11
using arrays is shown in fig. 3. For this
figure, the jacobi function is used, since
it has more impact on the project. The
new module is ten times faster than
the already optimised Python code. The
performance is similar to a stand-alone
C++ program. The third line in this
plot is generated by a parallelised mod-
ule and provides a second boost by a
factor of ten. We will have a look at this
method in the next paragraphs.

100 101 102 103

10−2

100

102

Scale Factor sf

It
er

at
io

n
Ti

m
e

(m
s) NumPy

pybind11
OpenMP

Figure 3: Execution time over sf for differ-
ent implementations of the jacobi function.

Parallelised Python Binding
To further increase the performance

of the function, parallelisation tech-
niques like OpenMP can be used. The
C++ code has to be slightly altered
but no changes are made in the python
project. This helps to keep the code
clean while parallelisation is done in the
background. In fig. 3 the performance
of an OpenMP module with 18 threads
is compared to the performance of the
simple pybind11 module. Depending on
the problem size a drastic speed-up can
be noticed.

Still, OpenMP holds some pitfalls. As
we investigated on the HPC-system Cir-
rus, the performance is unpredictable
above 18 threads, sometimes dropping
and sometimes increasing up to 36.
In fig. 4, the performance is plotted
over the number of used threads, for
eleven runs. For each run, the transi-
tion from the upper-performance curve
to the lower performance curve takes
place somewhere between 18 and 36
threads.

20 40 60
0

5

10

15

20

Number of Threads

Pe
rf

or
m

an
ce

(m
s−

1
)

Figure 4: Performance over number of
threads of the Pybind11/OpenMP module
for the jacobi function. Eleven runs for a
problem with sf = 32 are compared.

The significance of 18 is that it is the
number of physical CPU cores (ignor-
ing hyper-threading) in a CPU - each
node has 2 CPUs. The performance is-
sues could be due to NUMA effects -
whether or not the memory is allocated
on the same CPU as the thread that ac-
cesses it.
Numexpr
After some research, we found out

that there is a Python module, named
Numexpr,2 which performs better than
Numpy, mainly because it produces less
temporary arrays when evaluating nu-
merical expressions. Apart from that, it
uses multithreading internally, enabling
parallelisation for the calculations that
further boosts the performance. On
fig. 5, it can be seen that the Numexpr
version performs 3 times faster than the
baseline Python program, even when

21

using one single thread, while it out-
performs the serial C program as more
threads are used.

5 10
0

100

200

300

Number of Threads

It
er

at
io

n
Ti

m
e

(m
s)

Python baseline
C baseline
Numexpr optimisation

Figure 5: Iteration Time over Number of
Threads. All tests ran on Archer with Re =
2 and sf = 64.

Parallel Numexpr
Numexpr module also provides a sig-

nificant performance boost to the preex-
isting MPI Python program. Of course,
the performance depends on the num-
ber of MPI processes and the number
of threads for each process. The total
number of threads can be found by mul-
tiplying MPI processes by threads per
process. A single node on the Archer
supercomputer has 24 cores, thus can
have up to 24 threads, one running on
each core. By all means, there are many
possible combinations of processes and
threads to fully use a single node. Some
of them can be spotted on tab. 1, where
their performance is compared. After
running tests on both x86-based Archer
and ARM-based Fulhame supercomput-
ers, it seems that the best option is
to use as many single threaded MPI
processes as possible within a compute
node. This conclusion is crucial because
it reveals what is the best way for our
case to use a node of a supercomputer.

Table 1: Iteration Time (ms) for different
number of MPI processes and threads.
All tests ran on Archer with Re = 2 and sf
= 72.

Python MPI with Numexpr
and # Threads:

1 2 3 6 12 24

#
M

PI
pr

oc
es

se
s

1 145 91 75 59 48.3 49.7

2 57 37 31 25.48 25.44

4 31 21 18 16.6

8 18 13 12.6

12 15 11.0

24 10.7

50 100 150
0

100

200

Scale Factor sf

It
er

at
io

n
Ti

m
e

(m
s) CPU C serial

CPU Python serial baseline
CPU C MPI (32 processes)
CPU Python numexpr MPI
(32 processes)
GPU Python Numba CUDA
GPU C CUDA -
one cooperative kernel
GPU C CUDA -
separate kernels

Figure 6: Iteration Time over sf. All tests ran on Cirrus with Re = 2.

GPU program implementation

In recent years, there is a trend to
use GPUs not only for gaming but also
for general purpose, especially for pro-
grams that make few decisions but
do many calculations. That’s a logical
thought to make if you consider that
instead of running tens of parallel MPI
processes on the CPU, the GPU offers
the ability to run thousands of threads
in parallel. In our case, the optimal is
to assign every point of the matrix to a
separate GPU thread. The whole matrix
is stored in the GPU’s memory, so any
thread has direct access to any point
of the matrix without exchanging any
messages like MPI.

GPU programs were developed for
Python and C and the performance tests
ran on a novel HPC system, Cirrus. The
Python GPU program, which is imple-
mented with the Numba CUDA module,
can not compete with the much faster
CPU parallel code, but it surpasses the
serial codes, as fig. 6 shows. On the
other hand, two versions of CUDA C
were developed and both outperformed
the parallel codes. One launches mul-
tiple kernels (functions executed on
the GPU) per iteration, and the other
launches a single cooperative kernel
for all iterations. Someone could pre-
dict that the latter version would be
faster, because it avoids the overhead
of launching many kernels. However,
this overhead is minor and because of
the fact that the second version is using
the CUDA runtime launch API which ap-
plies some limitations to the amount of
GPU blocks, it is quite faster to launch
multiple smaller kernels and therefore
the first version is the most optimal.

Conclusion

In this article, we have described a num-
ber of ways to improve the performance
of python codes.

One surprising result is that the paral-
lel Python program outperforms the C
parallel one. This is hard to explain, but
maybe the reason behind this lies in the
implementation of the Numexpr mod-
ule. Perhaps, also, the C parallel code
is not fully optimised. Further investi-
gation should be done in the future re-
garding first-touch memory techniques
in pybind11/OpenMP modules to ob-
tain more predictable behaviour. Addi-
tionally, the Numba CUDA code could
be revised, because its performance is
worse than expected. However, the GPU
program using CUDA C drastically out-
performs the C code, by achieving 30
times better performance.

References
1 Readthedocs pybind11 documentation. https://
pybind11.readthedocs.io

2 Numexpr module https://github.com/pydata/
numexpr

PRACE SoHPCProject Title
Performance of Parallel Python
Programs on New HPC Architectures

PRACE SoHPCSite
Edinburgh Parallel Computing Centre
(EPCC), UK

PRACE SoHPCAuthors
Alexander J. Pfleger, Graz University
of Technology, Austria
Antonios-Kyrillos Chatzimichail,
University of Thessaly, Greece

PRACE SoHPCMentor
Dr David Henty, EPCC, UK

PRACE SoHPCContact
Alexander J. Pfleger, Graz University
of Technology
E-mail: pfleger@plancks.at
Antonios-Kyrillos Chatzimichail,
University of Thessaly
E-mail:
antonis.xatzimixail@gmail.com

PRACE SoHPC
d
Python, NumPy, pybind11, Numexpr,
Numba

PRACE SoHPCAcknowledgement
Great thanks to Dr. David Henty for
continuous support and guidance
throughout the whole project.

PRACE SoHPCProject ID
2007

Alexander J. Pfleger

Antonios-Kyrillos
Chatzimichail

22

GPU acceleration of Breadth First Search
algorithm in applications of Social Networks

BFS Graph
Traversal
with CUDA
Berker Demirel

The motivation of the project is implementing
Breadth-First Search algorithm with achieving
high parallelism. We achieved to perform
competing results with Gunrock library that
can serve fast Social Network traversal.

Introduction

Together with the abundance of data
in recent years, the size of many in-
teresting real-world and scientific prob-
lems that have been modeled as graphs
is drastically increased. Although mac-
hines today can store the data in their
memory with no problems, efforts to
improve the performance of algorithms
running on these graphs have only re-
cently displayed a positive acceleration.
In the last decade, the interest in pa-
rallelizing the graph processing has re-
sulted in remarkable works such as
Ligra [1] and Gunrock [2], which offer
parallel solutions to many graph prob-
lems.

In this project, we focus on the
Breadth-First Search(BFS), which is a
well-known graph traversal algorithm.
Given a graph and a source node, BFS
visits every vertex and edge in a well-
defined order and assigns a distance
to every vertex, corresponding to the
length of the shortest path from the
source to the vertex.

In addition to the fact that it is used

as a sub-procedure in many graph algo-
rithms like finding strongly connected
components or checking if a graph is
bipartite, BFS is important because it
is directly used in real-world problems
such as Social Network Applications.
Graph500 Benchmark [3] is followed to
determine input format and graph ge-
neration since it offers Kronecker Graph
generation to model Social Networks.

Methods

Graph Dataset & Representation
We used Graph500’s Kronecker graph
generator code to generate our graphs.
Given graph scale -which is the lo-
garithm base two of the number of
vertices- and edge factor -edge ratio of
the number of nodes-, it generates a text
file of the graph as an edge list.

Since we are dealing with very large
graphs, it is needed to decide our graph
storage format(representation) care-
fully considering memory issues. Rather
than using classical adjacency matrix
representation using O(V 2) memory, it

is more suitable to use Compressed Row
Storage(CSR) format with O(V + E)
memory due to the fact that we are deal-
ing with sparse graphs whose edge fac-
tor are significantly smaller than their
number of nodes.
Different BFS Approaches
There are three different novel app-

roaches of BFS: top-down, bottom-up
and hybrid. In the top-down approach,
the algorithm tries to reach an unvisited
node from a visited node by investiga-
ting the visited node’s neighbors. On the
other hand in the bottom-up approach,
the algorithm tries to reach a visited
node from an unvisited node by itera-
ting over unvisited node’s adjacents. Fi-
nally, the hybrid method combines these
two different novel approaches. It starts
with a top-down approach and if the
number of edges of visited nodes ex-
ceeds some threshold (like 1/8 of all
edges), it switches to bottom-up app-
roach in order to skip all the edge
checks from the large frontier.
Implementation Details

We implemented 6 different app-
roaches for BFS.

23

CPU SBFS QBFS CPU_Q GPU_S GPU_S GPU_S GPU_Q GPU_S
graph_20_16 0.28 1.24 0.98 15.59 4.11 3.11
graph_21_16 0.25 1.41 1.10 16.61 5.31 4.20
graph_22_16 0.25 1.35 1.28 18.48 7.44 6.36
graph_23_16 0.19 1.55 1.51 18.95 8.51 7.26
graph_24_16 0.16 1.92 1.79 20.03 12.23 10.74
graph_25_16 0.13 2.16 2.03 20.52 11.97 10.54
graph_26_16 0.12 2.23 2.33 22.61 14.72 13.32

Figure 1: GTEPS values of all GPU implementations on generated graphs (graph name format: graph_SCALE_EDGE_FACTOR)

SBFS: It is a top-down approach
that scans the set of vertices at each
iteration to determine the current fron-
tier. GPU implementation does not have
any atomic operations that reduce pa-
rallelism.

QBFS: It is a top-down approach
that utilizes a FIFO queue. It iterates
over the nodes in the frontier and
checks if any of the adjacents is unvi-
sited and adds into the next queue atom-
ically.

BUBFS: It is a bottom-up approach
that uses the same technique as SBFS
except for the direction.

OMP-Q–GPU-S: It is a hybrid
method that combines OpenMP Queue
top-down approach with GPU-BUBFS
scanning bottom-up approach.

GPU-S–GPU-S: It is a hybrid
method that uses scan BFS for both
top-down and bottom-up approaches.

GPU-Q–GPU-S: It is a hybrid
method that uses QBFS as a top-down
and BUBFS as a bottom-up approach.

Experimental Results

The experiments were performed on
ICHEC’s primary supercomputer Kay. It
has a GPU partition of 16 nodes. On
each node, there are 2xNVIDIA Tesla
V100 16GB PCIe (Volta architecture)
GPUs each having 5,120 CUDA cores
and 640 Tensor Cores. The code was
written in C/C++, CUDA and compiled
using GCC version 8.2.0 and NVCC ver-
sion 10.1.243 with the optimization
flag -O3 enabled (publicly available on
gitlab) We generated 7 graphs from
scale 20 to 26 and in order to evalu-
ate the performance of the implemen-
tations, we randomly choose 64 con-
nected sources to start the search.

The GTEPS(Giga traversed edges
per second) results of our algorithms
are as in Figure 1 on single GPU. It
can be seen from the results that OMP-
Q–GPU-S implementation achieved the
best performance on all of the graphs.
It is even two times faster than its suc-
ceeding opponent and performs up to

x188.42 speedup against the sequential
CPU implementation.

All of the implementations are con-
trolled with CUDA-memcheck(for me-
mory leaks) and profiled with nvprof.
Then, applied kernel analysis with
NVIDIA Nsight Compute to investigate
cache hits, speed of light statistics, etc.
Since graphs are highly unstructured,
our cache hit ratio does not depend on
our implementation but depends on the
input graph’s topology.

After observing the best implemen-
tation, we wanted to compare it with
an NVIDIA supported library, Gunrock.
The GTEPS results of OMP-Q–GPU-S
versus Gunrock’s Direction Optimizing
BFS(DOBFS) are illustrated in Figure 2.

Figure 2: GTEPS values of Gunrock-DOBFS
and OMP-Q–GPU-S versus graph scale

Although Gunrock’s results domi-
nate in smaller scales, we observe that
its performance drops drastically espe-
cially after scale 22. On the other hand,
OMP-Q–GPU-S increases its GTEPS
slowly but surely with larger graphs
which are supporting the fact that our
implementation is more scalable than
Gunrock’s DOBFS on single GPU. A-
nother point that might be stressed is,
for graph scale 26, OMP-Q–GPU-S in-
creases its speed at the usual rate while
Gunrock’s implementation gives out of
memory error. It, therefore, shows us
that for a single-GPU graph applica-
tions our implementation is using less
memory compared to DOBFS. One can
claim that Gunrock is not designed for
single-GPU graph applications, however,
it does not mean these performances
are insignificant.

Conclusion and Future Work

As a result, we achieved to implement a
successful GPU implementation of BFS
that especially works well on social net-
works. The strength of our implemen-
tation is that it even competes with
Gunrock Library however weaknesses
such as processing larger graphs are
left to future work. Dealing with larger
graphs might be handled with partition-
ing graph into GPU memory. Unified
Virtual Memory or a multi-node GPU
implementation that contains a commu-
nication framework(like MPI) are possi-
ble candidates that can solve the issue.

References
1 Julian Shun and Guy E. Blelloch (2013). Ligra: A

lightweight graph processing framework for shared
memory.

2 Gunrock (2019). NVIDIA Supported CUDA Graph Li-
brary.

3 Graph500 (2020). Supercomputer rating list for data
intensive applications.

4 S. Beamer, K. Asanovic and D. Patterson (2012).
Direction-optimizing Breadth-First Search.

PRACE SoHPCProject Title
GPU acceleration of Breadth First
Search algorithm in applications of
Social Networks

PRACE SoHPCSite
ICHEC, Ireland

PRACE SoHPCBerker Demirel
Berker Demirel, Sabanci University,
Turkey

PRACE SoHPCMentor
Buket Benek Gursoy, ICHEC, Ireland

PRACE SoHPCContact
Berker, Demirel, Sabanci University
Phone: +90 530 912 3365
E-mail:
berkerdemirel@sabanciuniv.edu

PRACE SoHPCSoftware applied
C/C++, CUDA, OpenMP, Gunrock,
Nsight Compute

PRACE SoHPCMore Information
https://summerofhpc.prace-
ri.eu/author/berkerd/

PRACE
SoHPCAcknowledgement
Special thanks to Buket Benek Gursoy,
Busenur Aktilav and those who have
supported me furthering my research
experience through feedback.

PRACE SoHPCProject ID
2008

Berker Demirel

24

GPU acceleration of Breadth First Search
algorithm in applications of Social Networks

GPU
Acceleration
of BFS
Busenur Aktılav

A Breadth-First Search (BFS) is one of the
core graph-based searching algorithms. In
this study, parallel implementation of BFS
on GPU using CUDA is implemented and
performance analyses are examined.

Large scale graphs are widely
used in representing many prac-
tical applications. As graph do-
mains are growing in size, the

need for massively, parallel hardware
like the GPU arises. In recent years,
GPUs have become widely used for ac-
celerating many codes because of their
high computational power, good energy
efficiency, and low cost. [1] Therefore,
we utilised GPU to speed up the graph
processing.

A Breadth-First Search (BFS) is one
of the core graph-based searching algo-
rithms. It is used as a building block for
many higher-level graph analysis algo-
rithms. That makes it very suitable for
social network analysis. There are many
applications to social networks such as
node similarity, community detection,
influential user detection. However, par-
allel implementation of BFS is very chal-
lenging due to irregular memory access
and unstructured nature of the large
graphs.

BFS is used in different benchmarks.
One of them is Graph500 benchmark
[2] which is based on a BFS in a large
undirected graph. Throughout the re-
search, Graph500 benchmark is taken
as a pattern.

• Graphs are generated by Kro-
necker generator and they are rep-
resented.
• Parallel BFS search of some ran-

dom vertices is achieved (64
search iterations per run)

TEPS (traversed edges per second) per-
formance metric is used. In this re-
search, the implementation of serial
BFS algorithm on CPU and parallel BFS
algorithm on the NVIDIA GPUs using
the CUDA model is presented.

Datasets &
Graph Representation

Kronecker graph generator in
Graph500 routine is used to gener-
ate graphs. By giving the scale and
the edge factor, it generates a txt file
consisting of edges. Scale determines
the number of vertices, edge factor
determines the number of edges in the
generated graph.

There are two different graph rep-
resentation technique: Dynamic and
static. If the vertices and edges are
changing, then dynamic data type
should be used for representation. If
the size of the data type is determined

before the execution of the program,
then static data type could be used. In
this study both dynamic and static data
types are used representing the graphs.

Table 1: Static-Dynamic CPU performance

scale static (ms) dynamic (ms)

20 114.3 672.1
21 264.2 1430.9
22 607.2 2970.9
23 1435.06 7128.9
24 3383.1 16659.1

Table 1 shows the serial BFS algorithm
performance analysis. Static representa-
tion has shown better performance than
the dynamic representation.

BFS Algorithm and cuBFS

There are two different approaches
for BFS algorithm: Top-down and
Bottom-up. In this research, a top-down
BFS algorithm using a queue is imple-
mented and it is referenced as serial
BFS for CPU and cuBFS for GPU imple-
mentation.

Consider graphs of the form G =
(V,E) with the set V of n vertices and a

25

set E of m edges. Given a source vertex
vs, the goal is to traverse the vertices
of G in breadth-first order starting at
vs. Each newly discovered vertex vi will
be labelled by its distance di from vs
and the predecessor vertex pi immedi-
ately preceding it on the shortest path.
It performs linear O(m+ n) work.

The FIFO ordering of the serial algo-
rithm labels vertices in increasing order
of depth. The idea of parallel BFS algo-
rithms is to process each depth level in
parallel. Algorithm 1 illustrates this ap-
proach. Its work complexity isO(n2+m)
[3]

Algorithm 1: Parallel cuBFS

parallel for (i in V):
distance[i] :=∞

distance[s] := 0
iteration := 0
do

done := true()
parallel for (i in V):

if (distance[i] == iteration)
done := false
for (offset in R[i]..R[i+1]-1:)

j := C[offset]
distance[j] = iteration+1

iteration++
while (!done)

Experimental Results

All experiments are conducted on
KAY supercomputer. It comprised of a
number of components. Its thin compo-
nent has 336 nodes (2x20cores) Intel
Xeon Gold 6148, 2.4Ghz, 192GiB RAM
400 GiB SSD and its GPU component
has 16 nodes with the same specifica-
tion as the thin component, with the ad-
dition of 2xNVIDIA Tesla V100 GPUs on
each node, Each GPU has 5120 CUDA
cores and 640 tensor cores. The serial al-
gorithm is written in C/C++ language
and the parallel algorithm is written in
CUDA. For compilation gcc version 8.2.0
and nvcc version 10.1.243 is used.

Table 2 & 3 shows summaries of the
experimental result of CPU and GPU
BFS algorithms with static and dynamic
representation. As you can see that we
achieved speed-up in parallel implemen-
tation so cuBFS is faster than the serial
BFS algorithm in both representation
techniques. Also notice that while scale
is growing, the parallel cuBFS GTEPS
is constantly increasing. On the other
hand, serial BFS performance is decreas-
ing for larger graphs.

We compared our results with Gun-
rock [4] which is a CUDA library for
graph-processing designed specifically
for the GPU. It has a better performance
compared to our results.

Table 2: Static BFS Algorithms(GTEPS)

scale serial BFS parallel cuBFS

20 0.27 5.6
21 0.24 9.66
22 0.21 10.08
23 0.18 13.2
24 0.15 13.3

Table 3: Dynamic BFS Algorithms(GTEPS)

scale serial BFS parallel cuBFS

20 0.049 0.59
21 0.046 0.67
22 0.045 0.78
23 0.037 0.95
24 0.032 1.12

Code Profiling

The different code profiling tools are
used to analyse the the GPU code. These
tools are nvprof, nvvp, NVIDIA Nsight
Compute.

• nvprof creates detailed profiles of
where codes are spending time
and what resources they are us-
ing.

• nvvp collects and analyzes the
low-level GPU profiler output for
the user and It gives timeline anal-
ysis of the running code.

• NVIDIA Nsight Compute [5] is
an interactive kernel profiler for
CUDA applications. It gives de-
tailed workload analysis, different
statistics and occupancy of hard-
ware.

After analysing the parallel imple-
mentation of BFS algorithm by profil-
ing tools, several challenges are ob-
served. Warps are not used efficiently
because of irregular workloads. There
is a load imbalance issue meaning that
the computation on each iteration dif-
fers greatly. In the case of low compu-
tation, the efficiency decreases because
GPU is underutilised. The arbitrary ref-
erences from each thread within the
warp result in poor coalescing. Thus, it
decreases the performance of the code.
We worked on single GPU and large
scale graphs are not examined due to
memory constraint on GPU.

Conclusion and Future Work

As a result, We achieved to implement
serial BFS on CPU and parallel BFS on
GPU using CUDA. Performance analyses
of codes are made. It’s seen that the par-
allel BFS is much faster than the serial
code. Different code profiling tools are
used to have a better understanding of
GPU kernel activity and timeline anal-
ysis. The weaknesses of GPU code are
detected and they are as follows: warps
inefficiency, load imbalance issue and
failure of analysing larger scale graphs.

In future, algorithm could be en-
hanced to use warps efficiently. Also,
larger scale graphs could be handled by
graph partitioning and multi-node GPU
could be used.

References
1 D. Tödling, M. Winter and M. Steinberger,

"Breadth-First Search on Dynamic Graphs using
Dynamic Parallelism on the GPU," 2019 IEEE
High Performance Extreme Computing Conference
(HPEC), Waltham, MA, USA, 2019, pp. 1-7, doi:
10.1109/HPEC.2019.8916476.

2 Graph500 (2020). Supercomputer rating list for data
intensive applications.

3 Duane Merrill, Michael Garland, and Andrew
Grimshaw. 2015. High-Performance and Scalable
GPU Graph Traversal. ACM Trans. Parallel Com-
put. 1, 2, Article 14 (January 2015), 30 pages.
DOI:https://doi.org/10.1145/2717511

4 Gunrock (2019). NVIDIA Supported CUDA Graph Li-
brary.

5 NVIDIA Nsight Compute (2019.5). interactive kernel
profiler for CUDA.

PRACE SoHPCProject Title
GPU acceleration of Breadth-First
Search algorithm in applications of
social networks

PRACE SoHPCSite
Irish Center for High-End Computing,
Dublin, Ireland

PRACE SoHPCAuthors
Busenur Aktılav, Izmir Institute of
Technology, Turkey

PRACE SoHPCMentor
Buket Benek Gursoy
ICHEC, Ireland

PRACE SoHPCContact
Busenur Aktılav
Izmir Institute of Technology
E-mail: busenuraktilav@gmail.com

PRACE SoHPCSoftware applied
C/C++, CUDA, Nsight Compute

PRACE SoHPCMore Information
https://summerofhpc.prace-
ri.eu/author/BusenurA/

PRACE
SoHPCAcknowledgement
I am deeply thankful to my project
mentor Buket Benek Gursoy and my
teammate Berker Demirel for their
supports. Many thanks to
Assoc.Prof.Dr. Leon Kos for his helps.
Special thanks to Assist.Prof.Dr. Işıl
Öz for her supports

PRACE SoHPCProject ID
2008

Busenur Aktılav

26

From the data to the field, using deep neural
networks to solve astrophysical problems and
then applying the solutions to edge devices.

