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A long hot summer is time for a break, right? Not necessarily!
PRACE Summer of HPC 2021 reports by participants are here.

Remote 2021!
Leon Kos

Summer of HPC 2021 was the largest edition so far. Started all virtual with 65 partici-
pants and their mentors at 14 PRACE HPC sites working on 33 projects.

S Summer of HPC is a PRACE programme that offers
summer placements at HPC centres across Europe
to late-stage undergraduate and master’s students.
Total of 65 top applicants from across Europe were

selected to participate in pairs on 33 projects supported and
mentored online from 14 PRACE hosting sites. Participants
spent two months working on projects related to PRACE tech-
nical or industrial work and produce a report and video of
their results. A kick-off online training week (see photo) was
organised by Irish Centre for High End Computing (ICHEC).
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Leon Kos, University of Ljubljana
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Analysis of memory scheduling policies that
mitigate interference among threads

Analysis of
memory
scheduling
policies
Aneta Ivaničová

Main memories have become performance
bottlenecks, which means that processors
are spending their time waiting for memory
operations. For this reason, we are
presenting an analysis of the memory
scheduler called BLISS in this article.

The ACME accelerator architecture.

The memory bandwidth is the
maximum amount of data that
can be received and written to
the memory or read from the

memory and returned to the processor
per unit of time.3 The memory through-
put, the actual transfer rate, which is
limited by the memory bandwidth, has
made main memory a performance bot-
tleneck. Although maximizing memory
throughput is beneficial in some cases,
in other cases it might degrade overall
system performance. In a system where
multiple cores share a common mem-
ory interface, concurrent memory re-
quests from different threads execut-
ing on different cores can interfere with
each other while accessing the shared
DRAM main memory system. This is
also called inter-thread interference and
it degrades system performance and
slows down applications. To mitigate
inter-thread interference we decided
to study four state-of-the-art memory
schedulers, then we picked one of them,
thoroughly analyzed it, implemented it
in an open source RISC-V ISA based sim-
ulator named Coyote, then tests began,
and after that evaluation was expected
to start. Our choice for the memory

scheduler was the Blacklisting Memory
Scheduler called BLISS. Among the rea-
sons were that BLISS helps to achieve
higher system performance and fairness,
while incurring low hardware cost and
scheduling latency. Also, BLISS does not
implement total order-based ranking of
memory requests, which leads to lower
complexity, so that strict double data
rate memory timing protocols can be
met.

MEEP, ACME and Coyote

The project revolves around MEEP
(MareNostrum Experimental Exascale
Platform) which is a flexible FPGA-
based emulation platform that serves
as a basis for creating European-based
chips and an infrastructure to enable
rapid prototyping. The MEEP project is
currently emulating a self-hosted accel-
erator called ACME (Accelerated Com-
pute Memory Engine), which has two
main components: the VAS tiles and the
memory tiles. The VAS tile is a clus-
ter of 8 scalar cores, each core sup-
ports a Vector Processor Unit (VPU) and
two Systolic Array units. A scalar core
has its own L1 instruction and data

caches, and a L2 data cache slice which
also can act as a scratchpad. A mem-
ory tile consists of a memory controller,
a slice of high bandwidth memory, a
JTLB (address-translation cache) and
the MCPU which is designed to man-
age memory requests and related op-
erations. ACME aims to improve the
performance of dense (compute-bound)
and sparse (memory-bandwidth-bound)
workloads, and to find the balance be-
tween the memory hierarchy design
and the number of fused multiply-add
(FMA) units available in the system that
the performance depends on. MEEP pro-
poses Coyote which is a performance
modeling tool based on two open source
simulators called Sparta and Spike. Coy-
ote provides detailed insights at various
levels and granularity, while focusing
on data movement and the modeling of
the memory hierarchy of the system.5

The main memory

In case of ACME, the main memory is a
high bandwidth memory (HBM), which
is a stacked double data rate (DDR)
memory that is connected via an inter-
poser to an FPGA. At the bottom of the
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HBM is a base logic die. On the top of
the logic die are stacked DRAM dies,
which are connected through-silicon
vias (TSVs), as shown in Figure 1. Each
slice of core DRAM die has two channels
with eight independent bank groups.
The utilization of memory banks en-
ables concurrent DRAM main memory
accesses and increases memory band-
width. All banks within a channel share
the command, address and data buses
of the channel. Each bank has a struc-
ture of a two-dimensional array of rows
and columns.

Figure 1: The high bandwidth memory ar-
chitecture.4

Memory access terminologies

Before moving on to the memory sched-
uler we need to explain a term called
a row-buffer hit. So, when a processor
generates a memory request, the data
is searched after in all levels of cache
memory and if the data is not found
in the last level cache (LLC), then the
memory controller looks for the data in
the main memory by sending the physi-
cal address of the data via the memory
address bus. On a data access, the en-
tire row containing the data is copied
into a structure called the row buffer.
A subsequent access to the same row
can be served from the row buffer itself
and it does not need to access the array.
This is called a row-buffer hit. On the
other hand, when accessing a different
row, the previous row of data must be
returned, and then the next row can be
accessed. This type of access is called a
row-buffer miss or conflict.

The memory scheduler

To mitigate inter-thread interfer-
ence, BLISS separates threads into
two groups: interference-causing and

vulnerable-to-interference. When a
large number of consecutive requests
are served from the same thread other
threads will likely stall, therefore BLISS
counts the number of consecutive re-
quests served from the same thread.
When this count exceeds a thresh-
old, BLISS places the thread into
the interference-causing group, also
called the blacklisted group, and other
threads are placed in the vulnerable-
to-interference group. BLISS has two
components: The Blacklisting Mech-
anism and The Memory Scheduling
Mechanism. The Blacklisting Mecha-
nism needs to keep track of the fol-
lowing three quantities: the Thread
ID of the last scheduled request, the
Number Of Requests Served from a
thread, and the Blacklist Status of each
thread. Before a request is issued by
the memory controller, it compares the
thread ID of the current request and the
Thread ID of the last scheduled request.
If they are the same, then the Number
Of Requests Served counter is incre-
mented. However, if they are different
then the counter is reset to zero and the
Thread ID register of the last scheduled
request is updated with the thread ID
of the current request. If the Number
Of Requests Served counter exceeds
a blacklisting threshold, which can be
four according to the research papers,
then the thread ID of the current re-
quest is blacklisted, and the counter is
reset to zero. The blacklisting informa-
tion is cleared periodically after every
Clearing Interval, which is ten thousand
cycles in the papers. In addition, this
information is used by the Memory
Scheduling Mechanism to determine
the scheduling priority of a request.
Requests from threads that are placed
in the vulnerable-to-interference group
or also called non-blacklisted threads
are prioritized, then row-buffer hit re-
quests follow because they optimize
bandwidth utilization, and finally older
requests are prioritized for forward
progress. It is important to prioritize
threads which are vulnerable to interfer-
ence because they are compute-bound,
therefore it is beneficial when they
spend less time waiting for memory
operations.

Conclusion

BLISS optimizes applications by ex-
ploiting the imbalance in number of

memory requests among the threads.
Threads that have less number of mem-
ory requests are prioritized over threads
which in comparison are more memory-
intensive. Since applications ported to
Coyote (AXPY, Matmul, Somier, SPMV)
exhibit little imbalance in terms of
number of memory requests among its
threads, it would be interesting to port
a few applications that could demon-
strate suitable use cases for the BLISS
optimization. We hope to do this in our
future work for evaluation purposes.

References
1 Fell, A., Mazure, D., Garcia, T., Pérez, B., Teruel,

X., Wilson, P., & Davis, J. (2021). The MareNos-
trum Experimental Exascale Platform (MEEP). Su-
percomputing Frontiers And Innovations, 8(1), 62-81.
doi:http://dx.doi.org/10.14529/jsfi210105

2 Subramanian, L., Lee, D., Seshadri, V., Rastogi, H., &
Mutlu, O. (2014, October). The blacklisting memory
scheduler: Achieving high performance and fairness at
low cost. In 2014 IEEE 32nd International Conference
on Computer Design (ICCD) (pp. 8-15). IEEE.