Deep Neural
Networks for galaxy
orientation.
Andrés vicente

We made a machine learning model to
improve and automatize the manual and
analytical techniques of computing galaxy
orientations. We try different model
architectures, implemented a custom loss
function, and obtained promising results. We
then prove that we can run the model on a
system with very constrained resources.

The objective of the project is
to use Deep Neural Networks
(DNN) to detect objects in im-
ages and we are lucky because,

in the Astrophysics world, a very big
portion of the data obtained from the
Universe is in form of pictures. In the
past, most of the classification of the
galaxy morphologies was done by sim-
ple human inspection. Nowadays, we
have better tools to classify the galaxies
but almost all of them need to be ap-
plied using an analytical model and fit
it to every one of the observations made,
which is obviously time-consuming and
computationally expensive. DNNs and
his object detection capabilities open a
new world of possibilities in Astronomy
and Astrophysics because we will not
only be able to detect morphologies of
galaxies (which is a rather easy task),
but we also could go beyond that and
infer physical properties of the galaxy
just by looking at the raw image!

In our case, we will try to detect the
orientation of galaxies (which is closely
related to the angular momentum vec-
tor if you are wondering). This is not an
easy task since we don’t have "training
data" to feed our network because we
don’t know the ground truth of this mag-

nitude in the observed galaxies but...
Here comes the HPC again to rescue us.

We can mock the observed data
with high-resolution simulations of
galaxies were we know all the param-
eters. These simulations are done by
experts in the field in the most pow-
erful supercomputers in the world for
example the Illustris simulation done at
PRACE supercomputers: https://prace-
ri.eu/universe-simulation-illustris-is-
an-ongoing-success-story/.

We decided to use the NIHAO1

simulation because it has 100 high-
resolution galaxies with different mor-
phologies.

Figure 1: Conceptual image of a DNN that takes a raw images and predicts the orientation.
From these simulations, we can ren-

der images of galaxies in any orienta-
tion and point the angular momentum
as a vector as we can see in the image
at the top.

These physical properties of the
galaxies are relevant because they tell
us the story of the galaxy evolution and
how it has been formed and evolved.
This helps us to understand our galaxy
and somehow why the Universe is as
beautiful as it looks.

We used a convolutional deep neu-
ral network to do the job of detect the
orientation in the rendered data. We
tried different architectures but the con-
ceptual scheme (simplifying a lot) will
look something like Figure 1.

27

The process

The first we needed to make to have
our network is to create the dataset to
train the network with. For that, we
used the NIHAO simulation and the
pybody python package. This package
allowed us to center and rotate the
galaxy to obtain, for each galaxy in
the simulation, around 10 images of
the different perspectives, obtaining
a total of around 900 images. All the
images were computed with his corre-
sponding labels that consisted of the 3D
vectors of the total angular momentum
of the galaxy to latter train the network.

When we had the data, we contin-
ued by making the pipeline and adapt-
ing the existing model to work with
our data. We made a pipeline to filter
the data in order to remove the small-
est galaxies and to convert the labels
from 3D to 2D, projecting the 3D vec-
tors into the image plane. We also im-
plemented dataset augmentation by per-
forming random flips in both axes and
random rotations of 15 degrees. With
this, we ensure that in each step of the
training, the network does not see the
same data and therefore is more dif-
ficult to overfit the model. Overfitting
means that the network memorizes the
images and associates them to a partic-
ular output but does not generalize the
knowledge to apply it to new images.

The model was made by adapting 2
existing models of convolutional neu-
ral networks (CNNs) (ALEXNET3 and
RESNET2). CNNs works by applying a
series of convolutions or filters to the
image, extracting in each layer more
high-level information to end up with
a general knowledge of what features
make galaxies have a particular orienta-
tion. In order to work with our images
and also to give numerical outputs and
not categorical ones, as is common
in these kind of architectures that are
made to classify images, we extended
the models by customising the last lay-
ers.

Now that we know what architec-
ture to use, how we are going to prepare
our data, and how to visualize the re-
sults, it seems that is almost done right?
Well ... of course it is not that simple.
One key aspect of training a network
is defining what is wrong and what
is right and in a classification model,
it’s a rather easy task since we have
categories between which we need to

choose. In a model like ours, in which
we need to predict a continuous param-
eter (in fact 2 in this case), things get a
bit trickier.

We need to make a function that
tells not if we are wrong or not, but
by how much we are wrong. This gets
even worse since we have multiple so-
lutions for the orientation of a galaxy
as the direction of the angular momen-
tum vector can go in both directions of
the orientation (axis of rotation) of the
galaxy as shown in Figure 3. How can
we define how far is our model from
reality then?

The approach we chose, as we are
using vectors, is to use and adapt the
existing Cosine Similarity loss function.
It’s a measure of the angular distance of
the two vectors but taking into account
that a +180o vector is a valid solution.
It is computed with the dot product and
the magnitude of the vectors A and B
as:

Custom loss = −
∣∣∣∣

A ·B
‖A‖‖B‖

∣∣∣∣

This approach has an output be-
tween -1 and 0 where -1 is a perfect
score (output in line with the axis of
rotation in either direction) and 0 is
totally off prediction (90o offset), but
we need to take into account that it
is not a linear loss so the offset angle
of our predictions will decrease as the
∝ arcos(loss).

With that, we started the training
and testing process in our machines,
with everything installed in a Docker
container. This setup very quickly be-
came infeasible for the amount of data
(even with a very reduced dataset) due
to compute times on a normal PC. We
migrated our environment to the Sa-
lomon cluster hosted at IT4Innovations,
the National Supercomputing Center of
Czech Republic. For running the models
at the cluster, we needed to export our
configuration in the Docker container
with all the modules and libraries as
well as all the files and data to their
machine. When we had the first run-
ning prototypes of the model on the
CPU-only Salomon cluster, we migrated
to the Barbora cluster which holds four
NVIDIA Volta 100 GPUs per node. This
accelerated the training of the CNNs
(significantly) due to the highly par-
allelization nature of the underlying
hardware. The speedup we obtained
with this was about 10 to 20 times,

depending on the selected hyperparam-
eters. That allowed us to make much
more experiments as we can see in fig-
ure 2 where we show the loss function
described above for some of the runs
that we made to test and fine-tune the
models.

As a culmination of the project, we
exported the model to run on an edge
device to prove that this model can be
applied on the edge. One example appli-
cation could be in the next generation
of robotic telescopes. Where we need
to detect the orientation of the galaxy
to put the slit in order to automatize
the process of obtaining galaxy rotation
curves. We chose a Raspberry Pi for this
task as is the most resource-constrained
device we can think of that also is very
popular for Edge applications.

The Results

The results of most of our runs are il-
lustrated in Figure 2 where we can see
the loss of the validation and training in
the different epochs of the training pro-
cess. We can see that we had a gap be-
tween the training and the validations
datasets. That is because the training
dataset is what the network is optimised
for and the validation dataset is data
the network is tested with. Despite it is
usual to have a gap, we found an un-
usually large difference that we manage
to correct with the augmentation of the
dataset. We also can see that the vali-
dation loss is around -0.9 to -1, which
means almost a perfect score, however,
the validation is around -0.8 being the
best we achieve -0.85. A table with the
results from the different networks is
provided.

Table 1: Random table

Name Losses

CNN Train Validation

ResNet18 −0.87 −0.854
ResNet34 −0.876 −0.852
ResNet50 −0.908 −0.867
resnet cust. −0.803 −0.793
Alexnet −0.841 −0.823
custom −0.884 −0.851

Regarding the application to an edge
device, the inference time was of about
5 to 10 seconds per image depending on
the model. This is a perfectly valid time
since the acquisition times for these
kinds of images in real telescopes can be

28

Figure 2: at the left we can see some of the training runs with the gap between the plateau in validation and training losses. At the right
we can see two of those runs for a resnet18 model before augmentation (validation is light blue and training red) and after (validation
dark blue and training orange), where the gap between training and validation was solved.

Figure3: We can see different predictions (in red) and labels (in green) for 3 of the galaxies in our validation dataset. Notice that the
middle image is a good prediction since we take into account 180o rotations from the original vector (same axis of rotation).

up to 30 minutes of exposure time. This
makes our setup perfect to do real-time
processing in observational astrophysi-
cal applications.

Verdict and Next Steps

Those results in the validation loss (-
0.85) means that we have a mean angu-
lar error of about ∼ 30o. A first analysis
to the different galaxies showed that as
we can see in the left image of Figure
3 the disc galaxies have an almost per-
fect prediction, and the rounded and
irregular galaxies have the worsts pre-
dictions due to having less defined angu-
lar momentum, and this is what made
our mean error higher than if we just
include disc galaxies.

During the project, we also noticed
that the data is one of our limiting fac-
tors. We need to have more data, restrict
the data to have just the adequate mor-
phological types of galaxies, and nor-
malise differently to have a sense of
how strong the angular momentum is
and not just where it is pointing at.

Acknowledgements
This project has been a real inspiration
for me to continue exploring the ma-
chine learning world and solve real-
world problems with the tools that I
learned here. I want to thank the SoHPC
to bring me the opportunity to develop
this project and give special thanks to
my mentor Georg and to Marc Huer-
tas, Arianna di Cintio and Christopher
Bryan Brook at the institute of astro-
physics in the canary islands to help me
on this journey. Without them, any of
this would have been possible.

Data and source code
If you liked the project and want to try it
yourself, all the data and sources can be
found at my GitHub page. The link is in
the More info section (andreuva/DNN).

References
1 LIANG WANG ET. AL. "NIHAO project I: Reproduc-

ing the inefficiency of galaxy formation across cosmic
time with a large sample of cosmological hydrodynam-
ical simulations." Monthly Notices of the Royal Astro-
nomical Society, November 2016.

2 KAIMING HE ET. AL. "Deep Residual Learning for Im-
age Recognition" Microsoft Research

3 ALEX KRIZHEVSKY ET. AL. "ImageNet Classification
with Deep Convolutional Neural Networks".

PRACE SoHPC Project Title
Object Detection Using Deep Neural
Networks – AI from HPC to the Edge

PRACE SoHPC Site
IT4Innovations National
Supercomputing Center, Czech
Republic

PRACE SoHPC Authors
Andrés vicente, Institute of
astrophysics of the canary islands,
Spain.

PRACE SoHPC Mentor
Georg Zitzlsberger, IT4Innovations,
Czech Republic.

PRACE SoHPC Contact
Andres, Vicente Arevalo, IAC
Phone: +34 675 139 063
E-mail:
andres.vicente.arevalo@gmail.com

PRACE SoHPC Software applied
Tensorflow, Jupiterlab, Pynbody.

PRACE SoHPC More Information
pynbody.github.io
https://github.com/andreuva/DNN

PRACE SoHPC Project ID
2009

29

A visualizing tool for the data outputs of various
molecular simulation techniques.

Visualization
of Molecules
Denizhan Tutar

Visualization of molecules and atomic
clusters is an important step in many
scientific applications. This project aimed
for the utilization of OpenGL rendering
pipeline and thread based parallelization in
Python 3 for lightweight visualization of
molecules.

Proper and light-weight visual-
ization of molecules, atom clus-
ters or orbitals is an indispens-
able part of a bunch of research

fields such as chemistry or materials
science. Although there are successful
tools available, the related scientific
community has diverse needs that can-
not be addressed altogether by one sin-
gle tool and development of novel tools
is a vivid and interesting domain for
many researcher.
Motivation of the project
The motivation of the project was to de-
velop a molecular visualization tool that
is lightweight and that can be used in
many popular platforms. The end prod-
uct was also intended to be easily used
from the terminal, and provide a practi-
cal export of data for some other tools
such as Gnuplot.
Overall structure of the program

The only programming language
used in the project is Python 3. Python 3
is widely used in scientific community,
and rich in term of high level libraries.
Our application includes such libraries:
Numpy for fast numerical manipulation,
PyOpenGL as a binding to OpenGL ap-
plication program interface (API) that
handles rendering, Pyglet for user in-
teractions, and Glumpy to bind them

all.
Visualization from a data file has

three steps: reading data to memory
(I/O), computing list of vertices from
data, and rendering. These tasks can
be performed in many different ways
that each may have their own advan-
tages and disadvantages, that is why
there is not a single common visualiza-
tion pipeline template. But there are
some popular approaches that we also
implemented.

A notable example of such an ap-
proach is Model-View-Controller archi-
tecture that divides the application in
three interconnected parts. Here, Model
stands for the data in the memory, View
is for visual output on the screen or
to be saved, and Controller (or dele-

gate) performs editing following the
commands of the user. We followed a
similar approach but used numpy ar-
rays as model, Glumpy to provide View
in general and handlers in Pyglet’s win-
dow module as controller for its simpler
user interaction capabilities.

A main feature of our program is to
provide user interaction to manipulate
the image. This involves zooming in and
out, rotating the image, and changing
atomic radii.
The Rendering Pipeline
The rendering is the essence of visual-
ization tasks. OpenGL is a widely used
API, mainly written in C++ and C,
and many languages provide wrappers
to it including Python. Its rendering
pipeline starts with a list of vertices,
which is used to generate visualisa-
tion primitives. Those are later used to
compute fragments and pixels, through
well structured steps that provides user
many ways to interact with the process.
Parallelization Strategy
The first step was to decide which par-
allelization technique(s) will be used.
There are two main approaches we in-
vestigated: multiprocessing and multi-
threading.

In multiprocessing approach, many
process are started to run in parallel.

30

Screenshots from nvidia-smi tool. Left image is before our application starts, right one is during the rendering.

The Operating System (OS) treats each
process roughly like an independent
program and assign separate resources.
They often communicate via Message
Passing Interface or an alternative tool.
This approach is more suitable for mas-
sively parallel computations that spans
many nodes. We did not use this ap-
proach because our task is usually not
that massive and expected to be done
within a single node.

In multithreading approach, two or
more threads run in parallel. One of the
most important differences of a thread
from a process is that they share some
of the computational resources, such
as memory. This gives rise to an impor-
tant class of errors, namely race condi-
tions. Race conditions are infamous for
being sneaky errors, and many mecha-
nisms are developed to avoid them. One
of the such mechanisms, locks, are im-
plemented in Python; but unlike many
other languages, most popular python
interpreters implemented Global Inter-
preter Lock (GIL) that restrains all the
shared memory from being accessed by
more than one thread at a time. This
reduces the number of active threads
at any given time to one and makes
threading an ineffective approach for
CPU-bound applications. Still, thread-
ing in Python can be quite useful since
it can be used to overlap data migration
and computation, at least for I/O-bound
applications.

Even when only one thread can ac-
cess data, the OS can switch among
threads at any time, and we should en-
force threads to wait for each other
in some critical sections of the algo-
rithm. We used a bounded semaphore,
a counter that is incremented or decre-
mented when a thread reaches a certain
section, and made others wait until this
thread is done to avoid unexpected re-
sults.

The end product
We achieved some of the main tar-

gets. The project has a working visu-
alization pipeline, thread parallelism
for overlapping I/O with computation
by reading data in chuncks and doing
prerendering computations in parallel,
can transfer the rendering workload
to GPU when possible, and contains
the most basic functionalities such as
zoom and rotation. You can see an ex-
ample view made with our program.

We used nvidia-smi, a handy GPU mon-
itoring tool, to investigate our GPU us-
age and be sure that we achieved to
transfer the rendering workload into
GPU. You can see the GPU-utilisation
and Python 3 process in the queue from
the following screenshots. The first one
is before and second one is during the
use of our program. This is reached
by according usage of Glumpy and Py-
OpenGL without extra steps, as those
libraries are written to use GPU when
available.

Lastly, our tool is capable of render-
ing multiple scenes in the same file, re-
sulting in an animation. It is also multi-
platform.
Discussion & Conclusion
We had reached some of the goals set in
the beginning and provided a suitable
baseline for further improvements. But
there is still some work to do to release
a fully functional visualization tool. We
can mention some major future works

as:

• Increasing the GUI functionality

• Easier use from the terminal

• Visualization of electronic densi-
ties as isosurfaces

• Implementing a more advanced
parallel I/O capability

References
1 https://realpython.com/python-gil/ last

accessed 30.08.2020

2 https://glumpy.readthedocs.io/en/
latest/ last accessed 30.08.2020

3 https://pyglet.readthedocs.io/en/
latest/ last accessed 30.08.2020

4 https://numpy.org/ last accessed 30.08.2020

5 http://pyopengl.sourceforge.net/
documentation/index.html last accessed
30.08.2020

6 https://www.opengl.org/documentation/
last accessed 30.08.2020

PRACE SoHPCProject Title
Development of visualization tool for
data from molecular simulations

PRACE SoHPCSite
IT4I, Czechia

PRACE SoHPCAuthors
Denizhan Tutar, [ITU] Turkey

PRACE SoHPCMentor
Martin Beseda, IT4I, Czechia

PRACE SoHPCCo-mentor
Rajko Ćosić, IT4I, Czechia

PRACE SoHPCContact
Denizhan, Tutar, ITU
Phone: +90 537 573 4632
E-mail: tutard@itu.edu.tr

PRACE
SoHPCAcknowledgement
Special thanks to our mentors that
were very helpful and provided the
opportunity to work really close, made
possible for the project to met some of
the goals.

PRACE SoHPCProject ID
2010

Denizhan Tutar

31

Simulations of classical or quantum field theories
take up a large fraction of the available
supercomputing resources worldwide

High
Performance
Quantum
Fields
Aitor López
Anssi Manninen

The efficient computation of quantum field theories demand the correct usage of HPC
architectures and subtly chosen methods for tasks such as matrix inversion.

Lattice discretized quantum
chromodynamics

The path integral formalism of-
fers a powerful tool to evaluate
physical quantities from quan-
tum mechanics and quantum

field theories. In the case of quantum
chromodynamics (QCD), the path in-
tegral evaluates all possible configura-
tions of continuous scalar fields over
time interval T.

To make the computation of path in-
tegral computationally feasible, the lat-
tice quantum chromodynamics (LQCD)
is introduced. The LQCD consists of
from 4-dimensional lattice that allows
spatial and time coordinates to take
only discrete values in the lattice sites.
In the lattice, each site represents
quarks fields and links connecting sites
gluon (gauge) fields. Such a set-up en-
ables one to calculate the path integral
via machinery. The quantities inferred
from the LQCD simulation play a signifi-
cant role when investigating the correct-
ness of the prevailing theory.

In this project, hadron masses are ex-
tracted from path integral data acquired
using different field configurations. Con-

sequently, the determined mass values
are utilised in the fitting analysis to
tune the bare masses of strange and
charm quarks. The tuned bare mass
values work as preconditioners which
transform the output quantities to cor-
respond experimentally measured phys-
ical values.

Introduction

The path integral formalism in field
quantum field theories allows one to ac-
quire the output of correlators (Greens
functions) computationally. To make the
calculations of integral over continuous
scalar fields feasible the space geome-
try is discretised with the LQCD model.
As a result, the integral can be approx-
imated by generating a set of sample
field configurations and averaging the
outputs. The configurations are gener-
ated with Monte Carlo methods using a
statistical weight of e−S , where S is the
action of the configuration.

To ensure the correct physical be-
haviour of the LQCD simulations, the
outputs should always correspond as
close as possible to real physical quanti-
ties. Two factors affecting the out quan-
tities are lattice spacing a and quark

bare mass values. One way to tune the
input values such as strange quark is
to analyse the quantities from meson
correlators.

Methods

To get the meson correlators the quark
and anti-quark propagators are con-
tracted with so-called 2-points functions
(separately for each time step). The
contraction function can have an ad-
ditional part which includes prior in-
formation (smeared contraction) about
the relative spatial distribution of the
quarks in the investigated hadrons. The
hadrons corresponding different quan-
tum numbers are created by combin-
ing the gamma matrices γi with the
measured field operators O. The used
mesons in this work were pseudoscalar
and vector mesons.

For the mesons correlators C the ex-
pected theoretical output is of form

〈C(t)〉 =
∑

i

aie
−tmi ,

where ai is constant and mi mass of
nth state (in a unitless form). In conse-
quence of used periodic boundary condi-

32

Figure 1: Hyperbolic cosh fit to meson correlator data (rigth) and Charm quark bare mass vs. the relative splitting term calculated with
masses determined from meson correlators (left).

tions of LQCD the actual form of the cor-
relator output is cosh function over lat-
tices interval t = 1 . . . 64. After averag-
ing the correlator data, the ground state
mass can be carefully extracted from the
exponential fit due to its slow exponen-
tial decay. The fits were done with Gnu-
plot’s weighted nonlinear least-squares
Marquardt-Levenberg algorithm by us-
ing standard errors of average values as
weights.

An important thing to notify while
calculating the weights was the correla-
tion between the configurations. There-
fore straight calculation of standard er-
ror would not describe the weights of
the fits properly. A simple way to re-
duce the amount of correlation is to
use blocking, i.e. bin each N number of
most configurations to form one data-
point. The second method to take into
account the correlations is to calculate
the standard errors by jackknife analy-
sis.

Since the determined masses are di-
mensionless quantities depending on
lattice spacing a; the tuning is done
by comparing the relative charm meson
splitting

MV −MPS

MV
,

whereMPS is pseudoscalar meson mass
and Mv is vector meson mass. The rela-
tive splitting term is approximately be-
having linearly w.r.t. bare mass, hence
the bare mass value producing physi-
cally valid relative splitting term can
be extrapolated from linear (a+ bx) fit
in bare mass in the function of relative
splitting.

Knowing the meson splitting term
MV −MPS being also linearly depen-
dent on charm bare mass value and us-
ing the relation Mphys = aMlatt allows
the extrapolation of the lattice spacing

a for the previously tuned charm quark
bare mass.

Results

The analysis was made with data pro-
duced from HPC LQCD simulations in
advance. The charm meson correlator
dataset consisted of nine different en-
sembles configured with different bare
mass values. For each correlator ensem-
ble, the charm pseudoscalar and vector
masses were determined. With the ob-
tained mass values the bare mass value
yielding physical relative splitting was
established (fig. 1).

Once the lattice spacing was re-
vealed, further analysis could be made
with strange quark masses. The strange
bare mass corresponding the target en-
ergy was extrapolated from linear fit ap-
plied to the determined strange quark
vector masses.

Conclusion

The LQCD offers a salient tool to investi-
gate the behaviour of QCD physics. The
quality of the state of art LQCD simula-
tions highly depends on the used HPC
architecture. The parallelization allows
LQCD simulation parameters such as
lattice spacing take reasonable values
to scale the errors of LQCD simulations
relatively small.

Due to historically increasing effi-
ciency of the HPC architectures, the
LQCD will offer irresistible opportunity
to study the physics of quarks and glu-
ons even more versatile in the future.

Simulation of Quantum Monte
Carlo for Carbon Nanotubes

Graphene is a two-dimensional
material whose thickness is
one atom and arranged on
a hexagonal (“honeycomb”)

lattice, as you can see in the figure
2 . The study of this material is in-
creasing due to its unusual properties.
These range from extreme mechanical
strength and lightness, through unique
electronic properties to several anoma-
lous features in quantum effects.

Figure 2: hexagonal Honeycomb lattice.
Figure content uploaded by Yasumasa
Hasegawa

Experimental research on graphene
includes simulations where the proper-
ties of strongly interacting matter are
studied and can be based on the ex-
perience gathered in the Lattice QCD.
These simulations require, for example,
the repeated computation of solutions
of extremely sparse linear systems and
update their degrees of freedom using
symplectic integrators.

At the Jülich Supercomputing Cen-
tre (JSC) in Germany, they have devel-

33

oped Hybrid Monte Carlo (HMC) meth-
ods to calculate graphene’s electron-
ics properties using lattice-discretized
quantum field theory, a model widely
used to make particle physic predictions
using HPC.

The objective of this summer project
was to understand how the algorithm
works, the parts that surround it and
which parts of the code present more
complexity to the processor. Specifi-
cally, we have modified the algorithm
in charge of solving the linear system
involved so that it runs in parallel on
the GPU.

Introduction

In order to investigate the basic
properties of the Hubbard model in
this geometry, Hybrid Monte Carlo
(HMC) simulations are used.2 The un-
derlying Hamiltonian, after Hubbard-
Stratonovich transformation and intro-
duction of pseudofermions, is

H =
1

2
δφTV −1φ+χ†(MM†)−1χ+

1

2
πTπ

(1)
where π is the real momentum field, φ
is the real Hubbard field, χ is a com-
plex pseudofermionic vector field, δ is
the step size in Euclidean time dimen-
sion weighted by the inverse temper-
ature the system, V is the interaction
potential and M is the fermion opera-
tor.

The basic HMC algorithm now gen-
erates π and an auxiliary complex field
ρ according to a Gaussian distribution
e−π

2/2, respectively e−ρ
†ρ. Then the

pseudofermionic field is obtained as
χ = Mρ. With these starting parame-
ters and an initial field φ a molecular
dynamics trajectory is calculated and
the result is accepted with the proba-
bility min(1, e−∆H). ∆H the difference
in energy resulting from the molecular
dynamics.