3 John Burke 2015, TechTarget, viewed 28 August
2021, <https://searchnetworking.techtarget.com/
definition /throughput>

4 Jun, H., Cho, J., Lee, K., Son, H. Y., Kim, K., Jin, H., &
Kim, K. (2017, May). Hbm (high bandwidth memory)
dram technology and architecture. In 2017 IEEE Inter-
national Memory Workshop (IMW) (pp. 1-4). IEEE.

5 Pérez, B.; Fell, A.; Davis, J.D. Coyote: an open source
simulation tool to enable RISC-V in HPC. A: De-
sign, Automation and Test in Europe Conference
and Exhibition. "2021 Design, Automation & Test
in Europe Conference & Exhibition (DATE): Greno-
ble, France, 1-5 February 2021: proceedings". Insti-
tute of Electrical and Electronics Engineers (IEEE),
2021, p. 130-135. ISBN 978-3-9819263-5-4. DOI
10.23919/DATE51398.2021.9474080.

Aneta Ivaničová
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Phone: +421 918 962 114
E-mail:
aivanicova@student.umb.sk

PRACE SoHPCSoftware applied
Coyote

PRACE SoHPCMore Information
github.com/borja-perez/Coyote

PRACE SoHPCAcknowledgement
I would like to express my gratitude to my
project partner Regina M. Gachomba, to
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Analysis of Data Management Policies in HPC
Architectures

Coyote: A peek
into the future of
RISC-V Super-
computers
Regina Mumbi Gachomba

Handling sparse workloads in HPC
architectures can be a bummer, but Coyote, a
performance modelling system and emulation
platform, is here to the rescue! It proposes and
analyses the viability of a decoupled
architecture (ACME) in which the memory
operations are separated from the
computation.

Picture this: you want to revamp your old desktop
computer to include new or updated features that
will optimize its performance. Lucky enough, your
system has a PCI Express bus; an expansion slot to

which you can add graphic cards, drives etc. However, there
is a threshold to how much you can reconfigure your sys-
tem because some components are heavily dependent on
the software. Furthermore, these components that you will
add to your system will probably cost a lot, and if you don’t
know how to go about the reconfiguration, you will need
to pay for the service as well. Now imagine doing this for a
supercomputer (a system that usually fits a room. . . or two).
It would take a while. . . and cost a fortune!

Nowadays, the flexibility of software-hardware co-design
is a highly sought-after feature in most computing systems.
The need for this flexibility spans across speed, scale, cost,
innovation and so much more. To address this, Mare Nos-
trum Experimental Exascale Platform (MEEP) proposes a
flexible FPGA based emulation platform, designed to explore
hardware-software co-designs for future RISC-V supercom-
puters.1 It would be easier to think of MEEP as a prototype
that can be used to test the viability of a certain framework
or architecture.

To demonstrate MEEP’s emulation capabilities, an acceler-
ator architecture called the Accelerated Compute and Mem-

ory Engine (ACME) will be incorporated into MEEP. ACME
employs a decoupled architecture, which offers a clean-cut
approach to how sparse and dense workloads are handled
in computation. While dense HPC workloads are compute-
bound, sparse workloads are memory-bound, as the vector
elements need to be gathered/scattered using multiple re-
quests. Data or workloads are considered sparse when certain
expected values in a dataset are missing, which is a common
phenomenon in the domain of High-Performance Comput-
ing (HPC) and High-Performance Data Analytics (HPDA). In
addition, this data needs to arrive in time to the required
destination. To achieve this in MEEP, a tool that can run
and test various data movement and marshalling policies to
decide on the optimal one, based on performance, is needed.
Enter Coyote.

Coyote is a new open source, execution-driven simulation
tool, that is capable of performance modelling and analysis
of the ACME architecture before it can be cast onto silicon.1

Coyote is founded on existing simulators (Spike and Sparta)
and is being improved to cater for their shortcomings, espe-
cially in the High Performance Computing domain where the
number of resources to be simulated is high, hence making
it a powerful modelling tool. MEEP and coyote is a reference
to the cartoon, Wile E. Coyote and the roadrunner, where
Coyote aspires to match the roadrunner’s using his wits. This
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is precisely the goal of our simulator: To identify the best
data movement and reordering policies that ensure a better
leveraged access pattern for applications that will ensure
faster and more efficient computing.

Figure 1: The fantastic three

Introduction – The Memory Tile

During the tenure of this internship, my work has been fo-
cused on setting up the basic functionality of the memory
tile on the Coyote simulator. The memory tile houses the
MCPU (Memory CPU), which can be loosely described as the
’intelligence’ of the tile, responsible for organizing resources
that are needed to perform the different memory operations.

These resources are obtained from the microengine, the
vector address generator (VAG) and within the MCPU itself.
The microengine is responsible for generating transactions
for the instructions, whereas the vector address generator
generates the memory requests. Another impressive feature
of this memory tile is that it allows the re-usability of some
already implemented functionalities. For example, a scalar
load operation is handled like a unit stride vector load with
a loop iteration of 1.

Figure 2: The architecture of the memory tile

Objectives

The primary objective was to understand how instructions,
commands and data packets are to be received into the mem-
ory tile. Coyote allows us to create endless possibilities, even

unrealistic ones, so it was important to also define the hard-
ware constraints in the beginning so that we could obtain
realistic results.

Once an overall understanding of the architecture was
established, our goal was to simulate the different load and
store operations and analyse the output and performance.3

The types of scalar and vector operations to be simulated are
as follows:

Unit stride: for vector elements that are located/stored next
to each other in memory

Non-unit stride: for vector elements that are accessed at
regular intervals, e.g., every second or third element

Indexed: for vector elements that are accessed by their in-
dexed address. Quite similar to non-unit stride

Figure 3: Communication sequences for various scalar and
vector operations

Technical Work and Timeline

The first task involved setting up the bypass for scalar mem-
ory operations that do not need any resources from the
MCPU. The scalar memory operations are handled as cache
requests that are forwarded to the memory controller though
the bus queue.
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The MCPU functionalities that would cater for the load
and store of vector operations were then set up. This entailed
the handle function, controller cycles and the queues.

The Memory Tile and the VAS tile communicate using
NoC messages. When these messages arrive at the memory
tile, they can have either of the four payloads namely,

MCPU Instruction: vector memory operations

MCPUsetVVL: instruction to set virtual vector length (VVL)
and sends it back to VAS tile

Scratchpad Requests: Commands such as free, allocate,
read, write for the scratchpad

Cache Requests scalar memory operations and memory re-
quests going to the MC

Each of these payloads are handled differently. For that rea-
son, we use an overloaded function called handle in the
source code. The handle function determines the queue and
the controller cycle that will schedule the operation.

Figure 4: An illustration of how the overloaded function
handle works

The controller cycle for incoming transactions essentially
describes what happens in the MCPU. If an MCPU instruction
is peeked from the queue, we first determine whether it is
a load or a store. If it is a load, a scratchpad request to allo-
cate some space in the scratchpad is created and sent back
to tile (refer to figure 3). If it is a store, then a scratchpad
command to load from the scratchpad is created. If the mem-
ory operation at the front of the incoming happens to be a
scratchpad reply, it means that we had earlier sent a request
to the scratchpad , and it is an indication that the subsequent
computations can now be carried out.

The controller cycle for memory requests going through
the bus queue schedules memory requests in the form of
cache requests that will be forwarded to the Memory Con-
troller, while the controller cycle for outgoing transactions
schedules outgoing transactions from the MCPU, bypass and
microengine.