Solver

Note that equation (1) involves a matrix
"inversion" via the matrix equation

(MM†)x = b (2)

where MM† is a large matrix, b is a
known vector defined by the states we
are considering (b = χ), and x is an
unknown vector. This equation must be
solved very often, making it beneficial
to optimize the run time of the linear
solver.

Initially at JSC, they used two itera-
tive schemes to estimate the solutions
x of the above equation, using a Conju-
gate Gradient-based solver (CG) for a
multi-CPU architecture using OpenMP
(Note that the MM† matrix is Hermi-
tian and positive definite) implemented
in C++.3 The first, single precision CG
is used to solve well-conditioned linear
systems and it is good enough to obtain
a precision of 1e-4 to 1e-5, but as it is
a non stationary solver and the preci-
sion needed varies with every iteration,
when you need more precision the stan-
dard CG is replaced by a flexible Gen-
eralized Minimal Residual (FGMRES)
with a single precision solver as pre-
conditioner (like CG). Due to the large
number of operations that have to be
performed (mostly due to the size of
MM†) both solvers present a bottle-
neck in the execution. For this reason,
we have adapted both solver codes to
run on the GPU (with OpenACC) and
thus reduce the execution time and im-
prove the performance of the HMC al-
gorithm.

Results

Figure 3: Comparison of times of executions
on CPU and GPU. Free volume (up). Fixed
volume (down).

The results presented here have been
run on single nodes 2×Intel(R) Xeon(R)
CPU E5-2680, 40MB Cache per node for
experiments on the CPU and the GPU
compute nodes feature four NVIDIA
V100 SXM2 GPUs. The parameters asso-
ciated with the interaction potential V,

of the Hamiltonian of the equation (1),
have been set to βK = 2.5 for tempera-
ture and UK = 8 for Hubbard ratio.

To show the improvement in perfor-
mance that we obtain in both solvers
when we use the GPU in their execu-
tion, we’ve run two experiments for
each solver. In the first one, we move
the hexagonal lattice volume of the
graphene, L× L with Nt timesteps. In
the Figure 3 (up) we can see the ex-
ecution time required for the solvers
CG_single and FGMRES, respectively.
In a second experiment, we leave the
volume fixed and change the staggered
mass (ms), another parameter that in-
tervenes in the creation of the matrix
M , in the Figure 3 (down) we can eval-
uate the Speedup that we get, reaching
improvements of up to 55x in FGMRES
solver.

Conclusion

It should be noted that we have worked
with a research team that is at the fore-
front of quantum field simulations and
that uses a scientific code that without
HPC technology it would be impossible
to obtain a complete simulation.

References
1 C. Gattringer and C.B. Lang (2010). Quantum Chro-

modynamics on the Lattice.

2 S. Krieg, T. Luu, J. Ostmeyer, P. Papaphilippou, and
C. Urbach (2019). Accelerating Hybrid Monte Carlo
simulations of the Hubbard model on the hexagonal
lattice.

3 R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato,
J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, H. V. der
Vorst, (1993) Templates for the Solution of Linear Sys-
tems: Building Blocks for Iterative Methods.

PRACE SoHPCProject Title
High Performance Quantum Fields

PRACE SoHPCSite
JSC (Jülich Supercomputing Centre),
Germany

PRACE SoHPCAuthors
Aitor López, Spain
Anssi Manninen, Finland

PRACE SoHPCMentor
Stefan Krieg, JSC, Germany
Eric Gregory, JSC, Germany

PRACE SoHPCContact
Aitor, López Sánchez
Phone: +34 697 56 17 64
E-mail: aitor.lopez1@um.es
-
Anssi, Manninen
Phone: +358 505324356
E-mail: ansman@uef.fi

PRACE
SoHPCAcknowledgement
Thanks to our mentors and the entire
SoHPC team for this fantastic
experience.

PRACE SoHPCProject ID
2011

Aitor López

Anssi Manninen

34

Modifying datalayout to benefit from vectorization

FMM-GPU
Melting Pot
Igor Abramov and Josip Bobinac

Graphics processing units (GPUs) are not
used for video games only! They have
their applications in science for intensive
computational tasks. Simulation of a
system of a large number of particles is
one such task. It can be simulated using
an algorithm called the Fast Multipole
Method (FMM). However, to make it really
fast on the GPU, the data layout needs to
be adapted.

Simulation of the dynamic sys-
tem of particles or the N-body
problem has interested scien-
tists for the last several hundred

years. The main task at every time step
is moving each particle from current
position according to its velocity, fol-
lowed by updating its velocity accord-
ing to the force exerted by other parti-
cles. Due to the lack of analytical solu-
tion for systems containing more than
three objects, a lot of numerical meth-
ods were developed. Imagine comput-
ing the forces on each planet of our so-
lar system caused by all the other plan-
ets. For each of the planets, one would
need to add up the contributions to the
total force of all the other planets, one
at the time. Assuming all the data is
available, the task is computationally
trivial. However, in typical simulations,
where the particles are counted in tril-
lions, computing anything with this ap-
proach would take another several hun-
dred years even on the most sophisti-
cated computer architectures. To avoid
such scenarios, there is a need for more

sophisticated methods. The Fast Multi-
pole Method (FMM) emerged as one of
the most interesting because of it’s level
of complexity and accuracy.

Figure 1: (a) simplified 2D view of the do-
main. (b) example of the domain division.
(c) target box in black and well-separated
boxes in blue. (d) neighbouring boxes in
green.

The method is based on the idea
of approximating groups of particles,
based on their locations, into pseudo
particles that represent their groups to
simplify the computation process.You
are probably wondering how big of an
approximation error these representa-
tive pseudo particles create. The great-
est benefit of the FMM is that by doing
this approximation, accuracy does not
drop off significantly. In fact, for a cer-
tain amount of particles in the system,
FMM might even lead to a smaller error
due to its reduced numerical error i.e.
numerical error is naturally present in
every simulation due to hardware limi-
tations and when added to its approxi-
mation error the sum is smaller than the
numerical error of the naive approach.

How does FMM work?

The mentioned groups of particles
are split into two categories - neigh-
bouring and well-separated ones. Well-
separated groups are represented by a
single expression called the multipole

35

expansion and the neighbouring by a
local expansion. Multipole expansion is
an approximation of the impact the con-
sidered group has on its environment.
When the force is being computed at
a certain point, instead of accounting
for each particle in the group, only this
single expression is be considered. By
now you probably connected these ex-
pressions and the pseudo particles men-
tioned in the previous paragraph. They
are equivalent terms in this scope. Over-
all, the FMM algorithm can then be
implemented by splitting it into sev-
eral operators. For more details, we re-
fer the reader to Albert’s article.1 The
slowest, and therefore the operator that
calls the most for optimisation, is the
so called Multipole-to-Local operator
which computes the contributions of
all these group representative expres-
sions onto the expression of interest. To
do so in the mathematically least com-
plex manner, alignment by rotation and
shift to the target expression need to
be done. This way, the algorithm is at
the mathematical limit of the complex-
ity. However, there are numerous ways
to implement the same algorithm. The
final performance depends on how the
data is stored and accessed. The goal
was to implement the rotation in a way
that the benefits of parallelization for
the GPU are maximised.

Benefits of GPU parallelization?

To understand how to reap these ben-
efits, one first needs to understand the
fundamental difference between a stan-
dard computer or the CPU and the GPU.
CPUs typically consist of a few flexible
and powerful cores, designed for han-
dling a wide variety of tasks in a sequen-
tial manner. On the other hand, a typical
GPU’s high count of comparably weak
and simple cores makes them very pow-
erful in performing highly parallel tasks.
Practically, this means CPU outperforms
the GPU in tasks like listening to au-
dio material, browsing the web and all
other common functions of a computer.
However, the highly parallelizable tasks
are where the GPUs exhibit the best per-
formance e.g 3D graphics processing.
To be highly parallelizable, it must be
possible to break the task down into nu-
merous simple, data independent tasks
that can than be sent to the simple cores
of the GPU. As stated in the beginning,
GPU’s are also used in science. To reap
the benefits when doing the rotation

in the FMM, the data used needs to be
stored and accessed in a highly paral-
lelizable manner.

To parallelize or not to paral-
lelize?

Recall the multipole expansions. These
are approximations to the specific order
represented in memory by

Figure 2: Multipole expansion representa-
tion in memory. Each block holds a (com-
plex) coefficient.

Figure 3: A set of rotation matrices forming
a pyramid structure.

Figure 4: Obtaining one coefficient of the rotated multipole. Each of the three pyramid
entries multiply the triangle entries and the results are summed and stored as shown.

The size of this set and the approxi-
mation accuracy directly depend on the
approximation order. Each higher order
term requires storing one more coeffi-
cient than its lower order predecessor.
Hence, the data structure used to con-
tain such an expansion can be visualised
as a triangle of blocks, where each block
holds a coefficient.

Next, to rotate the expansion, ro-
tation matrices are used. These matri-
ces stem from Wigner rotation matrices
and further clarification is omitted due
to the focus on parallelization. Impor-
tant fact to note is that these are square
matrices whose dimensions get incre-
mented with the order.

Therefore, the containing data struc-
ture is a pyramid as shown in the Figure
3 below.

The rotated multipole expansion is
obtained by multiplying the two struc-
tures as shown in Figure 4. Since typi-
cal simulations are three-dimensional,
there is 189 multipoles that need to be
rotated. Some of them share the same
angle for rotation so there is twenty-six
angles to be used. Practically, for the
processor, this means doing multiplica-
tions with 26 different pyramid struc-
tures of 189 different triangles. This is
not a kind of task a GPU would like.
GPU would like if it had to rotate all
the triangles with the same pyramid.
However, it can be shown the same mul-
tipole rotation effect can be achieved
by taking several smaller rotation steps.
The first of these smaller steps is rotat-
ing each multipole by a fixed angle of
90 degrees. We put our attention to this
step. Rotating all the multipoles by the
same angle means using only a single
pyramid which is now a highly paral-
lelizable, GPU-friendly task.

36

How to parallelize?

When preparing the code for the GPU,
it is crucial to keep in mind its basic
working principles. The cores are a hard-
ware concept. From a software perspec-
tive, GPUs can launch a high number of
threads, where each thread belongs to
a core. This high number of threads is
distributed into blocks of threads due to
their corresponding cores being physi-
cally grouped together. The threads in-
side a single block are dependent on
their block colleagues. Only when all
the threads are done with their work
can the new work be assigned to any of
them. One unit of work that this block
does is called the "lock-step". Since the
threads inside a block typically have
the same power, if we were to assign
different workloads to members of the
block, the fastest threads would spend
some time idle. Therefore, to make the
best out of available computational re-
sources, balancing the workload for
the members of the block is essential.
Furthermore, once the processor reads
some data from the main memory, it is
stored in the fast memory local to the
processor. Ideally, all the data would be
stored in the registers because it would
be able to access it much faster than
from the main memory. However, this
is impossible since their capacity is lim-
ited. If data stored in the register does
not get used for a short time and there
are other processes happening, this data
will get flushed out to make space for
newly needed data. Due to this differ-
ence in access time from different parts
of memory, it reusing the data loaded
into registers before it gets flushed out
brings significant performance benefits.

Figure 5: Obtaining one coefficient of the rotated multipole. Each of the three pyramid
entries multiply the triangle entries and the results are summed and stored as shown.

So what does that mean in our
case?

Multiplication requires several loads of
each multipole coefficient. Once it is
loaded from the main memory, multi-
pole coefficient is only used for a sin-
gle operation, making it hard to reuse.
However, the multiplication can be set
up in a way that each pyramid elements
is only accessed once. This allows the
machine to reuse the element loaded in
the registers, avoiding repeated loading
from the slower, main memory. If we
were to rotate the multipoles one at a
time, each pyramid element would be
accessed once for each multipole. This
is not an optimal scenario. To minimise
the pyramid access frequency, multipole
triangles are stacked together. Once a
particular element of the pyramid is ac-
cessed, each thread in the block gets a
copy and uses it to multiply the corre-
sponding element of the multipole trian-
gle. This way, once the pyramid element
is loaded into the registers, it is reused
as described above. This stacked multi-
plication occurs in the same fashion as
for the single multipole triangle. Each
thread works on their own triangle in a
stack and stores the result in the same
fashion as in Figure 4. Ideally, we would
put stack all the triangles together and
rotate them at once. However since GPU
architecture has its practical limitations,
there is a sweet spot when it comes to
stacking the triangles. This can be found
by running a series of tests with a vary-
ing size of the stacked structure.

Future Work

Current method code was optimized
for CPU usage and therefore it is using
many constructions, that are not avail-
able for GPU compilation at the moment
(like std smart pointers, memory allocat-
ing primitives, etc.). Process of rewrit-
ing method code to make it possible to
run it on GPU took much more time
than it was expected. That’s why in the
future, the debugging of the code on the
GPU should be finished to find the opti-
mal size of the stack of triangles. This
idea of reusing data that can be reused
can be applied to other operators in the
FMM to boost performance.

References
1 Albert Garcia (2015). Parallel FMM on a GPU a

CUDA/C++ love story - Summer of HPC project re-
ports 2015.

PRACE SoHPCProject Title
Got your ducks in a row? GPU
performance will show!

PRACE SoHPCSite
Jülich Supercomputing
Centre,Germany

PRACE SoHPCAuthors
Igor Abramov, Swiss Federal Institute
of Technology in Lausanne (EPFL),
Switzerland
Josip Bobinac, TU Wien, Austria

PRACE SoHPCMentor
Dr. Ivo Kabadshow, JSC, Germany

PRACE SoHPCContact
Ivo Kabadshow, JSC
Phone: +49 2461 61-8714
E-mail: i.kabadshow@fz-juelich.de

PRACE SoHPCSoftware applied
C++, CUDA, GCC

PRACE
SoHPCAcknowledgement
We would like to express our gratitude
to our mentor, Ivo Kabadshow, who
was repeating method descriptions
and speeches about optimisations
until we were not fully sure that we
understand everything and then were
calling him next day with twice more
questions. Thanks Ivo for maintaining
online working format with the same
attitude and support as if we
presented in Jülich in person. Also
thanks to PRACE and the SoHPC
organizers for their effort which made
it possible to do summer program this
year regardless of all the complicating
circumstances.

PRACE SoHPCProject ID
2012

Igor Abramov

Josip Bobinac

37

Quantum Genome Pattern Matching using Qiskit

Quantum
Computing
Benedict Braunsfeld, Sara Duarri Redondo

An implementation of a genome pattern
matching application focused on DNA
sequences running on a quantum
simulator.

Pattern matching is in computer
science the act of checking a
given sequence of tokens for
the presence of the constituents

of some pattern. Finding these patterns
can help in all kinds of tasks i.e. be-
havioural patterns, genome patterns or
connecting patterns we can not grasp
with our eyes. In the case of DNA an
genetic patterns, these approaches, usu-
ally run on super computing clusters,
take days to finish due the amount of
data, and usually with an approximate
solution. Due to the high volume of
data that is parsed to the sequence
alignment algorithms they often use
heuristics methods. This permissiveness
with the solution and the high volume
of information makes these problems
attractive to solve in a quantum com-
puter, because of the high capability to
store data with quantum bits (qubits).1

When comparing to classical bits, qubits
can store a 1 or 0 but also be both in
state α|0 > and in state β|1 > at the
same time before measurement. This
property (superposition) allows qubits
to store more information per qubits
(compared to classical bits), due to the
memory growing up exponentially as
the number of qubits augments instead
of linear.

In our project we mainly focused on the
string encoding and comparison. For the
alignment we decided to work with a

naive approach, but of course further
improvements could be done using a
better algorithm. It is important to re-
mark that because of the lack of avail-
ability of real quantum computer these
analyses were carried on a simulator
from IBM. We chose to stick with the
qiskit package from IBM instead of the
Rigetti forest API.1–4

1 Encoding

To use quantum computing to com-
pare multiple genetic strings, the strings
need to be represented by quantum
states first. To encode a string into a
quantum state a superposition and reg-
ister qubits are used. The amount of
qubits used for the superposition de-
pends on the size of the encoded string.
The amount of register qubits depends
on the amount of different characters
in the string. The register qubits stores
information of the position of the el-
ement in the string and information
about the element itself. To encode a
random string the information of the
position and type of every character has
to be translated into binary. For posi-
tions, the number referring to the posi-
tion, starting counting at 0, will be con-
verted to binary. For the values, each
value would be assigned to a number,
starting from 0 and increasing from 1
to 1. Those numbers would also be con-
verted to binary.
For example to encode the string ‘-M-M’

four positions need to be represented
and 2 of them had to differ from the
other two. Therefore a superposition of
two qubits which creates four states and
one register qubit is required.

Figure 1: Quantum state representation of
the string ’-M-M’.

To put a qubit in superposition a
Hadamard gate is applied (equation 1.
The Hadamard gate or H-gate maps the
basis states |0> and |1> to |0>+|1>√

2

and |0>−|1>√
2

. This means that a after be-
ing measured it has equal probabilities
to become 0 or 1.5

A =
1√
2

[
1 1
1 −1

]
(1)

To control the register qubit depending
on the superposition a Toffoli or CCNOT
gate is applied. The CCNOT gate is a 3-
qubit gate which flips the third qubit if
the first two qubits are both 1.6 To con-
trol and flip a single qubit a Pauli-X gate
can be used (equation 2)

A =
1√
2

[
0 1
1 0

]
(2)

To apply this on the genome problem
and a multi-qubit problem the qubits
are initialised in a quantum circuit.
After initialising the circuit the qubits

38

used to represent the position of every
character in the target string are ini-
tialised as a state of the superposition.
The number of states in a superposition
scales exponentially to the the amount
of qubits. The register qubits are all 0s.
Afterwards the register qubits need to
be flipped at certain positions (in the
example at positions with M). There-
fore we apply Pauli-X gates on the state
in the superposition that is representing
the position in the string to create a
state of all 1s. Afterwards a NCX gate
(same as CCNOT but for infinite number
of qubits and not only two) is applied
to flip the register qubit. This is done
for every position in the target string
that needs to be flipped.

Figure 2: Quantum circuit representing the
encoding of the string ’-M-M’.

2 String comparison

The string comparison is based on a
simple idea. All quantum circuits are
initialised at 0 for every Quantum Reg-
ister. Once operations are applied to
encode the string, the quantum circuit
is changed in a certain order. Since
all quantum computations have to be
reversible, a reversed quantum circuit
of a second string could be applied to
the first quantum circuit. If both strings
are the same the combined quantum
circuit should end up being 0. The more
different the strings are, the more the
combined quantum circuit differentiate
from a circuit with all 0s. For example,
if ‘—-’ and ‘MMMM’ are compared, the
resulting registers will all be 1 when
measured.

3 Application

To apply this, an user-friendly applica-
tion was developed, mainly to do pat-
tern matching with DNA. The applica-
tion needs two arguments arguments:
–genome (file where genome is stored)
–reads (file with DNA reads that should
be match to the genome). Further op-

tions are: –threads (allows using mul-
tiple threads, default is 1), –code (in
case it is not a DNA sequence other
code than ATGC can be specified), –rc
(for DNA, check also for reverse comple-
ment strings).

4 Performance

In figure 3 the results for a strong scal-
ing and weak scaling experiment are
shown. For the strong scaling experi-
ment a problem size of 2048 bits and 10
reads of the same size were tested with
a different numbers of CPUs. Since the
difference between the improvement in
time is not as big for 16 to 32 as for 2
to 4 CPUs the limit of how much more
CPUs will increase the performance is
about to be reached. At this point the
shared workload is reduced that much
that not all processors are fully occu-
pied. For the weak scaling both number
of processors and the problem size in-
crease (for each problem size the size of
the reads is increased equally). In this
case it is not scaled up to big enough
problems to see, if the memory-bound
of the application is reached.

Figure 3: Scaling experiment on one node
with 40 threads. Strong scaling on top and
weak scaling on the bottom.

5 Results and Discussion

In this project an application that does
pattern matching for DNA sequences
was developed. The main computation
is developed to run on a quantum sim-
ulator. This was a first approach that is
not fully tested, but nevertheless, is po-
tentially ready-to-use. Something that
would improve the application perfor-
mance wise would be that qiskit al-

lowed for their code to run in different
nodes. With this, a better improvement
of the application could be done using
HPC systems. In addition to this, and
more focused on an application for DNA
alignment, using an algorithm instead
of a naive approach for aligning the
reads would reduce the number of com-
parisons, and therefore improve perfor-
mance.

References

1 A. Sarkar, Z. Al-Ars, C. Almudever, and
K. Bertels, “An algorithm for dna read align-
ment on quantum accelerators,” 2019.

2 H. Abraham, AduOffei, R. Agarwal,
I. Y. Akhalwaya, G. Aleksandrowicz, and
T. Alexande, “Qiskit: An open-source
framework for quantum computing,” 2019.

3 R. S. Smith, M. J. Curtis, and W. J. Zeng,
“A practical quantum instruction set archi-
tecture,” 2016.

4 P. J. Karalekas, N. A. Tezak, E. C. Peterson,
C. A. Ryan, M. P. da Silva, and R. S. Smith,
“A quantum-classical cloud platform opti-
mized for variational hybrid algorithms,”
Quantum Science and Technology, vol. 5,
no. 2, p. 024003, 2020.

5 A. N. Akansu and R. Poluri, “Walsh-like
nonlinear phase orthogonal codes for
direct sequence cdma communications,”
IEEE Transactions on Signal Processing,
vol. 55, no. 7, pp. 3800–3806, 2007.

6 D. Aharonov, “A simple proof that toffoli
and hadamard are quantum universal,”
2003.

PRACE SoHPCProject Title
Quantum Genome Pattern Matching
using Rigetti’s Forest API

PRACE SoHPCSite
ICHEC, Ireland

PRACE SoHPCAuthors
Benedict Braunsfeld, Sara Duarri
Redondo,

PRACE SoHPCMentor
Myles Doyle, ICHEC, Ireland

PRACE SoHPCContact
Leon, Kos, PRACE
Phone: +12 324 4445 5556
E-mail: leon.kos@lecad.fs.uni-lj.si

PRACE SoHPCSoftware applied
Qiskit

PRACE SoHPCMore Information
www.qiskit.org

PRACE
SoHPCAcknowledgement
For their support and organisation we
are thankful to Myles Doyle, ICHEC
and PRACE

PRACE SoHPCProject ID
2013

39

Discovering and exploiting the full power of the
most powerfull GPUs in the world

Matrix expo-
nentiation on
GPUs
Pablo Martinez and Theresa Vock

Scientific software runs on
supercomputers. However, having a
supercomputer is useless if the software is
incapable of taking advantage of such
power. Our work is focused on developing
matrix exponentiation software that takes
advantage of huge hardware resources.

C.Frésillon/ IDRIS /CNRS Photothèque

Supercomputers are an ex-
tremely powerful and majestic
piece of hardware. The com-
puter science world is, however,

different from how everyone could
imagine it. Despite having a supercom-
puter, if the software is not properly
tuned and optimized, the supercom-
puter power will be completely wasted,
because the software would be unable
to use the astonishing power of such
an amazing machine. The deMon2k1

is a scientific software that is used for
density functional theory (DFT) calcula-
tions. Sometimes, deMon2k will need to
perform a matrix exponentiation. Such
operation is very expensive and is very
well suited to be optimized for an HPC
(High Performance Computing) environ-
ment. Our work focuses on developing
a matrix exponentiation that properly
exploits the hardware resources in a
supercomputer to achieve the greatest
performance possible. We develop a
CPU, a GPU, and a multi GPU version
and we do a comprehensive yet deep
study of the performance obtained.

Introduction

CPUs are the core of every computer. It
performs all the processing to make a
computer work. We are very used to it
because every computer or phone has
a CPU. GPUs are also present in every
computer nowadays. But, what differ-
entiates a CPU from a GPU? Let’s have
a visual reference.

Figure 1: Intel Core 7th Generation die2

In figure 1, we clearly see the CPU
has 4 cores and an integrated GPU. Each
CPU core is pretty big and takes a signif-
icant amount of space of the die. Look-
ing at figure 2, we see a different scene.
The GPU also has cache memory (we

can see the shared L2 in the picture)
and has the concept of cores. But a GPU
has so many cores that we can barely
see them on the figure! In the case of
an RTX 2080 Ti, we have 4352 cores.
Amazing, isn’t it? However, we can’t re-
ally compare CPU and GPU cores, be-
cause they are not and do not behave
the same. A CPU core is much more
powerful, but a GPU has many more
cores than a CPU. If we have many inde-
pendent operations (such as linear alge-
bra for dense matrices), a GPU usually
overcomes the CPU, but in many other
scenarios, CPU performs better than a
GPU, even though it has less cores.