Figure 5: Controller cycle for incoming transactions

Figure 6: Controller cycle for memory requests generated by
the VAG and sent to the memory controller

Figure 7: Controller cycle for outgoing transactions

A template class with the basic methods of a queue and
boolean values that check the availability of the controller
cycles was created. All the queues implement this template
class, which is in the form of a header file (Bus.hpp). The
reason for this was to reduce code replication of the push
and pop functions of all the queues in the memory tile.

In addition, The MCPUwrapper is initialised with a hash
map (unordered map) to keep track of the cache requests and
scratchpad requests that are generated from each MCPU In-
struction. The MCPU instructions are consequently initialised
with an ID parameter that we use as the key in the hash map.
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Results

The Coyote simulator can now carry out both scalar vector
load and store operations in the memory tile. Address, data,
and control packets can be sent to the accelerator tile and are
received in the memory tile. However, there is still some de-
bugging to be done. For instance, when scratchpad requests
return from the memory controller, they do not arrive in the
same order they were sent. Although the simulator has con-
trol of how memory operations are scheduled in the queues,
it is still not well-defined how the operations are ordered
when they are in the MC, MCPU or the microengine.5

Figure 8: This is the number of simulations that were run
when coyote was run with four cores

Figure 9: Cache request transaction

Figure 10: setVVL transaction

Figure 11: Unit-stride vector transaction in which the data
for a vector load is returned in multiple NoC transactions.

Future Work

At the moment, the analysis of Coyote’s performance is done
mostly on the command line. This is expected to shift to the
use of a visualization tool, Paraver, which is a flexible data
browser developed at BSC, used to capture the behaviour
of parallel programs, and give a quantitative analysis of the
problem.4 Due to its flexibility, it perfectly meets the needs
of Coyote in testing the large number of data management
policies with different workloads used in HPC.
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Molecular dynamics simulations of tungsten structures in
fusion reactor conditions using the MareNostrum facility

Tungsten
Simulations for
Nuclear Fusion
Paolo Settembri and Eoin Kearney

Now that fusion power is a closer reality, with
several large scale reactor experiments performed
around the world, it is increasingly important to
expand our knowledge in the fields related to this
subject. One of these is materials science, focusing
on materials used in the fusion reactors (e.g.
tungsten), and the damage that the fusion products
cause to them. Investigating these structures and
damages is a hot topic in material science.

Figure 1: (a) Tungsten cascade sim-
ulation with all atoms transparent ex-
cept those displaced. The PKA=Primary
Knock-on atom, where the cascade be-
gins. (b) Example of an empty bubble
inside a tungsten perfect crystal (coloring
for depth’s understanding)

The search for nuclear fusion has
spanned more than 50 years,
with potential to be the green
energy source of the future.

The most viable process for industrial
fusion reactors is the deuterium-tritium
reaction1, in which two isotopes of hy-
drogen are brought together under suffi-
cient force to fuse them inside a nuclear
fusion reactor, releasing excess energy.
Figure 2 shows a sketch of this, with
helium atoms, neutrons and energy be-
ing the products of the collision be-
tween deuterium and tritium. Currently,
fusion for energy generation purposes
has been achieved, but consumes more
energy than it releases. However, new,
more ambitious developments such as
the test reactors ITER in the EU and
JET in the UK, suggest progress to a vi-
able reactor is growing closer. Given the
extreme conditions involved (high tem-
perature, and continuous neutron bom-

bardment) extremely versatile materials
are required to provide a long operating
life. Tungsten metal is a likely candidate
for these conditions, due to its stability,
high melting point and good thermal
conductivity2. This project will focus on
the damage to its structure caused by
neutron bombardment.
In the following sections we will present
the motivation of our project in more
detail and talk through the results of
our studies.

Figure 2: Sketch of the fusion reaction.

Motivation

Neutron bombardment can have sev-
eral effects on a metal including elec-
tronic excitement, transmutation re-
actions, and kinetic displacements of
atoms forming defect sites2. This report
focuses on the latter. These defects form
via a cascade, which is comparable to
projectile motion; an atom with high
energy following a neutron impact can
shoot out of the crystal lattice structure,
disrupting many other atoms around it,
with the effects fanning out conically
from the initial atom. This initial atom
is known as a primary knock-on atom or
PKA. The cover photo (Figure 1a) high-
lights atoms displaced in such a pro-
cess. This process occurs at the atomic
scale, but introduces weaknesses that
have strong local effects on material per-
formance, and which can build up over
prolonged neutron bombardment form-
ing larger vacancies. Moreover, hydro-
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gen and helium byproducts of the fusion
process can also accumulate in these de-
fects and affect tungsten properties.2

Analyzing these will be an area of inter-
est for this project.

Additionally, neutron sources for
materials testing at fusion relevant
energies are not currently available,
though the International Fusion Ma-
terials Irradiation Facility (IFMIF) is
planned for construction to cover this,
with Granada (Spain) as the proposed
location. Computational simulations
provide an insightful way to investigate
material behavior under these condi-
tions, to analyze and replicate these
cascade effects, evaluate the materials’
performance and identify potential im-
provements. Fusion reactors are subject
to extreme heating, and so thermal con-
ductivity is a key property to track and
will be one of the focuses of this project.
Thermal conductivity describes the way
the system behaves under the effect of
heat sources1. Hence it is fundamen-
tal to understanding how the system
responds to steep temperature gradi-
ents, before and after the formation
of defects in the structure and follow-
ing insertion of helium and hydrogen
inside the reactor3. To investigate, we
used the atomistic modelling software
LAMMPS to simulate tungsten metal; a
defect cascade of tungsten is simulated
to recreate a structure eroded by fusion,
allowing tests of vacancy formation
with focus on their effect on thermal
conductivity. Our aim is to shine more
light on the reaction of tungsten to
neutron irradiation.

Methods

LAMMPS is a type of molecular dynam-
ics modelling software. These are a
form of computer simulation which rep-
resent species on the level of atoms that
interact using Newton’s law of motion
and a given potential. These simulations
have great performance and scalability
which allows the simulation of even mil-
lions of atoms on just a few HPC nodes
within a reasonable time2. E.g. in this
project a two million atom cascade took
two hours to run on ten MareNostrum-4
nodes. This allows evaluation of both
defect formation and behavior under
both neutron bombardment1. In the
simulations a parallel-piped simulation
box is defined and tungsten atoms are
placed in a body centered cubic (BCC)
crystalline structure, which is tungsten’s
crystalline structure; then an equilibra-

tion run is performed at a given system
temperature. We used 300K for thermal
conductivity to compare the results
with previous papers, and 1K for defect
cascades to minimize thermal motion
during procedure development. To
have this constant temperature system
LAMMPS uses a modified version of the
equation of motion, this procedure is
called the Nose-Hoover algorithm. The
simulations were equilibrated initially
to reach the set temperatures.

Defect Cascades

To start with, a procedure was prepared
for defect cascades in LAMMPS. This
uses a common format for cascades in
which an internal region of a tungsten
cube is designated for the cascade, with
an outer area lining it.
The purpose of this is twofold. Firstly
the simulation box must be large
enough to contain the cascades, as oth-
erwise cascade atoms could cross the
periodic boundary and affect atoms
around the PKA site. The two regions
mark the site of concern, allowing an
area of one full cascade to be examined.
Secondly this allows two thermody-
namic regimes to be implemented; the
inner cascade region with variable tem-
perature and the outer border region
with temperature control. This is neces-
sary as thermostats modify the velocity
and so must be avoided in the cascade
region to avoid a loss of accuracy, while
the outer region acts like a heat bath.

Figure 3: Example of a defect cascade in
tungsten. (a) Cascade wave. (b) Final struc-
ture. The large atom on the left side of each
is the PKA.

With this set up an atom was cho-
sen for the PKA and assigned an energy,
which will be varied for analysis. The
size of the simulation was modified to
allow for the larger energy simulations
large scale cascades. The number of de-
fects formed was then calculated using
the visualization tool Ovito; specifically
its Wigner-Seitz defect analysis tool. Fig-
ure 3 shows a cascade in two steps. Ini-
tially, (3a), a wave passes through the
structure causing many displacements
most of which settle back into position.
Hence, (3b), the final stage has fewer

displacements. This reflects the trend
found in previous literature4.

Table 1: Number of final defect sites remain-
ing after 200 keV cascade.

Potential Number of Defects

EAM15 124
EAM25 136
EAM36 124
WTa7 351
WRe8 105

WRe Set9 236

Simulations were successful with
energies up to 200 keV and 2 million
atoms, as well as with a variety of
tungsten potentials. The number of
permanent defects formed by each po-
tential considered is given by table 1.

Thermal Conductivity

To calculate the thermal conductivity of
pure tungsten metal and study its vari-
ations with the presence of vacancies,
various molecular dynamics simulations
have been performed. The procedure
used and the obtained results are de-
tailed in the following.

Figure 4: Sketch of the simulation box with
the positive and negative heat fluxes.

Two regions are defined along one
direction of the simulation box, of equal
volume and equidistant from the box
borders. We then start heating one re-
gion with a positive heat flux q, while
cooling the other with an equal negative
heat flux−q. A sketch of this system can
be seen in figure 4. In this way the aver-
age temperature of the system stays con-
stant, but the heated region will have
a higher local temperature while the
cooled region will have a lower one.
We then have a temperature gradient
∇T between these regions; knowing the
value of the heat flux q and calculating
∇T, we can obtain the value for the ther-
mal conductivity k from Fourier’s law
q=-k∇T. This procedure has been per-
formed using different potentials. The
results are shown in Table 2.
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Table 2: Thermal conductivity of Tungsten

Potential k

Ackland11 38.60W/mK
WTa7 17.03W/mK

These results have been compared
and found to be compatible with the
values from previous works: from MD
studies12,13,14 it was found that k=15-
21 W/mK while an ab-initio paper15

obtained k=46 W/mK. We then added
an empty bubble at the center of the
system with radius r, like the one in Fig-
ure 1b, resembling the damage caused
by neutron bombardment, and repeated
the same procedure obtaining a new re-
sult for the thermal conductivity of the
system. Using the Ackland potential11

we investigated the relative variation of
the thermal conductivity with respect to
the value for a perfect crystal increasing
the size of the empty sphere at the box
center.

Figure 5: Thermal conductivity variation as
a function of the sphere cross area: data
points and expected linear behaviour

The obtained result is shown in fig-
ure 5. We can see a decreasing linear
behavior in thermal conductivity as a
function of the transverse (with respect
to the heat flux direction) sphere area
πr2, in line with previous results.14

For high radius spheres we start to see
the effect of the finite size of the sim-
ulation box; the data shift away from
the expected behavior. We can see in a
qualitative way how much the presence
of such a vacancy effects the system’s
thermal conductivity.

Conclusion

In this project defect cascades were
successfully performed. Our results,
shown in Table 1, present differing
numbers of defects formed for several
potentials. All the potentials used show
more defects then a recent similar study
(which reported 102 defects at 300K).9

However, another study10 investigat-

ing tungsten cascades concluded that
higher temperatures show increasing
defect recombination rates. As our cas-
cades were performed at 1K, some
larger values are expected. Most of the
potentials are still near the literature
value, with the WRe potential coming
closest.
The difference in the number of de-
fects formed depends on the system the
potentials were created to represent:
EAM1 and EAM2 represent H and He
interactions with tungsten; EAM3 gives
a general representation of tungsten-
tungsten interactions: WRe, WReSet
and WTa represent two tungsten alloys.
Further work arising from this project
would include larger cascades as in-
teraction between the inner and outer
thermodynamic regions may impact
the WReSet and WTa potentials perfor-
mance. Identifying solutions will allow
integration of more potentials to the
procedure allowing analysis of more
complex structures e.g. doped tungsten.
The lining up of number of defects
with the majority of the tested poten-
tials, and these settling near literature
values confirms the correctness of the
procedure used for defect cascades. In
the part of the project focused on the
calculation of the thermal conductivity
of tungsten, results compatible with
previous works have been achieved for
a perfect crystal. These show a depen-
dency upon the used potential for the
same reasons as explained above.
Vacancies have also been introduced
in the structure and the their effect on
thermal conductivity has been studied,
showing a linear decrease with the
vacancy cross sectional area, as it has
been found in previous papers.
To give an idea of how important these
effects are, removing 11 atoms out of
half a million atoms system decreases
the thermal conductivity by 5%. Our
results can be the basis for future works
centered on the effect of the presence
of Helium and Hydrogen atoms inside
the vacancies and the evaluation of the
effects of a defect cascade on the system
thermal conductivity.
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Precision based differential checkpointing for
HPC applications

Improving the
Performance of
Fault Tolerance
Athanasios KASTORAS & Kevser İLDEŞ

High Performance Computing systems’
complexity has increased the possibility
of system failures. This project’s goal
was to improve the checkpoint/restart
technique’s performance using two
different methods, lossy compression
and precision bound differential
checkpointing.

Reliability is a big issue and it is
more significant especially in
supercomputers. In High per-
formance computing (HPC),

systems are built from highly reliable
components but with the increase in the
number of components, the likelihood
of failure becomes a serious issue as
the overall failure rate of supercomput-
ers also increases. Nowadays, the mean
time between failures (MTBF) of a large-
scale HPC system is about a day which
means that approximately once a day
the system faces a failure.

Figure 1: MTBF.

Of course, all processes running dur-
ing the failure will be killed and their

data will be lost. This can be devastat-
ing on large-scale applications such as
complex numerical simulations which
may execute for days, weeks, or even
months. Therefore, the development of
Fault Tolerance mechanisms is neces-
sary to be able to protect the application
and continue improving supercomput-
ers’ performance.

There are several techniques to pro-
tect the application and checkpoint-and-
restart is a common one. It means tak-
ing snapshots of the application at spe-
cific times which means saving the sys-
tem state in stable storage, frequently a
parallel file system (PFS), and in case of
a failure restarting the execution from
the last recovery point. The disadvan-
tage of this method is that in large-scale
applications there is an enormous num-
ber of data to be stored, and due to
the file system’s bandwidth restrictions
there is a high risk of creating a bottle-
neck and dramatically increase the pro-
cessing time. There are some advanced
techniques to fight such limitations like
multilevel and differential checkpoint-
ing.

Fault Tolerance Interface (FTI) is an

application-level checkpointing Library
which allows users to protect selected
datasets using the Checkpoint/Restart
method. There are different checkpoint
levels which are:

• Level 1: Local checkpointing on
the nodes. Fast and efficient
against soft and transient errors.

• Level 2: Local checkpointing on
the nodes + copy to the neigh-
bor node. Can tolerate any single
node crash in the system.

• Level 3: Local checkpointing on
the nodes + copy to the neighbor
node + Reed Solomon encoding.
Can tolerate correlated failures af-
fecting multiple nodes.

• Level 4: Flush of the check-
points to the Parallel File System
(PFS). Tolerates catastrophic fail-
ures such as power failures.

• L4 dcp: Differential checkpoint-
ing.

In differential checkpointing, in-
stead of storing all the data in every
checkpoint, they are stored once and
then only the differences are updated
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Graphs obtained from experiments for Precision Bound Differential Checkpointing feature.

from the new data thus decreasing the
quantity of data that are transferred.

In Figure 2 difference between with-
out checkpointing in which in case of a
failure there is a need of restarting from
the beginning, classical and differential
checkpointing, where it restarts from
last recovery point is shown, of course
checkpoint sizes differs in differential
checkpointing (dcp).

Figure 2: Difference between checkpointing
approaches.