Figure 2: NVIDIA RTX 2080 Ti die3

40

100 500 1000 2000 4000 5000 10000
0.01

0.1

1

10

100

1,000

10,000

N

T
im

e(
s)

Diagonalization (T1)

Diagonalization (T2)

Taylor (T1)

Taylor (T2)

Taylor (T3)

(a) Execution times on Jean Zay (CPU Version) (Using 1 core)

100 500 1000 2000 4000 5000 10000 20000

0.1

1

10

100

1,000

10,000

N

T
im

e(
s)

Diagonalization (T1)

Diagonalization (T2)

Taylor (T1)

Taylor (T2)

Taylor (T3)

(b) Execution times on Jean Zay (CPU Version) (Using 40 cores)

100 500 1000 2000 4000 5000 10000 20000

0.01

0.1

1

10

100

1,000

N

T
im

e(
s)

Diagonalization (T1)

Diagonalization (T2)

Taylor (T1)

Taylor (T2)

Taylor (T3)

(c) Execution times on Jean Zay (GPU Version)

100 500 1000 2000 4000 5000 10000 20000
0
1
2

4

6

8

10

12

14

N

S
p
ee
d
u
p
o
v
er

C
P
U

(4
0
co

re
s)

Diagonalization

Taylor

(d) Speedup obtained comparing CPU version (using 40 cores) and GPU
version (using 1 GPU)

100 500 1000 2000 4000 5000 10000 20000

1

10

100

N

T
im

e(
s)

Taylor (Total)

(e) Execution times on Jean Zay (multiGPU Version) (Using 4 GPUs)

100 500 1000 2000 4000 5000 10000 20000
0

1

2

3

4

N

S
p
ee
d
u
p
o
v
er

1
G
P
U Max

Taylor

(f) Speedup obtained comparing GPU version against multiGPU version
(Taylor series only)

In this project, we first attack the ma-
trix exponentiation doing a CPU version.
As we know, GPUs are more powerful in
this kind of scenarios. Therefore, after
the CPU version, we make a GPU one.
We will see that the performance gain
is pretty decent. Finally, we decided to
make a version that uses multiple GPUs
inside a computer (in the case of Jean
Zay supercomputer, we have 4 GPUs on
the same computer!).

Jean Zay Supercomputer

The Jean Zay supercomputer4 is a tier-1
machine and based at IDRIS. It contains
a CPU and a GPU partition. One node
of the CPU partition consists of 2 In-
tel Xeon Gold 6248 processors with 40
cores in total and its frequency is at 2.5
GHz. Whereas, one node of the GPU par-
tition has 4 NVIDIA V100 SXM2 GPUs
with 32 GB. It has an accumulated peak
performance of 28 PFLOP/s.4

Matrix exponentiation

In the deMon2k software package the
calculation of the RT-TDDFT (Real Time-

Time Dependent Density Functional) is
based on Magnus propagation. This in-
volves the calculation of the exponen-
tial of a complex matrix without any
special properties.5 In order to compute
the matrix exponential, there are differ-
ent algorithms:

• Matrix diagonalization
• Taylor expansion
• Baker-Campbell-Hausdorff

We will make implementations fol-
lowing two of them. Each one will be
detailed in the following sections.

Taylor series

The expression of the Taylor series ap-
plied to the exponential is:

exp(A) =

∞∑

n=0

An

n!
=

A0

0!
+

A1

1!
+
A2

2!
+

A3

3!
+...

= Id+A +
A2

2
+

A3

6
+...

We are working with matrices, so in
the expression, A is the input matrix.
Thus, in Taylor’s expansion, we need to
compute Ax (which is done by matrix
multiplications), divide A by a given

value, and add the partial sums. The ex-
pansion is infinite, but, in the practice,
we have to make it finite. Here appears
the concept of iterations. Instead of cal-
culating an infinite sum (

∑∞
n=0), we fix

the number of iterations. For example,
50 (

∑50
n=0). This means that the matrix

exponentiation computed by Taylor ex-
pansion is an approximation. However,
for the deMon2k project, the exact value
for the exponential is not needed, and
a number of iterations of 50 is enough
to achieve the needed precision.

Even though there are many mathe-
matical operations involved in this com-
putation, in practice, the matrix multi-
plication takes almost the 100% of the
computing time, since the matrix mul-
tiplication algorithm is O(n3), against
the sums, factorial or divisions, which
are O(n).

Diagonalization

The calculation of the matrix exponen-
tial exp(A) using diagonalization con-
tains two steps: At first an eigenvalue
decomposition of the matrix A is per-

41

formed,

A = Q D Q−1,

where Q contains the eigenvectors and
D is a matrix with the corresponding
eigenvalues stored at the diagonal. Af-
terwards, exp(A) can be computed eas-
ily by

exp(A) = Q exp(D) Q−1,

where exp(D) is a diagonal matrix con-
taining the exponential of the diago-
nal entries of D. The computationally
most expensive part of the algorithm is
the calculation of the eigenvectors and
-values.

Implementation

CPU

The implementation in CPU uses func-
tions of the LAPACK6 (Diagonalization)
and BLAS (Taylor) libraries. Specific
subroutines are shown in Table 1, along
with the timer’s name we used to mea-
sure each of these functions in our
benchmarks. This way, we can under-
stand better where are we spending the
execution time and how to improve it.

Taylor Diag.
T1 cblas_zaxpy zgesv
T2 memcpy zgeev
T3 cblas_zgemm

Table 1: Functions for the CPU implementa-
tion whose execution time is measured

For benchmarking on 40 cores, the
Intel Math Kernel Library (MKL) is
linked because it includes optimized LA-
PACK routines taking advantage of sev-
eral cores. The benchmarking results
are obtained using the following com-
piler and library versions:

• Compiler: GCC version 8.3.1
• Intel-MKL version 19.0.4

and are shown in Figures 1a and 1b.
We measure the execution times of dif-
ferent parts of our code as well as the to-
tal execution time as an averaged value
over 3 runs. Taylor series runs for 50
iterations. As we can see, diagonaliza-
tion achieves better results than Taylor
for 1 core. However, their roles change
if we use the 40 cores (this is, we fully
use both CPUs). This winner exchange
infers an interesting fact: Taylor scales
much better than diagonalization, since
for 1 core is worse, but if has the pos-
sibility of using many cores, it does a
more efficient usage of them.

GPU

The implementation on GPU uses
MAGMA6 and the naming conven-
tion of its routines is very similar
to the LAPACK. The magma_zgeev
function is a hybrid CPU/GPU func-
tion to calculate the eigenvalues
and -vectors of A. Furthermore, the
functions magma_zgesv_gpu and
magma_zgemm_gpu are used to com-
pute the inverse matrix and perform
matrix multiplications. Special care has
to be taken since the last two functions
require the input data stored on GPU.

The following environment is used
for benchmarking:

• Compiler: GCC version 8.3.1
• CUDA version 10.2
• cuBLAS version 10.2
• MAGMA version 2.5.3

magma_ Taylor Diag.
T1 zaxpy zgesv_gpu
T2 zcopy-

matrix
zgeev

T3 zgemm

Table 2: Functions for GPU implementation
whose execution time is measured

The functions used for the GPU ver-
sion are shown in Table 2 and the bench-
marking results are visualized in Fig-
ure 1c. Both implementations become
faster compared to the implementation
on the CPU as can be seen in Figure 1e.
In total, Taylor performs better but this
is not surprising because matrix multi-
plication is very efficient on a GPU and
the data transfer is minimized.

Multi GPU

A multi GPU version means that the
computation takes place in more than
a GPU at the same time. In our case,
we use 4 GPUs in parallel. However, we
only did a Taylor version for multi GPU.
Moreover, instead of starting from the
base of the GPU version, the multi GPU
version has been implemented using
cuBLAS and CUDA. Therefore, we did
a new version with cuBLAS. After that,
we added support for multi GPUs, by
deciding how to divide the work among
the different GPUs involved in the com-
putation. The benchmark results are de-
picted in Figure 1e and 1f. With large
input matrices, the speedup obtained
against the single GPU version is opti-
mal (4x). Thus, we can conclude that
our multi GPU version is quite efficient.
In fact, computing the exponentiation
of N = 20000, almost the largest matrix

that fits into GPU memory, takes less
than two minutes.

Conclusions

The matrix exponentiation is an op-
eration that is very well suited to be
performed on a GPU. Both algorithms
showed a significant speedup compared
to their corresponding version on a CPU.
Anyhow, the calculation using Taylor ex-
pansion is faster than the one using di-
agonalization.

References
1 http://www.demon-software.com/public_
html/index.html [Last accessed 29 August 2020 -
Online]

2 https://en.wikichip.org/wiki/File:
kaby_lake_(quad_core)_(annotated).png
[Last accessed 25 August 2020 - Online]

3 https://tweak.de/grafikkarte/
msi-geforce-rtx-2080-ti-gaming-x-trio
[Last accessed 25 August 2020 - Online]

4 http://www.idris.fr/eng/jean-zay/index.
html [Last accessed 28 August 2020 - Online]

5 Wu, X et al "A. Simulating electron dynamics in polar-
izable environments" J. Chem. Theor. Comput. 2017,
13, 3985–4002

6 http://performance.netlib.org/lapack/
[Last accessed 28 August 2020 - Online]

6 https://icl.cs.utk.edu/magma/
[Last accessed 28 August 2020 - Online]

PRACE SoHPC Project Title
Matrix exponentiation on GPU for the
deMon2k code

PRACE SoHPC Site
Maison de la Simulation (CEA/CNRS),
France

PRACE SoHPC Authors
Pablo Martı́nez, University of Murcia,
Spain.
Theresa Vock, Vienna University of
Technology, Austria

PRACE SoHPC Mentor
Karim Hasnaoui, France

PRACE SoHPC Contact
Pablo Martı́nez
E-mail:
pabloantonio.martinezs@um.es
Theresa Vock
E-mail: theresa.vock@tuwien.ac.at

PRACE SoHPC Software applied
LAPACK, BLAS, MAGMA, cuBLAS,
LATEX, git

PRACE SoHPC More Information
deMon2k webpage

PRACE SoHPC
Acknowledgement
We would like to thank Karim
Hasnaoui for all of the support and
help he has provided us since we
started working on the project. It was
much easier to solve the problems we
found in our way thanks to his
experience and knowledge on the
field.

PRACE SoHPC Project ID
2014

Pablo Martínez

Theresa Vock

42

Machine Learning for the Rescheduling of
SLURM jobs. An Overview of How to Avoid
Under-Predictions in Estimations

Predicting
Job Run
Times
Francesca Schiavello, and Ömer Faruk
Karadaş

Cluster users tend to give large
over-estimations of the time needed to run
their jobs. This over-estimation can grossly
impact the scheduling of these jobs in a
negative manner. Using machine learning
we aim to more accurately predict these
times, whilst avoiding under-estimations.

Supercomputers are very impor-
tant tools for performing the cal-
culations needed in the develop-
ment of scientific studies. Some

of the jobs that are accelerated using
supercomputers are completed quickly
and some can continue for months.
Since each user cannot have their own
supercomputer, these computers must
be shared. Therefore, a workload man-
ager is needed for the clusters to ef-
ficiently handle management of the
submitted jobs. To solve this problem,
SLURM workload manager is a useful
and practical tool.

SLURM has several optimizations to
schedule submitted jobs most efficiently.
The optimization we focus on in our
study is given by backfilling. Unlike the
standard first in first out (FIFO) schedul-
ing, backfilling allows jobs to be com-
pleted earlier by distributing short-term
jobs on idle nodes of supercomputer.

However, some people can declare
limit times for their jobs which are

much longer than the actual elapsed
time (Figure 1), which makes the
scheduling optimizations ineffective.
Our project proposes a solution to this
problem using machine learning with
various mathematical approaches.

Figure 1: Normalized Elapsed time and
Time limit ratio of submitted jobs

Additional info

• Machine learning is a good start-
ing point when it comes to deter-

mining time limits in the place of
users doing it and lots of data is
required to train a good machine
learning model. The dataset con-
sists of the past batch jobs of the
supercomputer of Hartree Centre.

• As a result of the analyses made,
we have seen that similar jobs gen-
erally elapsed for similar periods.
Therefore, grouping similar job
names would make it easier to
estimate the time limits. Leven-
shtein distance (edit distance),4

one of the famous methods in
natural language processing, was
used when grouping job names.
To summarize briefly, Levenshtein
distance determines how many
edits (insertion, deletions, or sub-
stitutions) are required to convert
one word to another. Groupings
were made with 2 or less edit dis-
tance

• While determining the accuracy
of the algorithm, we established

43

Figure 2: Predictions made with Mono (Huber regression) on the left and manual regression on the right.

that predictions longer than the
elapsed time and shorter than
Time limit were correct predic-
tions.

Job Time limit Regression

When estimating the time limit, the
prediction should not be less than the
elapsed time. In case of underestima-
tion, people’s days of work can be
wasted, because their submitted jobs
would be terminated prematurely, forc-
ing them to submit their jobs again.

Our aim here is to create a model
that estimates the elapsed times of the
jobs according to the job names and de-
termines the time limits with a certain
safety margin.
Mono Regressor
As a first approach, we chose to create

a model using regression algorithms al-
ready existing in the scikit library, and
we called it a mono regressor. Various
regression methods from the scikit li-
brary were used, and the highest per-
formances were obtained with Gradient
boosting, Random Forest and Huber re-
gression, but there were still many un-
derestimates. As seen on the left in Fig-
ure 2, the weakness of this model is that
each regression model has a general at-
titude, so it cannot predict outsider jobs
that do not conform to the general atti-
tude in the train set.
Manual Regressor
As a second approach to reduce the

number of underestimations, we devel-
oped a regression model that can be
characterized manually and we called
it manual regressor.

In the Manual regressor, data are
grouped by job names and the maxi-
mum elapsed times of each job names
are selected. To avoid underestimations,
predictions are made above a certain
margin of safety from the maximum
elapsed time (e.g. %150).

In addition, the manual regressor
chooses not to predict the jobs that are
elapsed at a certain rate close to the
time limit. It also chooses not to predict
the jobs that are less than a certain fre-
quency (e.g. 3). As seen on the right in
Figure 2, the weak point of this model
was that it could not predict a job that
elapsed more than the maximum time
in past jobs.
Machine learning - a cyclical process
While the results obtained from the pre-
vious models are already good, and the
model itself is powerful because it stores
all of the user’s history, this latter fact
would result in re-training the model
quite often. This is because each sub-
mitted job with a unique enough name
becomes a new parameter, as such the
algorithm must re-learn all the previous
relationships and the new relationships
due to this new parameter. To avoid
problems due to this, and because Ma-
chine Learning is in fact a cyclical pro-
cess, we can take what we have learnt
in the previous model and apply it to a
less expensive one.

Through the prior testing we know
that both the history of elapsed time
and past job names, contain a lot of
predictive power. To determine their
relevance to the model we run a fea-
ture importance test. This again can
be done easily through Python’s scikit
learn package. This test ranks our fea-
tures by order of importance, and we
find that previous job elapsed times,
and the similarity between job names
are some of the most important pre-
dictors, which conforms with our ex-
pectations. We also find, unsurprisingly,
that as we move backwards in time, the
importance of each job decreases, that
is to say, that the last job is more im-
portant than the 2nd-to-last, which in
turn is more important than the 3rd-
to-last, and so forth. Through testing
and research [2], we choose to focus

on the last three previous jobs, with
the addition of adding features for the
max, mean, and standard deviation for
elapsed times of the previous 10 jobs.
Adding more will likely add unneces-
sary noise to our model, while adding
fewer could lose information on the
variance.
Regression Techniques
Using the features we have explained,

we can train a model on a partial sub-
set of the data we have and test it on
an unseen subset of the data, this is
needed to evaluate the performance of
each model. We initially tested a multi-
tude of models but found that Linear Re-
gression models and Ensemble method
models perform best overall. By testing
on multiple, disjoint subsets of the data,
we can achieve a more true view of the
performance of the models. Given that
our data is time-dependent we cross-
validate by training and testing on or-
dered chunks of our data, rather than
randomly sampled ones like in non time-
dependent cases.

It is worth mentioning that although
Random Forest, and another tree en-
semble method achieved high accuracy
rates on their own, we chose to combine
these methods to decrease the number
of under-estimations even further. Note
that in this case accuracy refers to pre-
dictions being greater than the actual
elapsed time, if the prediction were to
be below, then users would have their
jobs terminated by the scheduler pre-
maturely. As many users aren’t used to
check-pointing - saving their results pe-
riodically - all their work would be lost
and they would have to resubmit their
job at the back of the queue. By com-
bining the different regression models,
we take the maximum estimated time
of three different models, thus effec-
tively reducing the number of under-
estimations.

Despite this effort, a small percent-

44

age of under-estimations remain. With
our best efforts these remain around
7%. This is also partly due to human
error, where users sometimes may
themselves give the scheduler a time
limit for their job that is too low, in
such a case, the algorithms will likely
come up with estimates that are under-
estimates as well (though there are
a few times where the algorithm will
suggest a higher time limit). Mostly,
these jobs are unpredictable and our
regression techniques cannot estimate
them accurately. As such, our best shot
is to predict what jobs will fail in our
regression model, and simply avoid
estimating their run time.

Figure 3: The ROC curve of various
classification models. Notice random
forest achieves the highest true positive
rate (almost 60%) with 0 false positives.

Predicting the Unpredictable
After building a regression model

we move on to build a classification
model. In the latter we aim to clas-
sify jobs within two categories: good
jobs, which are the job’s run times
that we can safely estimate without
under-predictions, and bad jobs, which
are exactly those jobs that are under-
predicted and that would be terminated.
Now, recall that our regression models
predict most jobs accurately, so we have
a ratio of about 93 good jobs, to 7 bad
jobs. A simple model, trained on the cur-
rent skewed dataset, would learn this
imbalanced ratio, and give more impor-
tance to classifying good jobs, than to
accurately classifying bad jobs. Gaus-
sian Naive Bayes, which is a simple yet
powerful model, simply classified all of
our jobs as "good jobs" - hey, with that
tactic it still achieved 93% accuracy!

The whole point of this second
model though is to identify the "bad
jobs", so our skewed dataset really
won’t cut it. To let the algorithm know
that it should give more importance to
bad jobs, we perform down-sampling,
where essentially we train the model on
a subset of data containing a balanced

ratio (1:1) of good jobs to bad jobs.
If you are familiar with machine

learning you may know that this
method is heavily used in the medi-
cal field. If for example you were test-
ing people for a rare, but deadly dis-
ease, you would much rather identify
sick people at the cost of misclassifying
healthy people, rather than the other
way around. If your model were to
achieve an astounding 99% accuracy,
but not identify a single sick person, and
just classify everyone as healthy - well
then that would be a useless model!

This brings us to the second tech-
nique used to identify bad jobs. In a
classification model with only two cate-
gories, our model can estimate the prob-
ability that a job falls in either cate-
gory. This probability, by default, has a
threshold of 50%, such that a job is clas-
sified in the category for which it has
higher probability of falling into. We can
change this threshold to be skewed such
that a job is not classified as good un-
less it has 60%, 70% or even more of a
probability to be a good job. With a high
enough threshold this trick allows us to
identify all bad jobs, without exception.
In our case, we found through multiple
testing that this threshold is about 70%.
This of course comes at the cost of miss-
classifying good jobs. A cost function is
usually used in such cases to determine
how many jobs we are willing to miss-
classify, but first we must identify the
cost of missclassifying each respective
category. Such a cost function would
give us the adequate threshold to use.

In figure 3 we can see that the clas-
sification model performs quite well.
The area under the curve, AUC, which
is a better measurement to use rather
than accuracy for this scenario, has a
best value of 0.91, where the maximum
score would be 1, and it would form
two straight lines pulled up at the top
left corner. A diagonal line from (0,0)
to (1,1) is equivalent to what a random
prediction model would achieve.

Future work

In our project we have built two mod-
els for the estimation and classifica-
tion of jobs, to predict more accurate
run times without causing any under-
predictions. This is a new approach in
the literature, as no researchers, to the
best of our knowledge, have tackled the
issue of avoiding under estimating jobs.
Like any machine learning algorithm,

there is always room for improvement.
A number of directions are possible for
future work. The first thing would be
the live testing on the system, such that
we could calculate the actual efficiency
gained in the scheduling algorithm. It
would then be possible to study what
kind of jobs are the ones that would cre-
ate the most improvements in schedul-
ing, and focus on predicting those job
run times more accurately. We could
fine tune the algorithms parameters and
weights to achieve this. The techniques
could then be influential on the SLURM
scheduling parameters chosen, to op-
timize the scheduling algorithm even
more. Finally we could expand the clas-
sification categories to include and pre-
dict jobs that were under-estimated by
the user. By predicting these we could
suggest to the user a more appropriate
increased time limit, such that their job
would not be terminated prematurely.
This would again save a lot of the clus-
ter’s resources and diminish the queue’s
waiting time.

References
1 Gaussier, Eric, et al. “Improving Backfilling by Using

Machine Learning to Predict Running Times.” Proceed-
ings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis
on - SC 15, Nov. 2015.

2 Naghshnejad, Mina, and Mukesh Singhal. “A Hybrid
Scheduling Platform: a Runtime Prediction Reliability
Aware Scheduling Platform to Improve HPC Schedul-
ing Performance.” The Journal of Supercomputing,
vol. 76, no. 1, 2019, pp. 122–149.

3 Tanash, Mohammed, et al. “Improving HPC System
Performance by Predicting Job Resources via Super-
vised Machine Learning.” Proceedings of the Practice
and Experience in Advanced Research Computing on
Rise of the Machines (Learning), 28 July 2019.

4 Levenshtein, Vladimir I. "Binary codes capable of cor-
recting deletions, insertions, and reversals." Soviet
physics doklady. Vol. 10. No. 8. 1966.

PRACE SoHPCProject Title
Machine Learning for the reschuduling
of SLURM jobs

PRACE SoHPCSite
Hartree Centre, UK

PRACE SoHPCAuthors
Francesca Schiavello, University of
Amsterdam, Netherlands
Ömer Faruk Karadaş, Izmir Institute of
Technology, Turkey

PRACE SoHPCMentor
Vassil Alexandrov, UKRI STFC, UK

PRACE
SoHPCAcknowledgement
We would like to acknowledge the
great help we have received from our
project Co-Mentor, Anton Lebedev, in
guiding and pushing our work to
achieve the goals we had initially set
forth.

PRACE SoHPCProject ID
2015

Francesca Schiavello

Ömer Faruk Karadaş

45

Porting Lowe-Andersen and Peters thermostats to
GPU for a particle simulation program DL MESO

Boosting
Dissipative
Particle
Dynamics
Nursima Çelik & Davide Crisante

In particle simulations, thermostats are
used in controlling system temperature,
like in real life experiments. In this project,
we ported Lowe-Andersen and Peters
thermostats to GPU, enabling researchers
to use these thermostatting options in
reasonable amounts of time.

Conducting scientific experi-
ments on computers gives us a
chance to explore more variety
of systems in less time. We

are able to replicate many real world
phenomena on computers and get more
insight about mechanisms of nature.

Evidently, it is important to have sim-
ulations that produce correct outputs.
We don’t want our “replication of na-
ture” to deviate from reality and lead
us some crazy conclusions. To get cor-
rect physics, one thing we need to pay
attention is the scale that simulation
operates in.

As you may have heard, things work
a little different in micro compared to
macro scale. While Newton physics is
sufficient in defining rules of the world
in macro, quantum effects become sig-
nificant when we go down to the micro

level. For this reason, it is good to have
different simulation techniques for dif-
ferent scales.

Figure 1: Group of atoms are treated as
one particle in DPD.

The scale we are concerned in this
project is mesoscale, which is in be-
tween micro and macro. Mesoscale can
range between 10 –1000 nm and 1 ns
–10 ms[1]. One technique used for this
scale is called Dissipative Particle Dy-
namics (DPD).

A glance at DPD technique

In DPD, particles are modelled as
spheres, and time is split into small
durations called time steps. There may
be forces acting on particles which will
cause motion. At every time step, we
calculate total force applied on each
particle, and then we find its next
position and velocity. The output is
trajectory of every particle as well as
system statistics like kinetic/potential
energy, temperature, pressure.

In any experiment, it is desirable to
keep some quantities (like tempera-
ture, pressure, volume) constant to ob-
serve the effect of independent variable.
Mechanisms for keeping temperature
are called thermostats. It is important
for simulations to be able to
provide thermostats.

46

Task

There are two versions of DL_MESO
code, one written in Fortran language,
utilising MPI; the other written in
CUDA-C language, utilising GPU. While
there are five different types of ther-
mostats in Fortran, only DPD thermostat
was available in CUDA. Our task was
to port Lowe-Andersen (LA) and Peters
thermostats from Fortran to CUDA.

DPD Thermostat vs Lowe-
Andersen vs Peters

DPD thermostat is the default option,
which is a balance between drag and
random forces. Drag forces tend to de-
crease the temperature by decreasing
velocities, and random forces tend to
increase it by reproducing the Brownian
motion.[2]

On the other hand, LA and Peters ther-
mostats introduce a velocity correction
step after integration instead of drag
and random forces. LA and Peters ther-
mostats are similar but yet different.
LA applies velocity correction only to a
sample of particle pairs instead of all
pairs. Specific equations of methods are
omitted, but they can be found in the
DL_MESO User Manual.