Throughout this project two new
mechanisms are added to FTI li-
brary which are Precision Based Dif-
ferential Checkpointing (PBDCP) and
Compressed Checkpointing (CPC),using
lossy compression.

Precision Based DCP (PBDCP)

Approximate computing promises high
computational performance combined
with low resource requirements like
very low power and energy consump-
tion. This goal is achieved by relaxing
the strict requirements on accuracy and

precision and allowing a deviating be-
havior from exact boolean specifications
to a certain extent.

Floating point numbers map deci-
mal numbers to a unique bit represen-
tation and they have 3 parts: sign bit,
mantissa and exponent. The idea of Pre-
cision Based Differential Checkpointing
is to cap the last bits of mantissa that
are the least significant bits according
to the given precision value. As an ex-
ample in Figure 3, if the precision value
given by user is sixteen, it truncates the
last seven bits of mantissa, (i.e. makes
them 0).

Therefore, PBDCP allows us to take
benefits from dcp share which shows
the difference between checkpoints,
those would be stored, for such small
changes and thus transferring less data.

Figure 3: Example of pbdcp operation for
ieee754 floating point representation.

Usage

To use this mechanism, there are some
basic additions in the configuration file.
Firstly, enable_pbdcp value should be

set to 1 and pbdcp_precision value
should be entered.

Then, in the application when
calling FTI_Checkpoint function, user
should specify the level as pbdcp.

Experimental Results

As expected, the smaller the preci-
sion the most benefit we can get from
dcp share since the value remains un-
changed for a certain interval but also
the larger the rmse value which is route
means square error for uncapped and
capped values and it can also be seen
in charts Precision against DCP share
and RMSE on top on the page in which
dcp blocksize: 1024, iteration: 200 and
checkpoint interval: 5 (which means
there are 40 checkpoints) values are
used. And for comparing pure dcp and
precision based dcp, again as expected
dcp share is lower in pbdcp and an ex-
ample result of an execution with values
as Block size: 1024, Precision: 4, Itera-
tion: 200, Ckpt Interval: 5, is shown in
graph on the upper left corner.

Then, for experiments based on
blocksizes with values as iteration:
5000, Interval: 50 and precision value
is given as 12 in Blocksize graphs on top
of the page. As a result, we can say that
when blocksize increases, dcp share also
increases but still we can get advantage
of pbdcp.

Lastly comparing dcp share against
precision keeping blocksize constant,
128 for this example, we can see in the
chart above in larger precision values
the change is smaller.
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Graphs obtained from experiments for lossy compression feature. The left figure shows a graph of checkpoint size as a function of
tolerance (blue) in comparison to the checkpoint size without compression (red). The right figure shows a graph of checkpoint write time
as a function of tolerance (blue) in comparison with the write time without compression (red).

Checkpointing with Lossy Com-
pression (CPC)

Lossy compression can be defined as
the class of data encoding methods that
uses inexact approximations and partial
data discarding to represent the content.
Our goal, was to use lossy compression
to compress the checkpoints of level L4
before transferring them from the local
node to the PFS. We can assume that the
time needed for the compression to be
made is very small in comparison to the
time needed to transfer the data though
the network, so we don’t actually mind
for the compression’s performance as
long as it has a high compression rate.
We implemented lossy compression to
the FTI using the zfp library.

Usage

To use the lossy compression fea-
ture, three extra parameters must
be specified: compression_enabled,
cpc_block_size, and cpc_tolerance. The
first one is simply a boolean value
which, when set to 1, allows the check-
points to be compressed. The second
one specifies the maximum memory size
which can be allocated for the compres-
sion and is used to protect memory re-
stricted systems. It is suggested that the
block size is not significantly lower than
the actual data size, because then it will
interfere with the compression and may
decrease the compression ratio. The last
parameter defines the absolute error tol-
erance for the compression. The actual
error tolerance is given by the function
10-t where t is the integer cpc_tolerance
specified at the configuration file. The
user must specify a tolerance suited for

their application, high enough to max-
imize the compression rate, but low
enough so the results won’t be altered.

Experimental Results

Testing Accuracy

Figure 4: Precision in lossy compression

To test the accuracy of the compression
we used a simple heat distribution appli-
cation for which the sum of the squares
of the absolute error can be seen at the
image above.

Testing Performance

As a principle, lossy compression targets
large-scale applications. Although the
performance of lossy compression dif-
fers for different data sets, in programs
with small memory, using lossy compres-
sion may even slow down checkpointing
due to the time needed to perform the
compression and the possibility of hard
to compress data. Therefore, to test the
application’s performance we have to
employ a very scalable application. For
our experiments, we run LULESH on
BSC’s Marenostrum cluster, with a size
of 615,85 Megabytes per process, for

512 processes in 16 different nodes, us-
ing different values for cpc_tolerance.
The experiment can be considered suc-
cessful since a measurable decrease in
the time to write the checkpoint was ob-
served. As you can see in figures 1 and
2, the write times of the checkpoints for
any value of tolerance between zero and
eight seem to be around half the write
time when the checkpoint isn’t com-
pressed. Also, we can see that tolerance
doesn’t really affect write time, since for
different tolerances we don’t observe
high differences at the checkpoint file.
This may change in other experiments
with different data consistency or size.
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Kevser İLDEŞ, Marmara University
E-mail: kevserildes@gmail.com
Athanasios KASTORAS, University of
Thessaly
E-mail: akastoras@uth.gr

PRACE SoHPCSoftware applied
ZFP library
FTI library

PRACE SoHPCMore Information
https://summerofhpc.prace-ri.eu

PRACE SoHPCAcknowledgment
We are grateful to our mentors Kai
Keller and Leonardo Bautista Gomez
for their continuous help during this
project, to the BSC education team for
the organization of the internship and
PRACE for making SoHPC possible.

PRACE SoHPCProject ID
2103

Kevser İLDEŞ
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Building Resilient Machine Learning Applications
(From HPC to Edge)

ML From
HPC to the
Edge
Jakub Raczyński, Mehmet Enes Erciyes

ML applications require enormous
compute resources to train. However, they
should not be limited to uses with only
high end devices, but allow edge devices
with limited resources to be used for them.
Our project aimed to research ways of
optimizing big models for
resource-constrained environments. We
found how pruning worked for big models
and used it in an example case of object
detection with a Raspberry Pi.

Machine learning applica-
tions, especially deep learn-
ing, have been very ubiqui-
tous in the past few years.

Deep learning is a subset of machine
learning which uses neural networks
that have lots of layers, thus deep. Neu-
ral networks outperform almost any
other model in many domains, how-
ever, they require lots of data and lots
of compute resources to be trained.
The amount of data required may eas-
ily find hundreds of gigabytes, while
state of the art models require days of
training on multiple GPUs. This makes
HPC a common tool for training neu-
ral networks. After the training, models
are usually deployed to a cloud envi-
ronment with high-end resources and
provide inferences over APIs. However,
sometimes, it is much better to directly

run the inference on the edge devices,
i.e. smartphones, development boards,
daily-use laptops etc. In this project, we
looked into ways of training neural net-
works on HPC clusters and then pruning
them to get speed-ups and lower the
space requirement. Then, we tried to
implement an example case with object
detection on a Raspberry Pi.

What are neural networks?

But first, what are neural networks?
Nowadays, they are the most popular
and efficient AI models, especially in
computer vision and natural language
processing. They are loosely inspired by
the human brain. They consist of nodes
called neurons and the connections be-
tween them called activations. Training

data changes the weights of the activa-
tions, so that, when an input is fed to
the neural network, it produces a de-
sired outcome. The neurons create lay-
ers. A deep neural network usually has
more than 20 layers.

Convolutional Neural Networks

In this project, we wanted to focus on
computer vision applications. Therefore,
we used convolutional neural networks
which are specialized neural networks
for image tasks. Standard neural net-
works are called fully connected net-
works. However, since images have lots
of pixels, a fully connected network
would have too many weights and bi-
ases, thus increasing the training time
and making it harder for the network
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to learn good representations. Convolu-
tional neural networks use filters and
use the convolution operation to learn
features from data and decrease the pa-
rameter numbers to a reasonable level.

Training image classification
models on HPC

Image classification is the task of identi-
fying which class does the given image
belong to among a set of classes. One
of the most important datasets for this
task is ImageNet dataset. The ImageNet
dataset has over 400GB of labeled im-
age data. We experimented with two in-
fluential models: ResNet[1] and VGG[2].
As mentioned before, DNN training re-
quires time and compute power. One of
the most important advantages of using
HPC is the ability to use multiple GPUs
for training neural networks. Figure 1
represents the simplified schema of the
distributed training process.

Figure 1: A simplified schema of distributed
training

VGG
VGG is a classical convolutional neural

network architecture. It is created based
on a study of how to increase the depth
of convolutional neural networks by An-
drew Zisserman in 2014. The network
is characterized by its simplicity: the
only components being convolutional
layers, pooling layers and a fully con-
nected layer.
ResNet
A later more advanced architecture is

the ResNet. ResNet is a method devel-
oped to avoid the problem of vanishing
gradients. Vanishing gradients is a prob-
lem encountered when the number of
layers is increased causing the gradients
in the backpropagation to be infinites-
imally small as it moves to the earlier
layers, thus making it harder to train.
ResNet implements skip connections to
gradually increase the depth of the net-
work.
Used Frameworks
During training, we moved in two paral-
lel branches, one of us doing the ex-

periments in PyTorch and the other
in Tensorflow. For experiments with
distributed training, we used PyTorch
data parallel and Horovod, a specialized
framework by Uber.

Experiments & Results on Train-
ing on HPC

In our experiments we first trained sim-
ple models on CIFAR10 and CIFAR100
datasets. Then, we moved on to more
exciting experiments with the ImageNet
dataset with ResNet and VGG architec-
tures. The most exciting results we got
on the training side were the accelera-
tion we got with training on multiple
GPUs. We trained a ResNet-152 on Ima-
geNet with 1-2-4-8-16-32 GPUs and got
very good acceleration results with the
metric of time per epoch.

Figure 2: Epoch time for ImageNet training
by # of GPUs used

As seen in Figure 2, we got a con-
stant acceleration as the number of
GPUs increased. BSC Power9 cluster has
4 GPUs per node. Therefore, after 4
GPUs, we needed to train with multi-
ple nodes. The reason we could not get
close to theoretical acceleration after 8
GPUs is the necessity of communication
between 3 or 4 nodes.

Figure 3: Acceleration in training by # of
GPUs used vs. theoretical acceleration

Optimizing ML Models for Edge
Devices

What is Edge?
Despite the multiple definitions, edge

devices are devices that are close to the
end user. There are billions of them and
they are not as powerful as HPC servers.
Smartphones, Raspberry Pi’s, and daily
laptops are some of the examples of
edge devices.
Why would we move Machine Learning
apps to Edge?
An important question is why would

we want to use edge devices instead
of deploying to the cloud. Most of the
time, deploying to the cloud might be-
come a superior choice, however, there
are some important reasons for opting
to deploy to edge devices. Firstly, mov-
ing to the edge is more secure, as no
data is transmitted through the internet.
Some specialized applications might
have highly sensitive data, therefore
choose to go with the edge devices. Sec-
ondly, probably the most importantly,
ML applications can run offline when
deployed to the edge. Thirdly, some sys-
tems might require eliminating the la-
tency caused by internet access. Last
but not least is that deploying to edge
devices is much cheaper than maintain-
ing or renting cloud servers for service
providers.

Model Optimization Experi-
ments & Results

There are many techniques to optimize
ML models. Few of them are pruning,
quantization and knowledge distillation.
In our project, we mostly focused on
pruning. It is a simple optimization
method, but highly effective. With prun-
ing, we can omit the least significant
neurons or weights. It can result in re-
duction of the model size by 5 or more
times, and speed up the inference pro-
cess. We experimented with pruning on
relatively shallow models (4-5 layers)
and a small dataset (CIFAR 10) to speed
up experiments. We compared accuracy
and loss on the test set, training time
and size of the compressed model.

Challenges of Training ML on
HPC

We faced many challenges during our
project related to HPC. Therefore, we
wanted to share our findings in this re-
port. The first problem we faced was
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the big dataset management. ImageNet
is a huge dataset and it was not read-
ily available in the cluster. Moving it
across the different drives in the clus-
ter was a hindering process. Therefore,
we believe that having the data ready
prior to starting a project is a very im-
portant step. Other than that, cluster
maintenance that occurred during our
project was also a challenge that lost
us a week. Another important challenge
was the complexity of distributed com-
puting. We believe that Horovod[3] is
a good choice for handling multi node
training. PyTorch Data Parallel also pro-
vides an easy interface. It is tested on
multiple GPUs across a single node and
was able to provide theoretical accelera-
tion. However, we were unable to test it
with multiple nodes. The last challenge
we faced was the long queue times. A
good technique we used was asking for
very short times when we are still de-
bugging our code. When we were sure,
we asked for longer times.

A Test Case: Object Detection
with YOLO v3 Tiny on Rasp-
berry Pi

As the last test case of distributed train-
ing and optimizing for edge, we worked
on implementing an object detection
model on a Raspberry Pi 2. First we
trained YOLO v3[4] with distributed
training on MS Coco dataset. YOLO
stands for You Only Look Once and is a

state-of-the-art fast model for real-time
object detection.

YOLO v3 is then tested on a laptop
with GTX 1650 GPU. It was quite suc-
cessful with identifying objects pretty
well at 13 FPS. The model size was 236
MB.

However, this model was not fast
enough. Therefore, we optimized the
model by using a different version of
YOLO v3 called YOLO v3 Tiny and prun-
ing it to get even better results. We
trained YOLO v3 Tiny with iterative fine-
tuned pruning and in the end our model
size was 34 MB.

We used ROS (Robot Operating Sys-
tem) with packages usb_cam[5] and
darknet_ros[6] to provide the necessary
TCP network for feeding webcam im-
ages to our model. We were able to ac-
complish about 10 FPS with this model
as well in a very resource-constrained
environment.

Figure 4: Result of the YOLO v3 Tiny on
Raspberry Pi
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E-mail: merciyes18@ku.edu.tr

PRACE SoHPCSoftware applied
Python, PyTorch, Tensorflow, Darknet,
Horovod

PRACE
SoHPCAcknowledgement
We would like to acknowledge and
thank for the support and guidance we
got from our mentors, Albert Kahira
and Leonardo Bautista Gomez and
the kind support team at Barcelona
Supercomputing Center.

PRACE SoHPCProject ID
2104

Jakub Raczyński
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Cross-Lingual Transfer learning
for biomedical texts for SoHPC

Transfer
learning for
biomedical
texts
Aslihan Uysal

Transfer learning is a technique where a
deep learning model trained on a large
dataset is used to perform similar tasks
on another dataset. We call such a deep
learning model a pre-trained model. This
project aims to provide a prototype of trans-
fer learning for a classification task that
aims to consider the Spanish language
as input and compare different pre-trained
deep learning models’ approaches such as
cross-domain and cross-lingual.

An example of extracting mentions from PubMed liter-
ature, and assigning MeSH concept identifier for each
mention.

Motivation of the Project

Biomedical and Life Sciences are
two of the main areas pre-
senting a considerable growth
in literature through the last

decade, which is demonstrated by the
increase in articles indexed in PubMed
(a database of biomedical articles).

An example of a BioNLP task that
has received increasing attention in the
BioASQ challenge that has to be in-
dexed abstracts with multiple labels
(i.e., a multilabel text classification), the

performance of the proposed systems
has increased considerably over the
baselines and the current system used
by the National Library of Medicine
(NLM).