Methodology

We took Fortran code for Lowe-
Andersen/Peters options as our ref-
erence. In every step, it was important
to make sure that both versions pro-
duced the same results when fed with
the same inputs.

We divided code into small steps so that
we port one step at a time. Those steps
included:

• Velocity Verlet Stage 1

• Force Calculation

• Velocity Verlet Stage 2

• Velocity Correction

• Stress and Kinetical Component
Calculation

In order not to get lost during the pro-
cess, we followed a workflow that looks
like as follows.

• Make sure values from both ver-
sions matches before the imple-
mentation

• Implement the step

• Make sure values from both ver-
sions matches after the implemen-
tation

We often encountered with mismatched
results from serial and parallel versions.
Problem was sometimes an uninitialised
variable, but sometimes it was not that
easy - like one we faced during velocity
correction.

Now let’s take a closer look to each step.

Step 1: Velocity Verlet Stage 1

Stage velocities of all particles through
the half time step.

The default DPD thermostat was
already using a kernel called
k_moveParticleVerlet_1 for this purpose.
Since Lowe-Andersen/Peters had no dif-
ference in this step, we used the same
kernel in our Lowe-Andersen/Peters
integration.

Step 2: Force Calculation

Between two Velocity Verlet stages,
forces should be calculated.

A particle applies force to all particles
around it within a determined distance
called cutoff radius. Also, it is affected
by only particles those are in the cut-
off radius. As effects of particles beyond
this radius is considered to be small,
their contributions are ignored.

Figure 2: Particles interacting in cut-off
radius

In this step, we loop through all parti-
cles to find pairs that are interacting
with each other. As the result, we get
total force applied on each particle at
the end.

As you see, force calculation may be-
come a heavy process; especially when
the number of particles and number of
time steps is large. In the results sec-
tion, we will see that force calculations
indeed take a lot of time. It is the most
costly second operation.

To realise this step, we modified a ker-
nel called k_findForces that was used for
DPD thermostat. We removed random
and drag forces.

Step 3: Velocity Verlet Stage 2

Stage velocities up to the end.

This is computationally similar to stage
1. Again, we made use of a kernel called
k_moveParticleVerlet_2 that was used
in DPD thermostat. But we needed to
make a modification.

Inside this kernel, stress and kinetic en-
ergy calculations were done, which was
normal for DPD thermostat. However,
in Lowe-Andersen and Peters, there is
a velocity correction step after Velocity
Verlet, in which velocities of particles
are updated. If we calculated stress or
kinetical values in this step, they would
no longer be valid after the correction.

So, we created k_moveParticleVerlet_2_lowe,
removing stress and kinetic energy cal-
culations. We left them to post correc-
tion.

Step 4: Velocity corrections

As we mentioned, in DPD thermostat,
random and drag forces have the key
role to keep temperature around the
same level. Here is the innovation of
Lowe-Andersen/Peters.

In Lowe-Andersen we needed to

1. Get a random sample of particle
pairs

2. Adjust their relative veloci-
ties according to a Maxwellian
distribution[3

For the case of Peters, we needed to

1. Get all particle pairs

47

2. Adjust their relative veloci-
ties according to a Maxwellian
distribution[3

As correction was new, there was no
kernel we could use as we did for Ve-
locity Verlet. We created a kernel called
k_correctLowe/k_correctPeters.

To apply velocity corrections, we
needed to get all interacting particles.

In the serial version, the interacting
particle pairs were stored in a list while
calculating forces. In the correction
stage, that list is used to avoid re-
traversing all those pairs. The pair list
was shuffled. Then in a loop new veloc-
ities were calculated and assigned to
each pair.

In GPU version, we could make a list of
interacting pairs in the force calculation
phase, too. But this would cause extra
memory transfers, from device to host,
and again host to device - something
we wanted to avoid.

Therefore, we decided to find pairs
once more, this time in order to correct
their velocities. Although this is not the
most optimal thing to do, it has the
advantage of simplicity.

At first, we corrected only a controlled
group of particles. That way, we were
able to compare the updated velocities
from CPU and GPU.

Data Race

In CUDA implementation, data race
caused trouble.

Imagine one thread is on the way to
updating pair (1,2), while the other
wants to update pair (2,1). Finding
new velocities depend on the difference
between current velocities of two parti-
cles. When one particle finds correction
and updates the velocities of particle 1
and particle 2, the velocity difference in
the other thread becomes invalid. So,
the correction the second thread adds
ends up being incorrect.

Incorrect values was a minor problem,
because modifications were small. How-
ever, the big problem was randomness.
Values differed from one execution to
other, depending on the order of writes
of threads. That made impossible to
compare GPU values with those of CPU.

To prevent data race, one option was to
use atomic operations. But that would
mean to serialise the code. Instead,
we made threads to use old velocities
instead of current ones. It didn’t matter
which thread modified velocity first,
because nobody read those updated
velocities in the correction phase. All
threads used the ones before correction.

As a conclusion, we did not strictly obey
the formula of thermostats. But, as I
mentioned already, this corrections are
small enough to allow us to do such a
simplification.

Step 5: Stress and Kinetic Energy Calcu-
lation

We finally added stress and kinetical
component accumulators. This step was
important in the sense that we could
see if temperature stayed around a de-
termined value as intended.

Results

We tested final program with Lowe-
Andersen and Peters options both in
CPU (32 cores) and GPU. GPU version
turned out be 10 times faster.

Figure 4: First three most costly
functions after memory transfers

We used nvprof program to profile
the code. The most costly operation is
memory transfers from host to device.
Thankfully they happen only once at the
beginning of the program. In the second
and third places, there are force calcu-
lation and velocity correction functions
- remember both contained a traversal
of all particle pairs which is costly.

Figure 3: On the top LA, on the bottom
Peters: CPU time is in blue, GPU time is
in green.

When we compare Lowe-Andersen and
Peters, we see that the former takes less
time when number of time steps are
equal. Remember that velocity correc-
tions were applied to a smaller group of
particles in Lowe-Andersen. However,
Peters has the advantage of allowing
one to use larger time steps.

Discussion & Conclusion

We have two new features added to
the GPU version of DL_MESO program:
Lowe-Andersen and Peters thermostats.
We hope that researchers will benefit
having these options on GPU. As fu-
ture work, other thermostats can be
ported to CUDA version, like DPD-VV
and Stoyanov-Groot. In additon, scal-
ing DL_MESO to large number of GPUs
would make a great impact in simula-
tion of larger systems.

References
1 Michael A. Seaton , Richard L. Anderson , Sebastian

Metz & William Smith (2013) DL_MESO: highly scal-
able mesoscale simulations, Molecular Simulation

2 Robert D. Groot and Patrick B. Warren (1997) Dis-
sipative particle dynamics: Bridging the gap be-
tween atomistic and mesoscopic simulation. Journal
of Chemical Physics, 107(11):4423-4435

3 M. A. Seaton and W. Smith DL_MESO USER MANUAL

PRACE SoHPCProject Title
Scaling the Dissipative Particle
Dynamic (DPD) code, DL MESO, on
large multi-GPGPUs architectures

PRACE SoHPCSite
Hartree Centre - STFC, UK

PRACE SoHPCAuthors
Nursima Çelik, Bogazici University,
Turkey
Davide Crisante, University of
Bologna, Italy

PRACE SoHPCMentor
Jony Castagna, Hartree Centre -
STFC, UK

PRACE SoHPCSoftware applied
DL MESO

PRACE SoHPCMore Information
www.scd.stfc.ac.uk/Pages/DL MESO.aspx

PRACE
SoHPCAcknowledgement
Many thanks to our project mentor
Jony Castagna for all the help and
patience, and Hartree Centre STFC
for the resources.

PRACE SoHPCProject ID
2016

Nursima Çelik

Davide Crisante

48

Benchmarking and performance analysis of HPC
applications on modern architectures using automating
frameworks

Monitoring
HPC
Performance
Elman Hamdi, Jesús Molina Rodrı́guez de Vera

The variety of competitive hardware solutions
has made benchmarking an increasingly
significant and challenging task for HPC
specialists. In this project, we used portable
automating frameworks to better understand
the performance of several HPC components
and applications on different hardware and
software configurations.

The complexity of HPC sys-
tems is constantly growing, and
nowadays they are very hetero-
geneous environments:

• There are different hardware so-
lutions, with multiple processors
and accelerators architectures.

• Different parallelisation ap-
proaches are possible, like pure
distributed memory, shared mem-
ory, hybrid or GPU.

• Moreover, there is a wide variety
of scientific software offered to
the system users, and each pro-
gram uses the resources in a dif-
ferent way.

This heterogeneity can be a prob-
lem not only for HPC maintainers, that
have to ensure that everything works
smoothly and fast on their systems; but
also for users, who don’t know how to
get the best performance out of the sys-
tem for their application.

In order to overcome this issue, HPC
specialists use a series of automating
tools and frameworks to monitor the
different hardware and software com-
ponents of the system and get the best
possible performance without sacrific-
ing maintainability. Figure 1 shows the
main tools and the workflow used at
SURFsara:

• XALT, that is used for software us-
age monitoring. It helps maintain-
ers to know which applications
are used the most.

Figure 1: Automated workflows used for software stack deployment on SURFsara.

• EasyBuild, which makes the man-
agement of the modules of an
HPC system much simpler.

• ReFrame, that is a high-level
framework for writing regression
tests for HPC systems.

• Jenkins for continuous integra-
tion of software and automatic
test triggering.

All of the mentioned tools played an
important role in our project.

49

However, we will focus on ReFrame,
which has been our main working tool
during this internship.

ReFrame allows creating abstract
and portable regression tests, separat-
ing the logic of the tests from the low-
level details like the hardware or con-
figuration. ReFrame tests are written in
simple Python code. Its syntax allows
to easily modify parameters such as the
EasyBuild modules to be loaded, the
system partitions to be used (that is,
the type of computation nodes), and
even the desired parallelisation configu-
ration.

Monitoring Cartesius

The goal of this project is to use the Re-
Frame framework to automate the test-
ing of specific software and hardware
components of Cartesius, the Dutch na-
tional supercomputer.

File systems

File systems play an important role in
the performance of a supercomputer. It
is thus crucial to make sure that the per-
formance of these file systems is reliable
and consistent.

In order to help maintainers to moni-
tor this key aspect of the system, we cre-
ated a series of ReFrame tests that could
be run periodically to detect potential
issues that may affect the performance
of the system.

We used IOR, a synthetic benchmark
commonly used for evaluating the per-
formance of parallel file systems, to test
the different file systems available on
Cartesius (NFS, Lustre).

Heavily used applications

At SURFsara, XALT is used to monitor
software usage and decide on which
modules to focus to have the most im-
pact.

This way, we identified NAMD and
ORCA as two of the most heavily used
applications on Cartesius, which makes
it crucial to test them thoroughly to be
able to determine:

• whether the performance con-
forms to the expectations and is
consistent after maintenance and
new installations, or immediately
identify changes affecting perfor-
mance,

• whether the performance and
scalability are satisfying with all
hardware and software configura-
tion available,

• what configurations the users
should choose to get the best per-
formance out of the system for
their specific application.

In order to answer these questions,
we created ReFrame tests and ran them
with different parallelisation configura-
tions (pure MPI, pure OpenMP and hy-
brid) on the different hardware avail-
able on Cartesius: Intel Haswell, Ivy
Bridge and Broadwell nodes, and Nvidia
Tesla GPUs.

The results of our tests allowed us to
identify and fix issues affecting current
installations, and gave us meaningful
insights regarding performance. With
this information, we created extensive
guides that are published on SURFsara’s
user documentation to help users to de-
termine which hardware and software
configurations they should use depend-
ing on their needs to obtain the best
performance out of Cartesius. This, in
turn, will help users make better use of
the resources, increasing the through-
put of the system.

Moreover, our tests will be used to
make sure new installations perform at
least as good as previous installations,
and also to make sure that changes in
the systems do not affect the applica-
tion’s performance in a negative way.

Figure 2 shows a simplified diagram
of the workflow for this part of the
project.

Figure 2: Workflow of test execution and analysis for ORCA and NAMD.

ORCA

ORCA is a general-purpose tool for
quantum chemistry with particular em-
phasis on open-shell spectroscopic prop-
erties, parallelised with MPI. We used
version 4.2.1 of ORCA, with OpenMPI
3.1.4.

We selected a test case per-
forming geometry optimisation of a
[Fe(H2O)6]3+ molecule employing
DFT with RI approximation.

To measure performance, we used
the total execution time in millisec-
onds(msec). Figure 3a shows the execu-
tion time on one Broadwell, Haswell,
and Ivy Bridge node using different
numbers of MPI tasks per node. This
test shows good scalability up to 6 tasks
per node, and then degraded scalability
for higher core counts. The test case is
too small to scale to a full node, and the
overhead of the parallelisation is too
high compared to the compute work
when the number of tasks increases.

More details about the results of
our analysis on Cartesius will soon be
available on the ORCA userinfo page of
SURFsara.

NAMD

NAMD is a parallel molecular dynam-
ics code designed for high-performance
simulation of large biomolecular sys-
tems. We used version 2.13 of NAMD.

We selected test cases of different
sizes (number of atoms) and with dif-
ferent types of systems to be more repre-
sentative of all real use cases. The met-
ric we considered was ns/day, which
is the most common for NAMD bench-
marking. It represents the number of
nanoseconds of simulation time per day
of wallclock time.

50

(a) Performance results depending on the number of MPI tasks for
[Fe(H2O)6]3+ Molecule Test Case, ORCA 4.2.1

(b) Performance results depending on the number of MPI tasks for UEABS
Test Case A, NAMD 2.13 Memopt, Hybrid MPI+OpenMP, Broadwell nodes

Figure 3: Examples of the results of our analysis of ORCA and NAMD performance.

With our tests, we noticed that the
multithreaded version of NAMD was
not available in the existing installa-
tions. Thus, we improved the Cartesius
software stack by installing a memory-
optimised version of NAMD that en-
ables the usage of multithreading and
allows larger experiments by reducing
the amount of required memory. We
compared the performance of this new
module (using different hybrid paralleli-
sation combinations) with the already
existing module. No significant differ-
ences in performance were measured
between the standard and the memory-
optimised versions, which is good as it
means users can run larger tests without
losing performance.

As an example, we can see in Fig-
ure 3b the performance of the memory-
optimised version on Broadwell nodes
for the UEABS test case. The scalabil-
ity is good when increasing the num-
ber of nodes, and the best paralleli-
sation configuration is using hybrid
MPI+OpenMP with 2 MPI tasks per
node (i.e. 1 MPI task per socket).

More details about the outcomes of
our analysis can be found in the NAMD
userinfo page of SURFsara that we cre-
ated as a result of our work.

Collaborating in the Comp-
BioMed project

We also tested and analysed the perfor-
mance of Alya, which is a multi-scale,
multi-physics simulation code, and is
part of the CompBioMed European Cen-
tre of Excellence.

The Alya developers of the BSC were
very interested in understanding how a
new feature of their program (a new
version of their library Dynamic Load

Balance, DLB) behaves on Cartesius, so
we collaborated with them to obtain
meaningful metrics from the execution
of Alya. For that, we used a respiratory
system simulation provided by BSC.

We based the analysis of the perfor-
mance on the application of the method-
ology proposed by POP European Cen-
ter of Excellence. We particularly fo-
cused on comparing the computation
efficiency and load balance of the global
application and the Nastin computation
module using different heterogeneous
hardware combinations.

The latest Alya version was not fully
installed on Cartesius at the time of our
participation in the project, so we could
not run all the desired tests. However,
we could extract meaningful results for
some aspects of the execution that are
being used by SURFsara and BSC spe-
cialists. Moreover, we created tests for
the remaining parts so that they could
be used once everything is ready in the
system.

Profiling

We performed a performance audit of
Alya using MAQAO, a performance anal-
ysis and optimisation framework rec-
ommended by the POP Centre of Excel-
lence that operates at binary level with
a focus on core performance. In order
to integrate its usage in the SURFsara
workflow, we wrote a step by step guide
on how to use MAQAO to perform a
performance assessment following POP
methodology1 .

Conclusions

The results of our work during this Sum-
mer of HPC 2020 are already being used

for helping the HPC community, includ-
ing maintainers, users and developers.
In addition, thanks to the portability of
the created tests, they will be used for
future monitoring of the SURFsara sys-
tems.

References
1 POP Centre of Excellence in HPC.

How to create a POP performance audit Version 1.1.
https://pop-coe.eu/sites/default/files/
pop_files/whitepaperperformanceaudits.
pdf

PRACE SoHPCProject Title
Benchmarking and performance
analysis of HPC applications on
modern architectures using
automating frameworks

PRACE SoHPCSite
SURFsara, The Netherlands

PRACE SoHPCAuthors
Elman Hamdi İzmir Institute of
Technology, Turkey
Jesús Molina Rodrı́guez de Vera
University of Murcia, Spain

PRACE SoHPCMentors
Maxime Mogé, Sagar Dolas and
Marco Verdicchio
SURFsara, The Netherlands

PRACE SoHPCContact
Maxime, Mogé, SURFsara
E-mail: maxime.moge@surf.nl

PRACE SoHPCSoftware applied
ReFrame, EasyBuild, XALT, Jenkins,
IOR, ORCA, NAMD, Alya, MAQAO

PRACE SoHPCMore Information
reframe-hpc.readthedocs.io,
easybuilders.github.io/easybuild,
xalt.readthedocs.io, jenkins.io,
ior.readthedocs.io,
orcaforum.kofo.mpg.de,
www.ks.uiuc.edu/Research/namd,
www.compbiomed.eu/services/software-
hub/compbiomed-software-alya,
www.maqao.org

PRACE
SoHPCAcknowledgement
PRACE and the organizers of
Summer of HPC.
Our mentors at SURFsara.

PRACE SoHPCProject ID
2017

Elman Hamdi

Jesús Molina Rodríguez
de Vera

51

Time Series Monitoring (TSM) of HPC Job
Queues

TSM of HPC
Job Queues
Cathal Corbett, Joemah Magenya

The project goal is to create a monitoring
system to capture real-time information
regarding the number of jobs running on
HPC clusters, while integrating the work
with DevOps and Continuous Integration
practices and tools. The information
regarding the status of the job queues will
be collected, processed and stored as
time series and summarised and made
available to users and administrators in the
form of graphs.

Time series analysis plays a cru-
cial role in real time based sys-
tems like supercomputers. It al-
lows users to be able to detect

anomalies within their systems. It gives
an overview of how a system behaves
for a given period of time. A user can
take advantage of time series monitor-
ing to analyse trends of HPC based sys-
tems. Basically, through the use of time
series, one can be able to extract infor-
mation such as when a cluster node has
stopped working (anomaly detection)
and how many tasks are running includ-
ing counting failed or suspended tasks.

Our project consists of configuring
a Time Series Monitoring system which
collects data on job queues, process the
incoming data and a displaying the data
on job queues in a timely and visually
appealing manner.

Throughout the development of the
software, DevOps and Continuous In-
tegration tools and practices are em-
ployed. The GitLab CICD pipeline and

runners will be utilised for the project
to automatically build, test, and deploy
source code written. Through the use of
DevOps, code and testing errors are au-
tomatically detected and this allows the
developer to correct and submit clean
code as part of the final product.

Additionally, the use of Infrastruc-
ture as a Code (IaaC) tools and software
will aid in the seamless configuration
and deployment of the project.

The Project - TSM System

The project was split into two major

tasks, configuration & deployment of
the TSM system and secondly, statistical
analysis of job queue data to verify any
time series properties that may exist.

The Prometheus architecture dia-
gram gives a very good overview of
what our Time Series Monitoring sys-
tem looks like. The architecture is di-
vided in three main components.

1. The Prometheus Target is a http
endpoint where a script is being exe-
cuted which creates metrics from infor-
mation produced by a job or service run-
ning and makes these metrics available
over the above http endpoint.

2. The Prometheus Server makes a
pull request from the Prometheus Tar-
get http endpoint for these metrics cre-
ated by the executing script. The metrics
scraped are stored as Prometheus’ own
flexible query language called PromQL.

3. Data Visualization of these met-
rics is created by executing a pull re-
quest of metrics stored as PromQL from
the Prometheus Server. The resulting

52

PromQL can be parsed and refined by
the end user and displayed on graphs.
Job Queue Exporter
The Job Queue Exporter acts as the
Prometheus Target. Information we are
interested in is job queues of HPC sched-
ulers. Two main schedulers exist for
HPC systems: Slurm & TORQUE. Be-
cause Slurm is the most well known and
used scheduler, the rest of the report
will focus on the Slurm squeue com-
mand which returns information on job
queues for the Slurm scheduler.

It was decided to make the first im-
plementation of the exporter in Python3
due to more programming experience
with Python before converting the ex-
porter to the preferred Prometheus
exporter language of Golang. The
Python3 script running executing the
squeue command, retrieves informa-
tion on job queues running, parses
the incoming information extracting
only relevant fields, converts the es-
sential information into a Prometheus
Gauge Metric and makes the metric
available over http://localhost:3000.

The exporter has been created as
a Python pip package and can be in-
stalled through pip3 install job-queue-
exporter. Unit testing of the exporter
used pytest which is Python’s testing
package. The tox tool automates and
standardises testing in Python and is
used in conjunction with pytest. Test-
ing of the exporter is deployed within
the GitLab CICD pipeline where tox test-
ing of the exporter is initiated using a
Python3 docker image.

Unfortunately, the learning curve to
implement the exporter in Golang re-
quired more effort. However, having full
knowledge of how the exporter works
made a seamless conversion from writ-
ing the exporter in Python3 to Golang.
The Golang exporter package can be in-
stalled by executing go get followed by

the Git repository of the source code.
This alone makes the Golang exporter a
preferred tool as you do not have to up-
date an external package manager such
as PyPi for Python with an updated ver-
sion of the package every time a new
commit is made to the Git repository.
With Golang, the source code and pack-
age manager is hosted within the one
location, Git.
Prometheus Server
Fortunately, the Prometheus Server
takes care of all the scraping of the
exporter http endpoint, processing of
metrics and storing of information in
PromQL which leaves very little to
worry about for the developer.

The number one file in configuring
Prometheus is prometheus.yml which
specifies all the Prometheus Targets,
their associated http endpoint where
metrics are exposed and scraping time
interval. Prometheus is running by de-
fault at http://localhost:9090/.

Other information can be config-
ured in the prometheus.yml associated
with Prometheus Rules and the built-
in Prometheus AlertManager system.
One rule configured for our system
is when a Prometheus Target experi-
ences downtime, the system maintainer
can automatically be notified over
email or Slack and can take the cor-
rect measures to revive the failed node.

Grafana
The Prometheus Web UI can be used to
visualize Prometheus PromQL queries.
However, Grafana is a more elegant and
stylish data visualization software that
is compatible with Prometheus. Two
tasks need to be completed before get-
ting nice dynamic graphs of job queue
information.

1. Configure the Grafana Data-
Source to pull from Prometheus at
http://localhost:19090/prometheus/.

2. Configure the Grafana dashboard
which is stored as JSON data.

Our graphs are created with
PromQL queries in the following format:
squeue_jobs{job_type=<job_type.name>}
which creates graphs for individual job
queue types. The graphs can be further
inspected by clicking on an individual
{{slurm_group}} in the graph legend.
System administrators of the system

can now view job information in visu-
ally appealing graphs. Ansible - Full
System Deployment

Ansible is the open-source software pro-
visioning, configuration management,
and application-deployment tool en-
abling infrastructure as code that fully
automates deployment of the above sys-
tem with the click of a button. In addi-
tion to running the above tasks, the An-
sible playbook configures Prometheus
and Grafana to run behind a reverse
proxy.

Often, machines have a limitation,
due to firewall policies or other secu-
rity reasons, only opening to the ex-
ternal world ports such as 80. If you
take a closer look at the Prometheus
Targets running on the server, it is ev-
ident that Prometheus is actually run-
ning over port 19090 instead of 9090
and Grafana over port 80 instead of
3000.

Time Series Analysis (TSA)

Time series analysis comprises methods
for analysing time series data in order
to extract meaningful statistics and
characteristics of the data. TSA allows
to forecast the trends of HPC clusters
through the help of Prometheus and
Grafana platforms. The data is feed to
prometheus and grafana servers, the
time series analysis is done by taking
advantage of the build in Prometheus
and Grafana dashboards which allow
to visualise the data in the form of
graphs. Our analysis based primarily
on three aspects of time series which
are seasonality, autocorelation and
stationarity paying attention only to
the RUNNING jobs of spexone, al-
legro and sksp slurm_projects. The
allegro slurm_group showed some
seasonality characteristics. Season-
ality refers to periodic fluctuations.

The trends in the spexone project
where autocorellated, that is there were
similarities between observations as a
function of the time lag between them.

53

Grafana Data Visualisation Ansible Deployment

Stationarity is one of the importance
characteristics of time series, if the ob-
servations don’t change over a period
of time they are said to be Station-
ary, thus the same trends are observed.

Results – What did I find out?
Cathal: The result is fully function-
ing code that automatically config-
ures, deploys and runs the Time Se-
ries Monitoring system consisting of the
Python3/Golang Exporter, Prometheus
Server and the Grafana Data Visualisa-
tion tool. The exporter has been primar-
ily tested and deployed for the Slurm
scheduler. However, it would be easy
to adapt the exporter to function for
other HPC schedulers such as TORQUE
by identifying the job queue informa-
tion format of the scheduler and modi-
fying the parser to suit that format.

Apart from becoming knowledge-
able on Prometheus and Grafana tools,
the following results were achieved:
From developing the exporter, my
standard of Python programming has

improved immensely from being im-
mersed in Python packaging, testing us-
ing pytest and tox, entry points, Python
standards, coding conventions and doc-
umentation. Being able to translate the
exporter to Golang introduced me to
a whole new language and discovered
similar features to the Golang language
as listed above. Additionally, using De-
vOps and Infrastructure as a Code tools
and practices had developed me into a
more experienced and competent com-
puter scientist now capable of tackling
all stages of the project and producing
better, more reliable and tested code.
Tools such as GitLab CICD & runners
and Ansible have showed me the power
of being able correctly configure and de-
ploy production code. My knowledge of
Linux has been expanded through the
configuring of background systemd ser-
vices. Virtual environments needed to
be configured for this project to run the
full system in an isolated environment.

Joemah: After having been in-
volved in all the parts of the monitoring
process, from the acquisition of the met-
rics, transmission, storage and visualisa-
tion, I developed an interest of working
within an HPC environment. My pro-
gramming skills were taken to another
level as I learned knew skills like CI/CD
and DevOps. Moreover, I become more
knowledgeable with working within a
virtual environment as well as execut-
ing commands on the linux shell confi-
dentially. I got a chance to grasp knowl-
edge to working with Prometheus and
Grafana platforms. In addition,I learned
the importance of working as a team
and not being shy to asking questions.
In shot, TSM project boosted my abili-

ties and confidence to meeting a specific
goal.
Discussion & Conclusion
In conclusion, a faculty with HPC sys-

tems with an interest in deploying a
Time Series Monitoring system and dis-
playing information on job queues can
easily deploy such a configuration util-
ising the Ansible script developed. The
Ansible script is available on the GitLab
repository and full installation instruc-
tions are explained in the README file.

If system admin of these faculties
have a different HPC schedulers config-
ured to the above Slurm default, the
source code of the exporter can be
amended to parse the data produced
by that different scheduler.
PRACE SoHPCProject Title
Time Series Monitoring of HPC Job
Queue

PRACE SoHPCSite
SURFsara, Netherlands

PRACE SoHPCAuthors
Cathal Corbett, Joemah Magenya,
NUIG, Ireland, Padova, Italy

PRACE SoHPCMentor
Juan Luis Font, Ansterdam,
Netherlands

Cathal Corbett, Joemah
Magenyaphoto

PRACE SoHPCContact
Name, Surname, Institution
Phone: +12 324 4445 5556
E-mail: leon.kos@lecad.fs.uni-lj.si

PRACE SoHPCSoftware applied
Prometheus, Grafana, Gitlab CICD, Ansible, Golang,
Python3, Slurm, TORQUE, Linux, Ubunutu, Virtualbox.

PRACE SoHPCMore Information
https://summerofhpc.prace-ri.eu/time-series-
monitoring-of-hpc-job-queues/
https://gitlab.com/surfprace/cathal

PRACE SoHPCAcknowledgement
Acknowledgements goes to Juan Luis Font and the
SURFsara Spider team for the support provided
throughout the project.

PRACE SoHPCProject ID
2018

54

Improving the performance of plasma kinetic
simulations using GPUs

Accelerating
Particle In
Cell Codes
Vı́ctor González Tabernero, Shyam Mohan

Particle In Cell (PIC) codes are at the forefront of modern plasma kinetics and nuclear
fusion research. However, plasma kinetic simulations can be extremely
time-consuming as millions of particles are simulated at once. The power of GPUs
and heterogeneous computing can be harnessed to run these simulations faster.

Plasma is the rarest state of mat-
ter found in nature. It is com-
posed of charged nuclei and
electrons at extremely high tem-

peratures where the electric and mag-
netic fields dominate the behaviour of
matter. We can find plasma in many ap-
plications such as nuclear reactor cores,
rockets, lasers etc. We are interested in
plasma kinetics of nuclear fusion reac-
tors, which might be the next revolu-
tion in energy resources. These reactors
are still in development stage and due
to their high cost, (e.g. the nuclear re-
actor Tokamak from ITER costs around
24 000 million euros) scientists and en-
gineers cannot conduct enough tests to
develop a functional core.

To minimise costs, computer simu-
lations of the reactor are performed to
get the best description of the reactor’s
behaviour. In this project we simulate
the kinetics of plasma which forms one
of the main parts of the core that needs
to be understood in depth. The simula-
tions involve many interesting aspects
from mathematics, physics and compu-
tation such as mathematical modelling
based on the kinetic model description

of plasma. This model requires solving
multiple equations to determine the po-
sition and other physical properties of
each super-particle (a bunch of actual
particles in plasma). This technique is
called Particle-in-cell (PIC) simulation
and it is commonly used for this.

Particle in Cell Simulation

PIC simulations provide a description
of the plasma’s properties based on the
behaviour of its particles which are sim-
ulated individually (in small bunches of
particles). To do so, time is discretized
and the equations that describe the be-
haviour of particles are solved for each
time step. The common features of a PIC
code that are taken into account each
time step are:

1. Particle mover: updates position
and velocities of the simulated
particles according to the famous
Newton’s laws of motion. The ve-
locities are affected by the fields
generated by all the particles.

2. Field solver: calculates the fields
inside the simulated spatial region

at some grid points. There are two
kinds of solvers: the electrostatic
ones that only calculates electric
fields and electromagnetic solvers
that calculates electric and mag-
netic fields. These solvers use the
information of charge density dis-
tribution, charge fluxes and reac-
tor features. All these interwoven
quantities are governed by a set of
coupled partial differential equa-
tions called Maxwell’s equations

3. Accuracy of the simulations im-
provements: PIC codes can also
include more features to provide
a better description of reality. For
example they can simulate multi-
ple atomic species, reactor injec-
tion of particles, particle decays
in boundaries, particle collisions,
particle reactions etc.

There are many detailed articles and re-
ports about different PIC codes. You can
find more information in the article1 or
in https://www.particleincell.
com/.

55

Simple PIC - SIMPIC

In our project, we focused on SIMPIC2

(Simple PIC) which is a simplified Par-
ticle in cell code. The SIMPIC code
was developed under certain hypothe-
ses which make the simulation signifi-
cantly easier.

Figure 1: SIMPIC workflow diagram. Shows the general algorithm flow of this code.

There is assumed to be no colli-
sions between particles, no magnetic
field and only free electron particles
(no ions). As per these assumptions,
the complicated Maxwell’s equations
boils down to solving only a Poisson
equation for the potential. This is eas-
ily done using the well-known finite
difference method. Now, the field can
be calculated simply by taking gradi-
ent of the potential. In a PIC code, the
whole plasma region is divided into sub-
regions called cells. And inside each
of these cells, there are some particles
(ions/electrons). We give an initial ran-
dom distribution of particles inside the
plasma device. Then, we apply an exter-
nal electromagnetic field to these par-
ticles usually in the form of a voltage
source. After this initialization, the PIC
codes follow a common algorithm as
seen in Figure 1 for SIMPIC.

GPU Parallelization of SIMPIC

GPUs perform computations at a
much faster rate than CPUs. How-
ever, they cannot handle other parts of
the code, like branches or conditional
statements very well. Hence, if we can
offload the computationally expensive
parts of our code to a GPU while run-
ning the rest of our code on a normal
CPU, we can expect some speedup in
our code. This is what we tried. We
created a GPU version of the particle

mover and field solver functions. This
was done using CUDA programming
for GPUs. How does this parallelisation
work? We can imagine a GPU as a CPU
but with a huge number of cores in it.
Each core in a GPU can work indepen-
dently on each loop iteration, for ex-

ample. Obviously, this would be much
faster than running it on a single core
in a CPU in a sequential manner. How-
ever, the important criteria for GPU par-
allelization is ’independence’. Each GPU
must be able to work on a loop iteration
independent of other threads. Other-
wise, we might get wrong results. Keep-
ing this in mind, we tried to parallelize
the two main computations in our code:
the particle mover and the field solver.
Particle Mover
Before we can move the particles, we

need to know what forces are acting on
each particle. This force is derived from
the surrounding electric field. However,
this is not so trivial. It is important to un-
derstand that cells in the plasma region
form a grid and the potential and elec-
tric fields are calculated only at these
"grid points". The particles obviously
can be anywhere inside each cell. Hence
to find out the exact force acting on
the particle we perform an interpolation
process called ’gathering’. We take the
field values from the two boundaries of
the cell in which the particle belongs,
and interpolate them to the exact po-
sition of the particle. A typical particle
mover algorithm would be something
like:

1. Gather field at particle position
2. Calculate new velocity using field
3. Calculate new position using new

velocity
As can be seen in the particle mover
algorithm, each thread can now be as-

signed to a single particle as each par-
ticle moves independent of any other
particle. Hence, it is a very ’parallelis-
able’ algorithm. One should also note
that the GPU has its own memory space.
Before any computation can be done
on it, the required memory needs to
be transferred to the GPU. This transfer
is generally the bottleneck for a GPU
application. You can imagine that the
transfer of the position and velocity
data of a million particles will take a
lot of time. Hence, we decided to cre-
ate the particles in the GPU alone to
avoid this memory transfer. We also im-
plemented an optimised algorithm for
particles that go beyond the plasma re-
gion using a Boolean array to flag parti-
cles alive/dead. This aids in vectorised
processing in GPUs.
Field solver
For the field solver, we can find a

difficulty on this parallelization and it
comes from the discretization of the
equations. To calculate the electric po-
tential, the code has to compute the so-
lution of a tridiagonal matrix system
which comes from the Poisson’s equa-
tion, and this is a very sequential calcu-
lation. There are many algorithms de-
signed to do this calculation, but CUDA
comes with a library called cuSPARSE
for algebraic calculations in GPU. This
library contains a function which calcu-
lates the solution for this tridiagonal sys-
tem. The parallelization process for the
rest of computations of the field solver
part is similar to the particle mover, but
in this case, each thread is assigned to
a grid point.

In summary, the parallelization of
the field solver follows the next steps:

1. Solves the tridiagonal matrix us-
ing an external library.

2. Corrects electric potential with
the boundary values.

3. Calculates the electric field with
the electric potential.

We have to note that the two last steps
are independent and, consequently, effi-
cient for GPU calculations.

Heterogeneous Computing us-
ing StarPU
Now, we can make even better use of
our computing resources if we can use
both the CPU and GPU for computa-
tion. This is done by creating tasks or
’codelets’. These are just some additions
to the existing code which assigns all
the Processing Units (CPU/GPU) certain

56

Comparing performance of various accelerated versions of SIMPIC. Left: Runtime Plot of the Particle Mover against number of particles.
Right: Runtime plot of field solver against number of cells. The NVIDIA Tesla K80 accelerator in the GPU node of VIZ Cluster, University
of Ljubljana was used for this study.

tasks to execute: in our case, particle
mover and field solver. This was done
using StarPU, which is a software tool
which can schedule tasks to run on het-
erogeneous architectures (CPU+GPU).
All memory transfers and allocations in
the application is done by StarPU itself,
which saves some amount of code. Also,
asynchronous tasks can be run on mul-
tiple processing units, with each task
working on a data subset. All these pos-
sibilities were implemented on our field
solver and particle mover functions.

Results and Conclusions
Our benchmarks of the SIMPIC ver-
sions show that the GPU versions have
much better performance than the
CPU version. The GPU particle mover
shows a speedup of greater than 5x,
which is to be expected as the particle
calculations are well parallelised and
the CPU-GPU memory transfers have
been optimised. However, this speedup
seems to saturate as we increase the
number of particles above 105 particles.

In our code, the calculation of
charge density is also included in the
particle mover function. This density is
calculated by extrapolating the charge
of a particle located within a cell to both
the grid points of the cell. However, this
process is not very independent as dif-
ferent particles could add to the charge
density at the same grid point. Hence,
this calculation limits the performance
of our code. With regard to this, it can
also be observed that the number of par-
ticles per cell (PPC) affects the speedup.
This could mean that the performance
would be better if we have more num-

ber of cells for a given number of parti-
cles. On the other hand, the CPU-GPU
memory transfer of the bigger density
arrays associated with larger number
of grid points also requires more time.
Hence, we observed that there is an op-
timal number of particles per cell which
would give us the best speedup for the
particle mover.

On the other hand, for the field
solver, we see that the GPU version is
slower than the CPU one for low grid
points, and it is faster for a high num-
ber of grid points. This time consump-
tion mainly comes from the tridiagonal
solver which is not efficient in GPU for
low number of grid points but its cal-
culation time remains more or less con-
stant with the number of grid points.
However, for the standard grid points
that are used in this kind of simula-
tions, which are usually low, the best
overall performance comes from the
GPU particle mover and the CPU field
solver. We also have to note that the
most time expensive part of this code
is the diagnostic savings while also in-
creases particle mover and field solver
computations.

Our StarPU version of SIMPIC
shows good speedup when compared
to the CPU version. However, this is not
as much as our CUDA-only GPU ver-
sion. The particle mover runtimes for
the StarPU version are slightly faster
than the GPU version. This is because
the StarPU data management is more
efficient at data transfers. However, this
advantage is negated when the runtime
of the entire code is considered. This is
because of the additional overhead of in-
voking the StarPU library and launching

tasks. However, StarPU enables porta-
bility of code. It can be run on multi-
ple architectures without any changes
in code.
References
1 D. Tskhakaya, K. Matyash, P. Schneider, and F. Tac-

cogna, The Particle-In-Cell Method,Contrib. Plasma
Phys. 47, No. 8 – 9, 563 – 594 (2007)

2 SIMPIC code, https://bitbucket.org/
lecad-peg/simpic/src/master/.

PRACE SoHPCProject Title
Implementing task based parallelism for plasma kinetic
code

PRACE SoHPCSite
University of Ljubljana, Slovenia.

PRACE SoHPCAuthors
Paddy Cahalane, Dublin.
Shyam Mohan, Subbiah Pillai, Germany.
Vı́ctor González Tabernero, Spain.

PRACE SoHPCMentor
Ivona Vasileska, UL, Slovenia.

PRACE SoHPCContact
Vı́ctor, González Tabernero, University of Oviedo
Phone: +34 630 714 721
E-mail: vitagor@outlook.es
Shyam Mohan, Subbiah Pillai, RWTH Aachen
Phone: +0175 3469712
E-mail: s.mohan@rwth-aachen.de

PRACE SoHPCSoftware applied
C++, CUDA, OpenMPI, StarPU, Matplotlib

PRACE SoHPCMore Information
OOPD1, PRACE website, SoHPC website.

PRACE SoHPCAcknowledgement
We sincerely thank our mentor Ivona Vasileska and
everyone from the LECAD laboratory for their valuable
inputs and access to the VIZ Cluster. Special thanks to
Prof. Leon Kos, the SoHPC coordinator, for his support
and constant presence when we needed it

PRACE SoHPCProject ID
2019

Víctor González
Tabernero

Shyam Mohan,
Subbiah Pillai

57

Implementation of Parallel Branch and Bound
algorithm for combinatorial optimization

When HPC
meets
integer
programming
İrem Naz Çoçan , Carlos Alejandro Munar
Raimundo

Mixing mathematics and computers could
get a very good results in efficiency. It
could obtain the solution of a very large
problem that for a human being could be
unfathomable in a few minutes. And now,
imagine that you can do it even faster.

Branch and bound method is
one of the most used methods
for solving problems based on
decision making. In the partic-

ular case that concern us, is a discrete
case, this means that you have to decide
either A or B.

In order to understand this let us
explain the max-cut problem. Imagine
that you have a weighted graph and
you want to divide the vertices into two
subgroups. After that, the connection
between two nodes that are in different
subgroups is cut. The goal is to biparti-
tion the vertices so that the sum of the
weights on the cut edges is maximal.

Turning back to the branch and
bound algorithm, it is organised by a
rooted tree. All starts with root node,
where upper bound and lower bound
is set. In every step it has a node to
compute, and by updating the bounds
and checking them it is decided to
branch to another two nodes or prune
because you will not get any further go-

ing through that branch. An Figure 1
there is an example of this. With this,
you have fewer options to explore, and
it will take less time to obtain the opti-
mal solution to this problem.

Figure 1: Diagram showing rooted tree of
the branch and bound.

Notice that, we are working with
max-cut problem that is a NP-complete
problem, so we will need an heuristic to
get an approximation to an optimal so-

lution because getting the best solution
could get even longer.

Nevertheless, we want thing going
faster. As a consequence, this project
came up. The aim of the project is to
make exploration of the branch and
bound tree even faster by concurrently
exploring different branches. For that,
we have done two different approaches:
master-worker approach, and one-side
communication approach.

In every modern computer, there
is more than one core in a proces-
sor, so you can order every core to do
some work. So, the processor is an of-
fice where workers go to do their jobs.
Therefore, in master-worker approach
there is one master process (load co-
ordinator) who has all the information
about the underlying graph and sends
data and tasks to the workers. As a re-
sult, we change from a program that
computes everything serial this means
that all jobs are queued and done se-
quential; to a program that is more con-

58

trolled because all the jobs are assigned
to workers. In addition, this will be ex-
ecuted in the supercomputer sited on
the University of Ljubljana, Faculty of
Mechanical Engineering.

Nonetheless, we will see that this
will cause some idle time due to com-
munication issues.

For that reason, we tried to code one-
side communication. We thought that if
we delete the communication between
nodes by creating an area that can be
accessed by any of the workers without
needing a master, we could increase the
efficiency of the program. We will see
that this is not completely true; but as
with everything, if it is not tested, it is
not known if it will work. This area that
can be acceded for everyone is called
"window".
Used Methods
In the introductory part we have ex-
plained the project motivation, which is
the problem to be handled and the way
we will manage to get improvement of
the code. From now on, we will explain
both approaches in detail, their advan-
tages and disadvantages and the results
we have obtained.

Master-worker approach: The best
way to understand something is to see
something that you understand and
compare both. So, let’s make an anal-
ogy: imagine a very big company with
a lot of people working there, roles
are assigned to rank the responsibili-
ties of each worker. As a result, simple
scale, we have a director or manager
and workers or employees. The man-
ager assigns various tasks to employ-
ees, which fulfil them and/or send new
ones to coworkers and the process con-
tinues in this way. Then these jobs are
sent back to the manager to get them
together.

Our implementation is based on this
logic. One process is selected as mas-
ter, which has all graph instances, and
sends job requests to other worker pro-
cesses. When the worker processes fin-
ish their work, they send the results to
the master process and wait for the new
task. Master process is responsible for
controlling the entire process and keeps
track of the status of each worker. The
master creates a vector of the solution,
which is 0 or 1.

To communicate between load co-
ordinator and workers MPI Send and
Receive functions are used. In Figure 2
is a diagram that reflects this. Master
worker is at the middle and the work-
ers are connected to master to send and

receive information.
In our particular case, the nodes sent

by the master to the workers are the
ones to branch and evaluate, and the
nodes sent back to the master are the
evaluated children of this node. To do
this we have used c structures for nodes
in which we allocate: a fixing nodes
(which are already on the solution vec-
tor); fractional solution which is used
to get the next branch; the level of the
tree where is being evaluated; and the
upper bound.

The master determines which node
will be sent to which process and when
the results will be received. Therefore,
idle time occurs while processes are
waiting for to send back the work done.

Figure 2: Diagram showing master-worker
approach.

One-sided approach: Now that you
are familiar to the company and you
know well the roles that are assigned
and the master-worker approach is well
understood, let’s restructure the com-
pany.

First of all, now there is no manager
or director nor employees, everyone is
responsible for its own work. Everyone
is a manager and an employee at the
same time. So, the idle time on pro-
cesses waiting to send back the work
done is no more a problem. You may
think that this is like freelancers, and
you are right; it is like a lot of people
not related with the same porpoise: get
the solution of max-cut probelm.

When one of the processes needs
help by sharing one of its branch and
bound nodes, other workers realise this
and can get to its work directly, without
waiting for the target process to send
the message.

Accessing someone’s work is done
through the MPI Window allocated at
the start of the algorithm. Note that
this window is the determined area
that other processes can reach and ac-
cess data without involvement of the

its owner. This section need to be im-
plemented very careful to avoid race
conditions. In our problem, this method
is applied as shown in Figure 3.

All starts when process 0 branches
the first node, and when it notices that
it has more than one node in its queue,
a free process reaches this node and
evaluates it.

So, in this model, each processes can
share its nodes with others. To get more
points of view, we have developed two
different versions for this access part
shown in Figure 4.

As a consequence, we have version
1 which is the processes which are free
inform to the others that are free, and
allocates free nodes in his queue. But,
version 2 processes finds which one is
free and put the node in free process
queue.

In order to send and retrieve data
from the windows we used MPI Put
and Get functions. However, if two pro-
cesses access the same window at the
same time it generates a race condition.
This means that if they update the same
value at the same time one of these val-
ues will be lost on the process.

Therefore, these operations needed
to be executed in a way to prevent this
situation. Managing this timing is what
caused the idle time of the workers.

Figure 3: Shows the work of the one-sided
approach.

Figure 4: Two approaches for sharing infor-
mation in one-sided communication.

Results
What we have done so far is to ex-

plain by facts the methods we have
used and their behaviour. Neverthe-
less, these words mean nothing without
some benchmarks to support them. Let’s
take a look at the numerical results of
these approaches.

59

First of all, the benchmarks have
been done by testing proposed paral-
lel algorithms on 130 graph instances
with a different number of vertices and
edge weights. We took 5 instances for
which the sequential branch and bound
algorithm needed the longest time to
obtain the optimum solution.

Notice that in Figures 5 and 6 ara
tables displayed. These tables are the
timing results of executing the master-
worker approach and one-sided commu-
nication approach, respectively. All the
graph instances contain 100 vertices.

These tables show the scalability re-
sults with both approaches when run-
ning the same instance with an in-
creased number of workers.

As we can notice, from Figure 5
when increasing the number of pro-
cesses the time decreases; being the se-
rial version the one that takes longer
times to solve the same problem.

Out of the number of running pro-
cesses, one of them acts as a master pro-
cess and the remaining workers evalu-
ate the nodes. In other words, 1 master
and 5 worker processes work in the case
when 6 processes are assigned.

Figure 5: Reported timings of master-
worker approach vs serial version.

Looking at the results of one-sided
communication approach (Figure 6), oc-
curs the same that in master-worker ap-
proach: we are getting a good improve-
ment of the time that takes to solve
the problem from serial to parallel ver-
sion. Yet, they are not better than the
results obtained on the master-worker
approach.

Figure 6: One-sided vs Serial version

What’s more, as a curious thing, we
notice that if we use 48 processes or
more the execution was like serial ver-
sion. So, in that case we will not get
any advantage of parallel communica-
tion when the workers increase. By way

of comment, we think that this situation
could be interesting to be study case.
Discussion & Conclusion

As we have been exposing, we
proposed two different parallelization
schemes of serial branch and bound al-
gorithm, to solve a combinatorial prob-
lem. The first one is based on master-
worker approach while the other utilises
one-sided communication.

Looking at the results we can affirm
that the parallelization was found to be
successful, since the proposed algorithm
could vastly reduce the computational
time of the serial solver.

As we see, master-worker approach
is more efficient when the problem is
bigger, but when is not that big one-
sided communication approach is also
very useful.

It has been observed that, for the
max-cut instances for which the opti-
mum solution was obtained in short
time, (i.e. the branch and bound tree
is smaller) parallelization gives worse
results as it requires more processing
and more time is spent on communi-
cation. This means that if it is a small-
sized problem is also suitable using the
serial version; because the parallel ver-
sion will not get much more advantage
than serial.

Nonetheless, when we look at the
five examples given in Figures 4 and
5, we see that the times are shortened
in the two approaches compared to the
serial version.

Although there is a constant de-
crease by looking at the tendency pat-
terns, the results of the master-worker
approach are better than the one-sided
approach. The red line shows the result
for the master-worker, while the blue
line is the results of the one-sided ap-
proach. Results of the longest running
instances were taken into account.

Figure 7: Graphical comparation between
master worker approach and one-sided ap-
proach.

Despite the fact we thought that
the one-sided approach would take less
time than two-sided, the results did not

come out as we expected. We think that
the reason for this is that the processes
need to do more control in order to pre-
vent race conditions.