However, this task considers only
the abstracts of English articles, not cov-
ering other languages with a consider-
able academic writing volume, such as
Portuguese, Spanish, and French.

The goal of this research project is
to provide a prototype of classification

in the form of a BioASQ submission that
may take into account the Spanish lan-
guage as the input taking advantage of
the extreme usage of deep learning ar-
chitectures of transformers models pro-
vided by HuggingFace Library.

The output of the project is planned
to be used in:

• Biomedical search engines
• Biomedical question-answering

systems

18



Figure 1: Example of MESINESP Dataset.

The Project Overview

We can consider the project predict-
ing ‘DeCS Codes’ is as basically a Multi-
label Text classification problem.The so-
lution will be based on leveraging the
power of the pre-trained Hugging Face
Transformers libraries.

Therefore developing a machine
learning model that will accurately pre-
dict all the indexes that could be associ-
ated with the articles will provide us to
enrich our purpose of the project which
is finding documents as accurately and
fastest as we can.

And this brings such an impor-
tant question that is how to use pre-
training models for our task or in
other words how to fine-tuning pre-
trained models?

How Transformers Models
Work?

The out-of-the-box Transformers
models have already been pre-trained
on such a huge corpus data and thus
has a good understanding of generic
on a specific language or even multi-
lingual texts. However, the particular
dataset from MESINESP comprises a
lot of medical-related words, which the
Transformers models may not have seen
during the pre-training phase.

Hence we need to fine-tune the
model on our dataset so that it can build
an understanding of our dataset and
become better at the text classification
task. The way to do that is to add a
classification head on top of the core
Transformers models and then train the
entire model on our dataset.

This way the model develops a sta-
tistical understanding of the language

it has been trained on, but it’s not very
useful for specific practical tasks. Be-
cause of this, the general pretrained
model then goes through a process
called transfer learning. During this pro-
cess, the model is fine-tuned in a su-
pervised way — that is, using human-
annotated labels — on a given task.

Figure 2: Fine-tuning, on the other hand, is the training done after a model has been
pretrained. To perform fine-tuning, you first acquire a pretrained language model, then
perform additional training with a dataset specific to your task.

We want to compare the multilin-
gual BERT model (mBERT), the BETO
model (Spanish-based BERT) with the
in-house RoBERTa biomedical model.
Basically, we want to answer the follow-
ing question:

""To what extent a domain-specific
model is better than a general domain
model when making a classifier? ""

Load & Preprocess the Dataset

The main libraries we need are:

• Hugging Face Transformers Li-
brary (for Models and Tokenizer)

• PyTorch Deep Learning Frame-
work (for Dataset preparation)

• Sklearn (for splitting dataset &
metrics)

In MESINESP dataset: There are about
370 thousand records for a train set at
the Virtual Health Library manually in-
dexed with DeCS codes that are almost
23 thousand unique codes on the entire
dataset. We only need "AbstractText"
and multi-label structure of the "DeCS
Codes" columns as an input for training
transformers models.

Many of the DeCS Codes have a very
low count. For the scope of this prob-
lem, we could restrict ourselves to less
than the amount of unique DeCS Codes.
That gives us still the same 370 thou-
sand rows of medical texts which are
decent enough given that we are using
pre-trained models.

Figure 3: Frequency of DeCS Codes.
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The histogram plot reveals that
there are almost 10 thousand unique
DeCS codes that occurred in less than
10 in the entire dataset.Also in general,
reducing that many unique codes still
could be reasonable for the model to be
able to perform classification.

Training Phase

We need to tokenize and encode the
text data numerically in a structured for-
mat required for all transformers mod-
els, the BERT Tokenizer class from the
Hugging Face library makes this a sim-
ple affair.

Figure 4: Huggingface BERTTokenizer Ex-
ample

Here, we can see extracted values of a
tensor of an example sentence.

Figure 5: A Sample Sentence for Encoding

Figure 6: Output Tokens of Sample Sen-
tence

Figure 7: Output Ids of Sample Sentence

In MESINESP Dataset every "ab-
stractText" converted into a numerical
format which has attributes.And simi-
larly, every "decsCodes" feature is con-
verted into a list format which is unique
Decs Codes length and takes values 1 if
that particular example has that code
otherwise takes 0.

Figure 8: DeCS Codes Representation for
Model Input

Updating weights process is based
on computed total loss for every batch
after every iteration model weights can
be modified for getting nearest score for
our ground truth which is the real label.

Since the output is multi-label (mul-
tiple tags associated with an article),

we may tend to use a Sigmoid activa-
tion function for the final output and
a Binary Cross-Entropy loss function.
However, the Pytorch documentation
recommends using the BCEWithLogit-
sLoss() function which combines a Sig-
moid layer and the BCELoss in one sin-
gle class instead of having a plain Sig-
moid followed by a BCELoss.

We can see that it combines a Sig-
moid layer and the BCELoss in one sin-
gle class.

Figure 9: BCEWITHLOGITSLOSS Function

Benchmarking & Evaluation

We have already labeled the dataset
as a test set indexed manually by seven
experienced medical literature indexers.
And we will use this dataset for bench-
marking.And Using the best performing
trained model we can start predicting
DeCS Codes that can be associated with
any relevant abstractText that we have.

To be able to measure the perfor-
mance of the model;

• We can use Accuracy metric as
the main control metric

Table 1: Accuracy Results Table for Epoch 1

Model Name Epoch Accuracy

mBERT 1 0.873
BETO 1 0.8723
BioRoBERTa 1 0.8704

Table 2: Accuracy Results Table for Epoch 4

Model Name Epoch Accuracy

mBERT 4 0.8596
BETO 4 0.8613
BioRoBERTa 4 0.8716

According to final results, each mod-
els have very close accuracy to each
other. Increasing epoch from 1 to 4 does
not improve accuracy much as the mod-
els might started to overfit the training
dataset more thus accuracy might have
started to reduce at some point. To over-
come this obstacle, EarlyStoppingCall-
back class from Huggingface library can
be used for future improvements to be
able to prevent and stop learning once
models might reduce the accuracy.

Conclusion

In this article, I have described a
Multi-label Text Classification compar-
ing different 3 pre-trained Transformers
models’ performances on such big data
and with a huge number of labels.

For getting better results improving
accuracy as future improvements:

• HyperParameter Search technique
could help us to be able to get the
right parameters for later train-
ing processes such as number of
epochs or learning rate.

• To be able to reduce the size of
label dimension, we can also con-
sider some clustering techniques
grouping most similar labels into
one label.
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Improvement of a Python package providing
multiple standardized interpolation methods for
atmospheric chemistry models

Interpolation
Tool
Brian O’Sullivan, Daniel Cortild

Measurements and predictions are not
always acquired in the wanted or needed
form. The Interpolation Tool developed at
BSC transforms raw data into different
types of grids.

Interpolation is a mathematical
principle used to determine data
points where no measurement has
been taken. Using one of the var-

ious interpolation methods available
(weighted average methods, regression
models, etc.), one can estimate, i.e. in-
terpolate, a value at a previously un-
measured point to a high accuracy. In-
terpolation is typically a general math-
ematical model, and can therefore be
computed in any domain, such as across
time, or across three dimensional space.
At BSC, an interpolation tool has been
created which can be used on output
data from a variety of atmospheric mod-
els. The tool proves extremely useful
for changing the shape of the output
grid (i.e. changing from one grid to
another, or from one grid to a set of
points) and can even improve the res-
olution of a dataset. The title image
above is an example of this The first
figure (above) is experiment a2in, an
atmospheric dust report over Southern
Europe and Northern Africa produced
by the NMMB/MONARCH model from
BSC. The second image (lower) is this
same model interpolated on to a differ-
ent standard grid with a higher resolu-
tion.
For the interpolation tool, interpola-
tion is carried out across two domains.
First, there is horizontal interpolation

where a geographical grid is interpo-
lated in two-dimensions (longitude and
latitude). Secondly, vertical interpola-
tion is also an option. For vertical in-
terpolation, the points at which values
are calculated lie between two different
vertical levels within the atmosphere.
In other words, the spatial dimension
interpolated across is altitude.