Acknowledgement
First of all,we’d like to thank our men-

tor Timotej Hrga for all support and in-
terest through the two months, Univer-
sity of Ljubljana, Faculty of Mechanical
Engineering for the use of their facil-
ities. PRACE for giving us a place on
the Summer of HPC programme.Many
thanks to Leon Kos, Pavel Tomsic for
all their work, in the first time online
program they did everything well by or-
ganizing the training week, emails and
weekly meetings .

References

1 Franz Rendl, Giovanni Rinaldi, Angelika Wiegele.
(2010). Solving Max-Cut to optimality by intersecting
semidefinite and polyhedral relaxations

2 Loc Q Nguyen. (2014). MPI One-Sided Communica-
tion

3 William Gropp, Ewing Lusk, Anthony Skjellum.() Us-
ing MPI Portable Parallel Programming with the
Message-Passing Interface

PRACE SoHPCProject Title
Implementation of Parallel Branch and
Bound algorithm for combinatorial
optimization

PRACE SoHPCSite
HPC cluster at University of Ljubljana,
Slovenia

PRACE SoHPCAuthors
İrem Naz Çoçan , Carlos Alejandro
Munar Raimundo

PRACE SoHPCMentor
Timotej Hrga, University of Ljubljana,
Faculty of Mechanical Engineering

PRACE SoHPCContact
İrem Naz Çoçan,Dokuz Eylül
University
E-mail: iremnazcocan@gmail.com
Carlos Alejandro Munar Raimundo,
University of Almerı́a
E-mail: caamura@gmail.com

PRACE SoHPCProject ID
2020

İrem Naz Çoçan

Carlos Munar

60

Investigating the effects of different turbulence
models and drift angles on CFD simulations of the
DARPA Suboff Submarine with HPC.

Drifting in a
Submarine?
Hold On!
Matthew Asker, Shiva Dinesh

Vehicle prototyping can be costly and
time-consuming. Computational Fluid
Dynamics (CFD) offers a faster and
cheaper approach, allowing the initial
stages of prototyping to be sped up
massively. The main aim of this project
was to test how different turbulence
models and drift angles affect the drag
coefficient and turbulent kinetic energy
distribution on a submarine.

What is CFD?

Werner Heisenberg is at-
tributed with once saying
"When I meet God, I’m go-
ing to ask him two ques-

tions: why relativity? And why turbu-
lence? I really believe he’ll have an an-
swer for the first".

Simply put, turbulence is a difficult
physical phenomenon to model. So hard
in fact, that we don’t yet have the full
solution. This is where the wonders of
CFD come in. Although no exact solu-
tions exist to our problems, we can use
computers to approximate the problem
and obtain solutions to a precision that
is ’good enough’ for us.
The project
In this project we used CFD methods to
simulate the flow of water around the
DARPA Suboff submarine, travelling at

a speed of 6.5 knots. The simulations
were taken for several drift angles (0-
16◦) and part configurations of the sub-
marine.1 We also utilised several differ-
ent turbulence models for a particular
configuration, to show the difference
these models had on the drag coeffi-
cient and turbulent kinetic energy dis-
tribution.

How did we complete the project?

After we have established the main
goals of the simulation, our first task is
to create a model of the body around
which the flow will be analysed. This
usually involves modelling the geome-
try with a CAD Software package. There
are two ways to model the geometry.
Firstly, we can use the equations pro-
vided to describe the submarine and
generate the model. The second method
involves inputting the set of points pro-

vided into the ANSYS Design Modeller
to obtain the model.1 We have used the
first technique to generate our model.
The equations describing the model
were input into a Python program and
the model was generated using them.

Salome, free software with a python
interface, has been used in generating
the model. Now that we have generated
the model, the extent of the finite flow
domain in which the flow is to be simu-
lated is to be decided.

To capture the full effects of tur-
bulence, it is good practice to leave
a space behind the submarine which
is around 5-20 times the length of
the submarine. In addition, it is
good practice to leave a space of 2-
5 times the respective length in other

61

Figure 1: A basic mesh we used for some preliminary results.
directions. So, this finite flow domain
would capture all the effects. The lim-
its of this finite domain are the free
boundaries out of which flow enters
or exits. The surface of the submarine
is also a boundary, through which the
flow cannot enter or exit. The equation
given in the reference paper2 allows us
to write Python code to create all the
different parts of the submarine. We
can then combine these parts as we
please in the geometry.

The domain in between these bound-
aries is now required to be analysed. For
analysing this, we need to discretise the
flow domain into a grid. Here the con-
tinuous space is discretised into several
contiguous finite volumes in a process
called meshing. Meshing is one of the
crucial elements of a CFD simulation.

There are several parameters which
can be modified to fine-tune the mesh.
We cannot discuss every parameter at
length here, but the essence of meshing
is to refine the mesh near the submarine
surface to capture the turbulence gen-
erated due to it. This can be achieved
by increasing the number of layers of
mesh close to the submarine wall and
reducing the size of the elements.

A dimensionless quantity y+, which
measures how the distance between
cells changes in the direction perpendic-
ular to the surface, is a good indicator
as to the quality of the mesh. We made
sure that y+ < 1 for the first cell and
y+ < 5 close to the walls. Meshing is
an iterative process. During the simula-
tion, if it is observed that convergence
is not smooth or is diverging, then this
hints that the meshing may need some
refinement. The mesh we have gener-
ated uses nearly 1.3 million nodes and
7.5 million elements.

The turbulence was modelled with
the k-ε, k-ω, Shear Stress Transport
(SST), BSL Reynolds Stress (BSL) and
SSG Reynolds Stress (SSG) models. The
k-ε, k-ω, and SST models are two equa-
tion eddy viscosity models. In the k-ε
model, transport equations for the tur-
bulence kinetic energy and turbulence
dissipation are solved and the turbulent

viscosity is determined from these quan-
tities. The SST model applies a blending
function that activates the k-ω model
near the wall and k-ε model in the outer
region. The SSG and BSL models are
second-order closure models in which
transport equations for the individual
Reynolds stresses are solved. The SSG
model is closed with an ε equation
while in the case of the BSL model
there is a blending between ε and ω
equations similarly to the SST model.3

We now move on to the setup of the
simulation. The setup involves specify-
ing all necessary boundary conditions
(BCs) and initial conditions of the prob-
lem. Each element in the newly gener-
ated mesh must be told exactly how to
interact with the fluid. In our problem
some of the more important things we
specified were:

• The fluid filling the fluid domain -
water

• The faces of the submarine being
no-slip walls

• The inlets being the front face and
one side face of the box

• The Cartesian components of the
velocity of the water at the inlet -
speed of 6.5 knots at the desired
drift angle

• The turbulence model used for
the simulation

• Residual target of 1e-6 for con-
vergence with a maximum of 10
coefficient loops

The full list of quantities to specify is
too numerous to list everything, but this
small sub-list should give you a good
idea as to what must be specified for
these simulations to function correctly.

Once that’s completed, we can be-
gin performing the simulation. Since
we have access to the IRIS HPC clus-
ter in Luxembourg, we can complete
such a task much faster with parallelisa-
tion – which is quite the upgrade from
performing the simulation in serial on
your local PC. Since most of the heavy
lifting has been done in the setup pro-
cess, at this point we can rely on the
cluster to crunch the numbers once we
submit. The program we used for these
simulations was ANSYS, meaning we
simply need a small script to specify the
number of nodes and cores to use and
ANSYS takes care of the rest. We ran
our simulations on two nodes with 28
cores each as this allowed for fast simu-
lations without having to wait too long
for sbatch to allocate us the cores.

Finally, we arrive at the most excit-
ing part of the process. At this point we
see if the conditions we set prior have
correctly shown the physical properties
we were after – or if we’re heading back
to the drawing board. Once the files
have transferred from the HPC cluster
to our local PCs the post-processing be-
gins!

Within post-processing, you are able
to select the physical quantities calcu-
lated (such as fluid velocity, pressure,
temperature etc.) and visualise them on
the geometry itself. This allows for a
very useful sanity check, as we can see
if the simulation has given us physical
behaviour, plus we can look at some
very cool looking pictures and videos!
Results
We found that the k − ε model was the
only turbulence model to greatly differ
from all the others. This can be seen in
the results on the next page, where the
k− ε model predicts the drag coefficient
to be higher than the other models for
all drift angles.

62

Figure 2: Drag coefficient against drift angle for different turbulence models. Note that
the orange line (SSG) overlaps the lines of SST, k-ω, and BSL.

We also found that configurations
with more parts attached to the sub-
marine model, and increasing the drift
angle increased the value of the drag
coefficient recorded in general.
Discussion & Conclusion
We believe the k − ε model gave dif-

ferent results due to its poor handling
of no-slip walls. For this reason, we
would believe that the values given by
the other models are more accurate.
In conclusion, we simulated different
configurations of the DARPA Suboff
submarine travelling through water
at different drift angles at 6.5 knots.
Our results showed that configurations
containing more parts had a larger drag
coefficient, drag coefficient increased
with drift angle, and we have reason to
believe the k − ε model is a poor model

for simulations such as this. In fu-
ture, work on this topic could include
comparison to experimental results.

References
1 DTIC ADA227715: Investigation of the Stability and

Control Characteristics of Several Configurations of
the DARPA Suboff Model (DTRC Model 5470) from
Captive-Model Experiments

2 DTIC ADA210642: Geometric Characteristics of
DARPA (Defense Advanced Research Projects Agency)
SUBOFF Models (DTRC Model Numbers 5470 and
5471)

3 ANSYS Inc,ANSYS CFX-Solver Modeling Guide, AN-
SYS CFX-Solver Theory Guide, 2007.

Acknowledgements
We would like to extend our thanks

to the team working at PRACE on the
Summer of HPC for allowing us this
opportunity to expand our knowledge

of HPC systems this summer, especially
considering the adverse circumstances
that they had to overcome to ensure it
still went ahead. We would also like to
thank the University of Luxembourg co-
ordinators and our mentor Ezhilmathi
Krishnasamy for the guidance through-
out our project.

PRACE SoHPCProject Title
Submarine Computational Fluid
Dynamics

PRACE SoHPCSite
University of Luxembourg,
Luxembourg

PRACE SoHPCAuthors
Matthew Asker, The University of
Manchester, United Kingdom
Shiva Dinesh, Friedrich-Alexander
University, Germany

PRACE SoHPCMentor
Ezhilmathi Krishnasamy, University of
Luxembourg, Luxembourg

PRACE SoHPCContact
Matthew Asker, The University of
Manchester
Phone: +44 7730 044781
E-mail: matthew.asker@gmail.com
Shiva Dinesh, Friedrich-Alexander
University
Phone: +49 1522 3280 943
E-mail: shiva.d.chamarthy@fau.de

PRACE SoHPCSoftware applied
ANSYS, Salome

PRACE SoHPCMore Information
www.ansys.com

PRACE
SoHPCAcknowledgement
Project co-mentor: Dr. Sebastien
Varrette
Site co-ordinator: Prof. Pascal Bouvry

PRACE SoHPCProject ID
2021

Matthew Asker

Shiva Dinesh

63

Novel HPC Parallel Programming Models for
Computing (both in CPU and GPU)

Novel HPC
Models
Rafał Felczyński, Ömer Bora Zeybek

Aim of the project is making a comparison
between novel parallel programming
models. Several methods are used for
benchmarking.

HPC systems get more hetero-
geneous in nature. Therefore,
it is sometimes feasible to
have a single programming

model take advantage of it. Novel pro-
gramming models, for example, Adap-
tiveMPI, Charm++, XcalableMP, Thrust
and Kokkos can take an advantage of
the computation in heterogeneous ar-
chitecture platform. It is therefore to
analyze their limitations and make a
comparison between them on a HPC ar-
chitecture.

Iris supercomputer of the University
of Luxembourg, which is a heteroge-
neous system, is used throughout the
project. Novel programming models are
tested on Basic Linear Algebra Subrou-
tines(BLAS)1 as well as some real case
applications related to biomedical engi-
neering.

Kokkos

Written in C++, Kokkos aims for pro-
ducing performance portable applica-
tions. It supports CUDA, HPX, OpenMP
and Pthreads as backend programming
models.

XcalableMP

XMP is a C and Fortran extension. It is
directive-based and also provides a MPI
interface.

Thrust

Thrust is written in C++ and it resem-
bles the standard template library. It
supports CUDA and OpenMP backend.

Charm++

Charm++ has unique features, like dy-
namic load balancing. It is based on
C++, and it is object-oriented.

AdaptiveMPI

AdaptiveMPI is built on Charm++. It is
an implementation of MPI.

Results

To give general information about BLAS
routines, they provide basic vector and
matrix operations. These are the rou-
tines we used for our tests:

• Ddot (Dot product)
• Dgemv (Matrix * vector)
• Dgemm (Matrix * matrix)
• Dtrsm (Solve matrix equation)

All of them use double precision vari-
ables. First routine performs dot prod-
uct, second routine performs matrix-
vector multiplication, third routine per-
forms matrix-matrix multiplication, and
the last routine solves a triangular ma-
trix equation with multiple right-hand
sides.

Here is an example comparison for
Kokkos and Thrust:

Figure 1: Timings for Kokkos and
Thrust

Kokkos and Thrust seem close to each
other. While Thrust seems a little better

64

overall, its performance decreases when
number of cores passes a certain value.
This may be due to synchronization
between the threads.

XcalableMP and Charm++ were
also tested with some BLAS routines.
The same four routines were picked for
the tests as previously and these models
were tested for some different matrix
and vector sizes and for different num-
ber of cores.

Some of the results obtained are
presented in form of tables and plots.

Table 1: Timings for XMP dot product oper-
ation

Figure 2: Timings for XMP dot product op-
eration

One can see that the dot product
calculation of two vectors done sequen-
tially is much faster than done in par-
allel. It seems to work as expected
because dot product is a pretty sim-
ple operation of just going through
vectors but the overhead of copying
the data back and forth (which is re-
quired by this framework) is bigger than
just going though the data sequentially.
For example going through one Mil-
lion of elements is in Big O notation
equal to O(1M) but execution in for
example 2 cores requires O(0.5M) for
cores + 2*O(0.5M) for copy half of the
two vectors. The copying can be opti-
mised a little be the framework but it
still is a huge part of execution time.

Figure 3: Timings for XMP matrix-matrix
multiplication

For matrix-matrix multiplication sit-
uation is much better because copying
the data is done in linear time O(R*C1

+ C1*C2) and the operation of mul-
tiplication is done in O(R*C1*C2) so
there is a huge difference when multi-
plication is done in parallel and copy-
ing time does not matter that much.

Figure 4: Timings for XMP matrix-vector
multiplication

For matrix - vector multiplication sit-
uation is similar to dot product calcula-
tion and for triangular matrix solving is
similar to matrix-matrix multiplication.

Figure 5: Timings for XMP dtrsm operation

One can see that when the num-
ber of cores exceed some value, the
time gain does not increase any-
more because of context switching
and synchronisation that takes place.

Figure 6: Timings for Charm++ matrix-
matrix multiplication

Figure 7: Timings for Charm++ dtrsm op-
eration

For Charm++ the same blas rou-
tines were used but with this frame-
work there were some issues. Up to cer-
tain number of cores the execution was
similar to the one with XcalableMP but
when the number of cores exceeded this
thereshold, the time suddenly soared.
For example for vector of 100 millions
of elements, the time rises from about
2 seconds to 130 seconds. This is prob-
ably caused by memory allocation syn-

chronisation and network polling that
this framework is doing even though
the number of available cores is much
higher than the used ones and pro-
gram was executed locally on one node.
What is interesting that this not always
takes place. Sometimes it works nor-
mally and sometimes does not. There
are some bugs reported on the frame-
work’s Github page so it may be fixed in
the future.

In the end 2 biomedical applications
were implemented:

1) DNA sequences comparison and
creation of a dotplot2 from them.

2) DNA sequences global alignment.
As previously, they were tested with
some different DNA sequence lengths
and for different number of cores.

Figure 8: Example of dotplot results
The first application creates a matrix
dot plot from two sequences of DNA.
Sequence S1 is written in the first col-
umn and sequence S2 is written in the
first row. For every nucleotide from S1
one has to check every nucleotide from
S2 whether they are the same or not.
If they are the same, one should put
dot in matrix in the related place. If nu-
cleotides are different, the place should
be left empty. So the program is simple
element-wise checking of two vectors
but it allows us to see for example if
there are some similarities between or-
ganisms. If we compare two related se-
quences, we can see from the generated
picture that there are some insertions,
deletions, duplications and so on.

The second program takes two DNA
sequences and aligns them together,
connecting related nucleotides and mak-
ing gaps in sequences if there may
be some insertions and deletions. The
Needlman-Wunsch algorithm3 was used
in this program. First one has to create
a scoring matrix of size (length(S1)+2)
x (length(S2)+2). Sequence S1 is writ-
ten in the first column, starting from the
third row. Sequence S2 is written in the
first row starting from the third column.
Then zeros should be places into ma-

65

trix top-left 2x2 square. One has to as-
sume 3 constant scores – for match, mis-
match and gap. The algorithm uses dy-
namic programming. It means that the
next value depends on the previous one.

Figure 9: Example of DNA alignment scor-
ing matrix
Fill the second row and the second col-
umn with scores obtained by subtract-
ing the value of a gap from the previ-
ous score. In the example the score as-
sumed for gap equals 2. When going
through the scoring matrix element by
element from top-left corner and calcu-
lating next score one should use „match”
score if currently related nucleotides are
the same and „mismatch” if they are
not. To explain how it works lets walk
through the example. Starting from the
third row and the third column, we cal-
culate current score by taking the maxi-
mum from 3 values: the one above mi-
nus gap, the one on the left minus gap
and the one on diagonal plus match or
mismatch, depending on whether the
related nucleotides are the same or not.
If the whole matrix is filled with scores
we go bottom-up from the bottom-right
corner of the matrix and we look for
a way to the top, checking which cell
the current score originates from. It
seems like reversing the previous al-
gorithm. If the path goes through the
diagonal, we write down nucleotides.
If it goes to the left or to the top,
we write down a dash in sequences.4

Figure 10: Example of DNA alignment re-
sult
Finally we get the result that can be
seen in the above picture. Similar al-
gorithm can also be used for mul-
tiple DNA sequences alignment but
it gets more and more complicated.

Figure 11: Timings for XMP DNA alignment
program

Figure 12: Timings for Charm++ DNA
alignment program

Figure 13: Timings for AMPI dotplot pro-
gram

Figure 14: Timings for AMPI DNA align-
ment program

Just by looking at the timings for
XMP, one can see many similarities to
the previous plots. When using XMP
for parallel DNA alignment one can get
huge drop in time spent for calculations.
The results are very good. One can imag-
ine aligning thousands of very long se-
quences every day and how much time
can be gained by parallel execution of
the program. For charm++ the results
also are as previously – some weird
framework behaviour just messes the
results up. But for up to 4 cores there
is some time gain, not that much as it
was for XMP though. These biomedi-
cal applications have also been tested
with AMPI, which is built on top of
charm++. The results obtained from
that framework also are not good. The
reason may be the charm++ environ-
ment mentioned before. This is espe-
cially interesting if you look at the sud-
den time increase from 0.07s to 48s
which is caused by only increasing the
number of cores from 1 to 2.

Conclusions

Although the documentation is quite
poor which make programs not so easy
to write, XcalableMP seems to be the
most stable framework and have quite
predictable behaviour. Additional thing
to consider is the amount of memory
used by this framework due to its lack
of memory run-time allocation and the
possibility to exchange the data be-
tween the other processes.

Charm++ and AMPI are really nice
to write programs in because they are
intuitive and pretty well documented
but not all the documented features re-
ally work. These frameworks use net-
work to pass messages and share data
and it may be really tricky sometimes
and cause a lot of problems.

Not all the programs are good to
parallelisation. Many things have to be
considered and sometimes, especially if
the size of the problem is not so large,
because the overhead of creating the
processes, context switching, data copy-
ing etc. can be meaningful.

References
1 BLAS routines

2 Dot plot algorithm

3 Needleman Wunsch algorithm

4 Chakrabarti, S. D. (2011). DNA Sequence Alignment
by Parallel Dynamic Programming.

PRACE SoHPCProject Title
Novel HPC Parallel Programming
Models for Computing (both in CPU
and GPU)

PRACE SoHPCSite
University of Luxembourg,
Luxembourg

PRACE SoHPCAuthors
Rafał Felczyński,
Wroclaw University of Science and
Technology, Poland
Ömer Bora Zeybek,
Boğaziçi University, Turkey

PRACE SoHPCMentor
Dr. Sebastien Varrette, ULux,
Luxembourg
Dr. Ezhilmathi Krishnasamy, ULux,
Luxembourg

PRACE SoHPCAcknowledgement
Project Mentor: Dr. Sebastien Varrette
Project Co-mentor: Dr. Ezhilmathi Krishnasamy
Site Co-ordinator: Prof. Pascal Bouvry

PRACE SoHPCProject ID
2022

Rafał Felczyński Ömer Bora Zeybek

66

Get ready for exascale computing – exploring
different ways to combine and exploit both
distributed and shared memory architectures

Hybrid
Programming
with MPI+X
Sanath Keshav,
Kevin Mato,
Clément Richefort,
Federico Sossai

What happens when your dataset is so big that it does not fit on your computer? Let us
have a look at how to distribute both work and data on a supercomputer and analyse
the main aspects of hybrid programming.

Moore’s law is still a real
thing but processors have
physical limits anyway: it
is not possible to take the

number of core units in the same chip
to the extreme and this is why nowa-
days supercomputers are composed of
multiple nodes that cannot share the
same memory. Here hybrid program-
ming comes into play.

Figure 1: Schematic view of an VSC3 node
with its two sockets and their cores.

What does hybrid mean?

Modern supercomputers are composed
of lots of computing nodes, each one
equipped with several CPUs (also called
sockets) that by itself consist of multi-
ple cores, as represented in Figure 1.
All cores within one node can directly
access the same memory, that’s why
we say that this memory is shared.
On the other hand, cores on different
nodes cannot access each other’s mem-
ory without an explicit communication,
that’s why this is called distributed mem-
ory. Whenever a program exploits par-
allelism for both distributed and shared
memory architectures we talk about
hybrid programming.

In this work we made extensive use
of the Message Passing Interface (MPI),
the de facto standard to orchestrate dis-
tributed computing. Since several hy-
brid programming options are explored
in this work, we will use the expression
pure MPI indicating any implementation
oblivious to the shared memory.

Hybrid programming, as it is usu-
ally referred to, may combine two dif-
ferent standards like MPI and OpenMP

(a very popular way of work sharing
within shared-memory regions) to take
advantage of the underlying architec-
ture. However, in this project we ex-
plored also other paths, for instance,
by applying MPI’s own built-in shared-
memory model that allows to exploit
shared and distributed memory at the
same time by means of the so-called
one-sided shared-memory features. We
also made use of a combination of MPI
plus OpenACC to discuss the pros and
cons of exploiting accelerators such as
GPUs.

Solving a differential equation

As a prototypical code, we focus on
the numerical solution of the Helmholtz
equation, which is shown here in 2 di-
mensions (2D)

∂2u

∂x2
+
∂2u

∂y2
− αu = f

by using the finite difference method.
When the datasets involved get huge
and infeasible to solve on a single com-
puter, the natural solution is to divide
and conquer. The physical domain of

67

the problem is cut into smaller domains
and numerically solved on multiple
cores.

How to cut the domain?

The domain can be cut only in a partic-
ular direction to obtain stripes (in 2D)
and slabs (in 3D). Although we have
balanced load on every process, the
number of interface points is very high
and this does not scale well. A more
elegant solution is to cut the domain
in all directions using virtual Cartesian
topologies (see the top of Figure 2 for
2D and the title figure for 3D). This
way we have a balanced load as well as
minimal interface points for communi-
cation. This approach scales well with
very large numbers of processes.

Jacobi in a nutshell

To solve the equation we choose the
Jacobi algorithm. In layman’s terms the
Jacobi iteratively computes a grid of
points from a previous one in which
every point depends only on its neigh-
bours. Thinking about this for a second,
you’ll realise that if we split this grid
in subgrids (in order to feed different
distributed nodes), points at the bound-
aries will depend on points which are
not in the same subgrid. A data com-
munication among subgrids is therefore
needed.

Halo communication and stencil

The local domain is discretised and so-
called halos are added around the local
datasets of each process. These halos
will hold a copy of the borderline data
communicated from their neighbours.

All the processes send and receive
their borderline data in all spatial direc-
tions, as can be seen in Figure 2. For
an efficient halo exchange we use MPI
nonblocking communication allowing
for an overlap of communication with
other communication operations, thus
keeping the communication subsystem
as busy as possible.

Once this halo exchange is com-
pleted, the Jacobi stencil computes the
next iteration using the solution of the
previous iteration. From the stencils in-
dicated in the lower part of Figure 2
it becomes clear that the halo data is
needed to be able to do the Jacobi
update in the outer parts of the local
datasets.

Figure 2: 2D domain decomposition before
(top) and after (bottom) halo communica-
tion with the stencil at various locations.

Combining MPI and OpenMP

While pure MPI is designed for dis-
tributed memory (and therefore even
does halo communication within a
shared-memory area), OpenMP is de-
signed for shared memory and can be
exploited within a single node that con-
tains a physical shared memory. Fun-
damentally, each MPI process can have
multiple OpenMP threads executing si-
multaneously. Several configurations
can be opted for including involving
one MPI process per node or one MPI
process per socket while the remaining
cores will be used by OpenMP threads.
The efficiency of the configuration is in-
fluenced by the hardware architecture.
Combining MPI and OpenMP reduces
the need for replicated data within a
shared-memory area and can have in-
teresting designs that can overlap com-
putation and communication (but this
latter option has not yet been exploited
during this project).

Different options to combine
MPI and MPI one-sided shared
memory

The principle of employing MPI to
do the node-to-node communication
of halo data and using MPI’s one-
sided shared memory features within
the shared memory of the individ-
ual nodes or sockets is very similar to
MPI+OpenMP but offers more freedom.

Shared memory within each socket

In this configuration a shared-memory
area is allocated on each socket that
can be directly accessed by all processes
on this socket. The program implemen-
tation of this option is straightforward.

Shared memory within each node

Another possibility is to allocate a
shared-memory area within an entire
node. There is quite a difference in per-
formance whether this shared memory
is contiguous or not. With contiguous
memory the program will be much
easier to write as it is sufficient that
only one process of a node allocates the
shared memory. The processes that run
on the same socket will have a fast ac-
cess to this contiguous shared-memory
area, but for the processes running on
the other socket the memory access will
be much slower (see the left part of
Figure 3).

Figure 3: MPI one-sided shared memory al-
located as contiguous (left) or as noncon-
tiguous (right) shared-memory area within
the node.

This can be avoided, if the shared-
memory area is allocated in a non-
contiguous way. However, writing the
program is more tricky, as each pro-
cess has to allocate its own portion
of the noncontiguous shared-memory
area that will be placed in the memory
of its own socket allowing for fast ac-
cess. In order to directly read from the
neighbours’ data (which substitutes the
halo communication inside the shared-
memory area) the processes have to

68

query the memory addresses from their
neighbours (see the right part of Fig-
ure 3).

Only one process communicates

MPI permits to decide which processes
will be communicating with others.
Thus, it is sometimes relevant to ask
ourselves what is the best between
making every process communicating
or only a few of them. An idea here
is to let only one process of a shared-
memory area do the halo exchange
with others as depicted in Figure 4.
It reduces the number of communica-
tions, but the pieces of data to send to
or receive from others are obviously
bigger. For the 2D version, the option
that only one process communicates
together with shared memory within
each socket gives a pretty interesting
compromise between the number of
communications and the size of the
data to be sent or received.

Figure 4: How many processes do the node-
to-node halo communication? Only one pro-
cess per node (top) or all boundary pro-
cesses (bottom), shown between 4 nodes.

Boundary processes communicate

A different option is to involve all pro-
cesses that work on the boundaries of
the shared-memory dataset in the halo
communication, each communicating

only a certain fraction of the total halo
needed as illustrated in Figure 4.
Two Cartesian grids are necessary so
that each process knows if it belongs
to a border, and, if so, to whom and
from whom it has to send and receive
the halo data. One for nodes or sock-
ets, the other for processes within the
shared-memory area.

Hybrid on CPU nodes

The importance of pinning

High performance does not only come
from an accurate implementation, the
so called process pinning plays a huge
role as well. MPI processes or OpenMP
threads may not have a specific unit on
which to run, therefore they can float
from core to core, introducing useless
overheads. The so-called pinning avoids
this bad behaviour, allowing us to es-
tablish a one-to-one correspondence
between processes/threads and cores.
Let’s see how pinning can affect perfor-
mance when scaling our Jacobi program
with multiple cores of one node of VSC4
(see Figure 5).

Figure 5: Intra-node performance of pure
MPI on a single node of VSC4.

The simplest pinning we can think
of is incremental pinning: process 0 is
assigned to core 0, process 1 to core
1 and so on, that means we fill socket
0 consecutively before starting to use
socket 1 at all. Recalling that a node on
VSC4 is composed of two sockets, each
with 24 cores, when we use incremen-
tal the first 24 processes are pinned in
the first socket, saturating the bus that
connects cores and memory.

We use the expression round-robin
when a process is pinned to a core
on the first socket, the next process to
the second socket, the third to the first
socket again in an alternating way until
all processes are pinned. Doing so, both
sockets are filled progressively, and the

memory bandwidth is saturated gradu-
ally. The reader should notice that no
matter what fair pinning is set, when all
cores are used performance will eventu-
ally reach the same limit.

In the case of hybrid programming
with MPI and OpenMP, in addition
to correct process pinning, ensuring
thread affinity is vital to extract opti-
mal performance. This avoids multiple
threads/processes sharing a physical
core which would drastically deterio-
rate performance due to the threads
competing for resources. Proper thread
pinning is necessary for scaling with
more OpenMP threads.

Comparing the results

The inter-node strong scaling results
presented in Figure 6 refer to the VSC3
cluster. We can see that the pure MPI
version dominates the others in both
2D and 3D versions, and conversely the
one-sided versions with only one pro-
cesses per socket involved in the com-
munication appear slower. Among the
other hybrid versions, the 2D case is
dominated by the MPI + OpenMP ver-
sion, but when dealing with a 3D prob-
lem the one-sided with boundary pro-
cess communications prevails over the
other hybrid versions. Performance de-
pends on the cluster and its features.
Even if it is very hard to beat the pure
MPI version of the program, hybrid ver-
sions can be very interesting, particu-
larly on clusters having a poor commu-
nication bandwidth.

Hybrid with multiple GPUs

Since nowadays many clusters are
equipped with accelerators such as
GPUs we also provide an implementa-
tion that allows to use multiple GPUs
on the same node or on multiple nodes.

Here the GPUs are tackled with
OpenACC (an other option would have
been to use CUDA directly). The choice
for the pragma-based OpenACC was
made for the great trade-off between
development time and speed-up. In ad-
dition, it offers the possibility to compile
the code not only for a target GPU but
also in a multicore version and in a serial
or host version (in our case pure MPI).
The multicore option is offered as a pos-
sible replacement for a combination of
MPI and OpenMP.

Inter-GPU communication will be
done by MPI just via the host CPU

69

Figure 6: Performance of various implementations of the Jacobi solver in 2D (left) and 3D (right) on VSC3 nodes. MPI + OpenMP was
done with one MPI process per socket each engaging eight OpenMP threads. With One-sided the plots show two configurations, only one
process communicates per socket with contiguous shared memory and all boundary processes communicate with contiguous shared
memory on a socket.

and the PCI bus connecting GPU and
CPU while MPI will treat all memory
allocated on the GPU device as if allo-
cated on the host CPU via the so-called
CUDA-awareness. At startup each MPI
process allocates and initialises its own
matrices on the GPUs in order to avoid
excessive transmission of data through
the PCI bus which is the bottleneck.
Thanks to asynchronous execution we
can hide the communication time be-
tween processes that pass halo data
coming straight from the devices.

What about the scaling?

Since the memory of a GPU isn’t com-
parable in size to the memory of the
host CPUs (node), we focus on study-
ing the weak scaling of our multi GPU
implementation. For this study we used
one special node of VSC3 with eight
GPUs (NVIDIA GeForce GTX 1080 v6.1,
with 8.5 GB of memory). In this case
the host has two CPUs with four cores
each.

Figure 7: Performances of MPI + OpenACC
on GPUs, MPI + OpenACC with multicore
on CPU and just pure MPI on the host CPUs.

Is it really better?

Figure 7 shows the weak scaling re-
sults of the 2D Jacobi solver using
up to eight GPUs, and it is compared
to the weak scaling performances of
OpenACC’s multicore compilation and
of the pure MPI version of the code, all
of them on the same node. It is easy
to see that the usage of accelerators is
outperforming the other two compila-
tion options. By using eight GPUs the
speed-up achieved is 6.4× as compared
to the multicore (engaging all cores of
the host CPUs), and 5.2× against just
using one accelerator. A total win.

Conclusions

In this project we implemented and
analysed several configurations of a Ja-
cobi solver, taking into account the phys-
ical properties of the memory as much
as possible. While on one hand a pure
MPI implementation seems to be the
fastest most of times, on the other, the
extension to the 3D version enabled us
to conclude that when it comes to hy-
brid programming, memory configura-
tions and other communication aspects
can have a noticeable impact on perfor-
mance.

To further improve the performance
of the hybrid versions, future work
might focus on reducing the synchroni-
sation overhead of the shared-memory
programming models as well as avoid-
ing idle times by overlapping communi-
cation and computation.

PRACE SoHPCProject Title
Improved performance with hybrid
programming

PRACE SoHPCSite
VSC Research Center, TU Wien,
Austria

PRACE SoHPCAuthors
Sanath Keshav,
Kevin Mato,
Clément Richefort,
Federico Sossai

PRACE SoHPCMentor
Claudia Blaas-Schenner and
Irene Reichl, VSC Research Center,
TU Wien, Austria

PRACE SoHPCContact
Sanath, Keshav, Universität Stuttgart
E-mail:
sanathkeshav.mysore@gmail.com

Kevin, Mato, Politecnico di Milano
E-mail: kevin.mato@mail.polimi.it

Clément, Richefort, Polytech Lille
E-mail:
richefort.clement@protonmail.com

Federico, Sossai, University of Padua
E-mail:
federico.sossai@studenti.unipd.it

PRACE SoHPCSoftware applied
MPI, OpenMP, OpenACC, C, C++

PRACE SoHPCMore Information
MPI-Forum.org
OpenMP.org
OpenACC.org

PRACE
SoHPCAcknowledgement
We especially thank our mentors
Claudia, Irene and David for their
wonderful help and pedagogic
explanations, and of course the
Vienna Scientific Cluster in general for
having given us access to their super
supercomputers!

PRACE SoHPCProject ID
2023

Sanath Keshav

Kevin Mato

Clément Richefort

Federico Sossai

70

Project 2024: Marching Tetrahderons on the GPU

Biomolecular
Meshes
Aaurushi Jain, Federico Camerota, Jake Love

This summer our team worked on an
implementation of the marching tetrahedra
algorithm. The program was partially
ported to the GPU and was used to create
visualisations of the electron density field
around complex proteins.

Three dimensional scalar fields
are inherently hard to visualise
graphically. The two main ap-
proaches used are (i) to create

an isosurface from the field or (ii) to
use a volume rendering technique. This
report focuses on the former.

An isosurface can be considered to
be the three dimensional equivalent to
a contour. In the same way that a con-
tour represents a set of points of equal
value in two dimensional space, an iso-
surface represents a set of connected
points of equal value in three dimen-
sional space. By picking an appropri-
ate isovalue, one can create a mesh of
points that all share the characteristic
of exhibiting identical values of the un-
derlying scalar field. Although this does
not give a complete visualisation of the
entire system it can highlight important
features of the field and by varying the
isovalue a good intuition of the field’s
structure can be formed.

The marching tetrahedra algorithm
is a method of extracting a mesh rep-
resenting a scalar field’s isosurface at
a specific isovalue. It is the junior ver-
sion of the seminal marching cube al-
gorithm.1 These type of algorithms are
important for a wide range of applica-
tions, a common example being medical
imaging. For example, from a dataset of
tissue densities (CT scan) a mesh can
be computed that represents internal
structures of the tissue. This allows ab-
normalities — such as tumours — to be

identified at high levels of confidence.
In this project, however, we used the

marching tetrahedra algorithm to ex-
tract and visualise the electron density
field in proteins. There are three major
steps in the pipeline that creates our
desired mesh. First, the scalar field is
computed using the approximation of
Slater densities. Next, an isosurface is
extracted from application of the march-
ing tetrahedra algorithm. Finally, a post-
processing step is introduced to reduce
the number of elements in the mesh via
vertex and edge reduction techniques.

Slater Density Field

To begin with, a volumetric dataset rep-
resentative of the biomolecule’s spa-
tial extent is set up and computed. We
decided for the simplest geometry of
a regular cubic grid. The coordinates
of the atoms in the biomolecule gave
rise to a corresponding origin. Within
a nested loop over all 3 grid dimen-
sions, each grid point was identified
and became subject to electron den-
sity calculations. The approximation fol-
lowed was to make use of the sum
of atomic Slater functions2 centred on
each of the atoms in the biomolecule.
Care had to be taken of properly con-
verting atomic units whenever distances
between atoms and grid points were
to be taken into account (Bohr → Å).
The approach turned out to be compute-
intensive and the corresponding func-

tion, map2grid(), was likely to become
a target of further optimizations and
refinement strategies.

Marching Tetrahedra Algorithm

Tetrahedral Decomposition

The first step in the Marching Tetrahe-
dra algorithm is to decompose the do-
main into individual tetrahedra. From
the requirement of a space-filling de-
composition a frequently used approach
is to go in two sub-steps, first divide
the volume into cubes, then decompose
each cube into tetrahedra. In our partic-
ular case, the input data consists of a 3D
grid (see section “Slater Density Field”)
where individual grid points should also
become the vertices of our cubes and
tetrahedra. At first, we used a cube de-
composition into six tetrahedra. The ad-
vantage of this approach is its simplicity
since each cubic element can be pro-
cessed in an identical way. However, the
resulting mesh turned out to contain a
lot of very small sized triangles.

To improve on this, we switched to a
5-fold decomposition of cubic elements
into individual tetrahedra. This is tech-
nically more involved because we need
to consider two different symmetries
in an alternating fashion for neighbour-
ing cubes.3 In so doing, we managed
to remove some of the undesired tri-
angles in the mesh. However, we also
quickly realised that there was room for

71

further improvement. So far, we had
been working with “vertex-based repre-
sentations”, meaning that whenever we
referred to an object we did so by im-
plicitly referring to its constituting ver-
tices. Instead, one can also make use of
edges to identify objects. The key idea
here is a method to assign unique iden-
tifiers (numbers 1 . . . N) to edges using
only their associated vertices. At first
sight it might not seem clear how this
could be an improvement. The advan-
tage of an “edge-based representation”
arises from the fact that all vertices of
the output mesh will also lie on them.
Consequently, using such unique edge
identifiers for the set of vertices form-
ing the output mesh will result in the
latter list to also become unique. This is
an important requirement of many ad-
ditional processing steps lined up in the
algorithm. With such a key-enabling fea-
ture put in place we could even think of
parallelizing the two main tasks in the
overall algorithm, i.e. (i) finding inter-
section points on the edges of individual
tetrahedra, (ii) extracting faces to form
the actual isosurface. This is because
the latter task does not require explicit
knowledge of the exact location of inter-
section points, which can be computed
in parallel by the former task. Therefore,
extracting faces will actually mean pro-
viding triplets of unique edge identifiers,
which stresses again the significance of
an edge-based representation.

Face Extraction

Each tetrahedron is examined with re-
spect to which of the vertices are en-
closed by the isosurface and which are
not. Vertices with field value greater
than the isovalue are enclosed while
vertices with values less than the iso-
value are located outside the volume
enclosed by the isosurface. If all the ver-
tices of a particular tetrahedron are ei-
ther enclosed or unenclosed, then we
are dealing with a trivial case and can
move on to the next tetrahedron. How-
ever, if some of the vertices turn out to
be enclosed while others are not, then
the underlying tetrahedron will define
a fragmental part of the isosurface and
needs to be further considered for in-
depth processing. In such cases a sur-
face element will be extracted following
the intersection logic inherent in the
marching tetrahedra algorithm.3 Once
all the surface elements have been iden-
tified and extracted, the final mesh is
established.

To extract a particular surface ele-
ment, one of three cases can apply. Ei-
ther one, two or three vertices of the
tetrahedron may be enclosed. In the
first case, a single triangular surface el-
ement will be extracted. This triangle
will separate the single enclosed vertex
from the other three unenclosed ver-
tices. Similarly, the third case will also
result in a single surface element to be
extracted, separating the single unen-
closed vertex from the other three en-
closed vertices. In the remaining case
of two vertices being enclosed while
the two others are found unenclosed,
a quad element (consisting of two adja-
cent triangles) will be extracted again
separating enclosed from unenclosed
vertices.

Coordinates of the extracted surface
elements — i.e. vertices of individual
triangles — are computed via linear in-
terpolation along tetrahedral edges to
the desired isovalue. Care is taken to en-
sure that normal vectors to all surface
elements are consistent across the final
mesh. Graphical inspections were done
with VMD.4

Mesh Reduction

The aim of the mesh reduction is to
simplify the initial isosurface by re-
moving small and very elongated tri-
angles. This results in a more homo-
geneous mesh and reduces the num-
ber of triangles to be taken into ac-
count. We do this because in the associ-
ated biomolecular simulation less trian-
gles imply a reduced number of equa-
tions to solve. Moreover, the inclusion of
many small sized or elongated elements
would rather deteriorate than improve
the numerical accuracy of the results. In
addition to that, reducing the number
of surface elements will also ease the
amount of required memory and speed
up surface processing in general. The
method itself is quite simple: (i) identify
edges that can be removed, (ii) contract
them into a single point, (iii) remove
triangles involving that edge. Despite
its simplicity, this procedure allowed
us to bring down the number of trian-
gles in our test surface from 70k to 10k
maintaining the mesh intact and pre-
serving most of its properties. Fig. 1 rep-
resents a comparison between initial,
unprocessed and reduced mesh struc-
ture based on a selected region of our
test system.

Figure 1: Mesh before (left) and after re-
duction (right)

Basic Properties of the Mesh

Among the most important properties of
a mesh to be considered well-structured
are, (i) uniform orientation of vertices
in all surface elements (triangles) being
arranged in either clockwise or counter-
clockwise fashion, (ii) closure of the sur-
face. By differently colouring the first,
second and third vertex of individual
triangles in red, blue and green, we can
graphically check the rotational sense
of the vertices in individual triangles.
Fig. 2 represents the outcome of such
an analysis carried out on one of our
early implementations. As can be seen,
the arrangement of triangular vertices is
not uniform, but randomly switches be-
tween clockwise and counter-clockwise.
From this it follows that an additional
loop over all surface elements is to be
run in the end of the program and cor-
responding normal vectors need to be
re-calculated from scratch via applica-
tion of the cross-product.

Figure 2: Rotational orientation of vertices
of the surface elements (triangles) forming
the mesh (of an early version of the pro-
gram). Going from the first vertex (red) to
the second (blue) to the third (green) allows
to discern clockwise from anti-clockwise ori-
entation, which is, however, adopted ran-
domly.

With respect to the second basic
property of surface closure we made use
of the Euler characteristic,5 X, which is
defined as X = V −E + F where V , E
and F are the number of vertices, edges
and faces of the mesh respectively. It is
important to realise that all parameters
inX are to be seen as unique properties,
e.g. numbers of unique edges, numbers
of unique vertices etc.

72

Figure 3: C60 Surfaces

In order to establish confidence in
the Euler characteristic, an analysis pro-
gram was developed and applied to
the well-known case of Buckminster
Fullerene,6 C60. The latter exhibits a
cage-like ring structure that resembles a
soccer ball. Its mesh was expected to be
a sphere with X = 2. On applying our
algorithm we found that C60 gives rise
to actually two surfaces, an inner and
an outer one (see blue and red regions
in Fig. 3). Both inner and outer surfaces
were separated and analysed indepen-
dently. Corresponding Euler character-
istics were found to be X = 2 for ei-
ther surface (see Fig. 3 for details of
V , E and F). Moreover, when consid-
ering the entire list of triangles as com-
pound mesh, X turned out to be 3 (re-
sults given in black in Fig. 3). From
this it becomes clear that X can be re-
garded a convenient means to deter-
mine whether a mesh describes a single
surface of closed shape.

Statistical Analysis of the Mesh

Throughout the development cycle it
was helpful to analyse and compare
different versions of the code in terms
of statistical descriptions of the compo-
nents forming the mesh. For example, in
Fig. 4 three different approaches of do-
main decomposition are analysed with
respect to the size distribution of the
resulting surface elements. It immedi-
ately becomes clear that the edge-based
decomposition (green curve) leads to
an increased average size of individual
surface elements (0.15 Å2) and also dis-
tributes them over a much larger range
than what was observed in the plain de-

composition into 5 or 6 tetrahedra (blue
and red curves). In addition, the abrupt
truncation at the 0 Å2 point of the latter
2 approaches hint at a large fraction of
very small sized triangles yielding large
numbers of numerical zeros at the level
of accuracy inherent in Fig. 4.

Figure 4: Distribution of triangle area

In a related analysis the length
of edges of individual surface ele-
ments (triangles) was evaluated statis-
tically and compared between different
approaches. The result is graphically
shown in Fig. 5. Again, while both 5-
and 6-fold tetrahedral decompositions
(blue and red curves) show rather lin-
ear distributions of steadily increasing
edge lengths, the edge-based approach
(green curve) clearly has removed all
small sized elements and only starts at
a certain threshold edge length of ap-
proximately 0.25 Å. Moreover, edges
longer than 0.40 Å seem to be evenly
distributed in the edge-based approach
(green) whereas they are increasingly
occurring with increasing edge length
in the 5- and 6-fold tetrahedral decom-
position (blue and red curves).

Figure 5: Edge length distribution

Profiling and Early GPU Port

The algorithm’s execution time was
analysed for relative content of indi-
vidual functions using profiling tools
from ARM/Forge on VSC-3. Initially
the total execution time was 44.8 sec-
onds. Profiling revealed a major frac-
tion of the execution time spent in func-
tion “slater_density()” which was an-
ticipated as it was repeatedly called

for each of the atoms exerting their
partial contribution to the density at
a particular grid point. After optimis-
ing loops and related routines the ex-
ecution time could be reduced to 18
seconds. Since after repeated profil-
ing of this improved version another
function, “map2grid()”, was projected
out, which had the above function
“slater_density()” again called in its in-
nermost loop, it seemed tempting to try
a GPU port of function “map2grid()”.
Plain CUDA, version 9.1.85, in combi-
nation with ANSI C was used on an
NVIDIA GPU of the Pascal architecture
of type GeForce GTX 1080. In so doing
the execution time could be further de-
creased to 1.7 seconds neglecting any
higher level optimisations (i.e. memory
access patterns) at this point in the de-
velopment cycle.

References
1 Lorensen, W. E, Cline, H. E. (1987). Marching

cubes: A high resolution 3D surface construction al-
gorithm, ACM SIGGRAPH Computer Graphics 21(4),
pp 163–169.

2 Slater, J. C. (1930). Atomic shielding constants, Phys
Rev 36,57-64.

3 Doi, A., Koide, A. (1991). An Efficient Method of Tri-
angulating Equi-Valued Surfaces by Using Tetrahedral
Cells, IEICE Trans E74(1), 216-224.

4 https://www.ks.uiuc.edu/Research/vmd

5 https://en.wikipedia.org/wiki/Euler_
characteristic

6 https://en.wikipedia.org/wiki/
Buckminsterfullerene

PRACE SoHPCProject Title
Marching Tetrahedrons on the GPU

PRACE SoHPCSite
VSC Research Center, Austria

PRACE SoHPCAuthors
Aaurushi Jain, Federico Camerota,
Jake Love

PRACE SoHPCMentor
Siegfried Hoefinger, Vienna, Austria

PRACE SoHPCCo-Mentors
Markus Hickel, Balazs Lengyel,
Vienna, Austria

PRACE
SoHPCAcknowledgement
We would like to express our gratitude
to our mentor Siegfried Hoefinger for
providing us the guidance throughout
the project. Furthermore, We would
also like to thank PRACE for giving
this opportunity to work at VSC
Research centre, Vienna.

PRACE SoHPCProject ID
2024

Aaurushi Jain, Federico Camerota, Jake Love

73

 www.summerofhpc.prace-ri.eu

	High Performance Machine Learning
	Supernova Explosions Using HPC
	When HPC meets integer programming
	Anomaly Detection in High Performance Computing Systems
	Persistent Memory checkpoint
	ARM tooling
	How to make Python code run faster
	Breadth First Search
	BFS Graph Traversal with CUDA
	GPU Acceleration of BFS

	Deep Neural Networks for galaxy orientation
	Visualization of Molecules
	High Performance Quantum Fields
	FMM-GPU Melting Pot
	Quantum Computing
	Matrix exponentiation on GPUs
	Predicting Job Run Times
	Boosting Dissipative Particle Dynamics
	Monitoring HPC Performance
	TSM of HPC Job Queues
	Accelerating Particle In Cell Codes
	When HPC meets integer programming
	Drifting in aSubmarine? Hold On!
	Novel HPC Models
	Hybrid Programming with MPI+X
	Biomolecular Meshes