Spatial Interpolation

For horizontal interpolation, a weighted
average method known as inverse dis-
tance weighting is used. Fig. 1 demon-
strates the structure of a weighted aver-
age method, where we wish to calculate
some value at the central point (for ex-
ample, temperature). This is done by
using the surrounding points to evalu-
ate a weighted average

Figure 1: Spatial interpolation example.

By using measured values at known

points within the vicinity, we can for-
mulate an expression. This is done by
assigning a point weighting to each
nearby point, represented by λi. A point
weighting determines how much of a
contribution each known point makes
to our final estimation, where points
with a higher weighting make a greater
contribution. Such weights are usually
given depending on the distance to the
unmeasured point. The following equa-
tion demonstrates this, where we sum
up over every known point according
to their value and point weighting to
compute a final interpolated value.

Vertical Interpolation

Figure 2: Vertical interpolation example.
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Unlike horizontal interpolation, vertical
interpolation is performed using a cu-
bic spline method. The data on missing
levels is interpolated according to the
data from known vertical levels using
the same horizontal coordinates. For the
cubic spline method, a cubic polynomial
is fit between levels in a piece-wise man-
ner.

Our Project

Our project was to improve this pre-
existing Interpolation Tool developed
at BSC and ran on the Nord3 machine.
Originally, the tool could only run as a
standalone tool, being executed from
the command line using a static config-
uration file. This means that all the data
must be stored in files which can be
referenced in a configuration file. The
first task consisted of allowing the tool
to be run from a Python script, using
data already loaded into memory.

The second task was to improve the
range of the interpolation results of the
tool. Before this summer, the tool could
only interpolate from one standard reg-
ular grid to another standard regular
grid. However, in some situations it
is preferable to interpolate to a given
set of points instead of an entire grid.
Given how the tool was implemented
for horizontal interpolation (Using the
weighted average method), this could
be solved simply by tweaking the way
the weight matrix was computed.
Our third task was to reverse the order
of horizontal and vertical interpolation
in the tool.

Figure 3: Reversing Interpolation Order.

Currently, horizontal interpolation is
executed first and is serialised, whereas
vertical interpolation is parallelised us-
ing mpi4py. The dataset is split into
chunks before interpolation, grealty im-
proving computation time. By reversing
the order, we could parallelise horizon-
tal interpolation, further improving per-
formance. Figure 3 demonstrates the
tool’s current state, the change is shown
in Figure 4.

Figure 4: Reversing Interpolation Order.

Unfortunately, horizontal interpolation
relies on a file generated at the start
of the job using the entire dataset.
Therefore, indexing problems occurred
between data shape and the weight
matrix file. Normally a mask of the
original data shape would be a simple
solution, containing the data chunks
at their original indexes. However, this
process leads to the Nord3 killing the
job, as the current numpy mask imple-
mented requires far more data than the
original chunks (30x bytes for the a2in
experiment). Structurally, this change
should be close to completion, but this
memory bug will need to be solved be-
fore any further evaluation can be done.

Another task we were working on
was solving a deadlock caused if both
horizontal and vertical interpolation
flags were active at the same time. This
bug was strange since running them
separately did not cause any problems,
but they could not run together. This
suggested some kind of incompatibility
between libraries, which was indeed
the case. Mpi4py, the MPI package
for Python, and the multiprocessing
libraries were causing a conflict. This
occurred whenever an MPI scattering
was ran between two multiprocessing
pools. This situation would only occur
once both flags were active, ultimately
causing the deadlock. We managed to

find an unfortunate and unsatisfactory
solution which was to serialize this
section of the code.

Results

We have produced an improved version
of the interpolation tool. The tool can
now be called using a standard Python
script, and the option of interpolating to
a set of points has been added. The or-
der of interpolation of the tool has been
reversed, enabling the parallelisation
of horizontal interpolation. Finally, the
freezing bug has been fixed, allowing
both horizontal and vertical interpo-
lation in the same job. Overall, these
changes allow greater flexibility in the
tool’s usage for any future analysis.

Although much progress has been done
on the interpolation tool, there is much
more potential to further increase the
tools flexibility and scaleability. Exam-
ples include enabling interpolation onto
other unique grids, such as a rotated
grid or GCC grid. A current technique
known as pickling is used to free up
memory, but could possibly be replaced
by a more optimal technique that would
optimize horizontal interpolation over-
all.
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Replacing the Schrödinger Equation with Neural
Networks - A New and Efficient Solution to
Quantum Chemistry Problems

Neural
Networks in
Quantum
Chemistry
Joseph Sleiman & Scott le Roux

The current standard for solving quantum chemical problems scales badly with
increasing molecular size. Thus, Neural Networks are proposed as an alternative
solution to determine the structure-property relationships of molecules accurately and
more efficiently. Using TensorFlow and the DScribe molecular descriptor library, we
implemented Neural Networks that predicted the internal energies of organic
molecules in the QM9 dataset, achieving a mean squared error of 0.002 Hartree2.
During descriptor creation and Neural Network training, we found that GPUs achieved
significant speedups over single CPU computations, but were slower than parallel
CPU computations using 8 cores or more.

Machine Learning (ML) and
Artificial Intelligence (AI)
have provided comprehen-
sive solutions to various

natural and scientific phenomena, rang-
ing from galaxy detection to genome se-
quencing, and paired with the boom in
data and growing computational power,
means the applications for ML and AI
will continue to stretch further and
wider into even the most established
and niche sectors.

Likewise, quantum chemistry - a
branch of chemistry focused on predict-
ing chemical and physical properties of
molecules and materials1 - has seen an
increase in ML applications, particularly
through the use of Neural Networks
(NNs). This Deep learning (DL) archi-
tecture consists of groups of "neurons"

(a term inspired by the architecture and
functionality of the brain) all densely
connected to form a network where the
input is typically a vector consisting of
your data representation and the out-
put is a value representing your predic-
tion. In between these layers, there are
hidden layers consisting of an arbitrary
number of neurons optimised by train-
ing weights to produce the best predic-
tions possible on the training datasets,
whilst also generalising to the new data
we wish to make predictions about.

Accordingly, in this project we use
NNs to predict quantum mechanical
properties of molecules, instead of the
traditional method of Density functional
Theory (DFT), which uses approxima-
tions to the Schrödinger equation. This
is a very promising avenue consider-

ing that it gets increasingly difficult
and computationally expensive to solve
the Schrödinger equation for molecules
with dozens of atoms or more. Hence,
the numerical optimisation approach
inherent in ML could result in accu-
rate predictions without the need for
large computing power and a lot of
time! This is possible because NNs can
approximate any function when com-
bined with multiple hidden layers and
neurons with nonlinear activation func-
tions.

How Did We Replace the
Schrödinger Equation?

The main issue with using ML to solve
quantum chemical problems is that
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chemical data does not come in a de-
sirable form readable by NNs. To bridge
this, we used “molecular descriptors”
which transform raw chemical data into
feature vectors which preserve specific
chemical properties. These descriptors
were implemented via the Python li-
brary DScribe2 which provides molec-
ular descriptors for use in ML applica-
tions. More specifically, we used two
global descriptors - the Coulomb Matrix
(CM) and Many-Body Tensor Represen-
tation (MBTR) - and two local descrip-
tors - Smooth Overlap of Atomic Posi-
tions (SOAP) and Atom-Centred Sym-
metry Functions (ACSF) - throughout
our project in order to output property
predictions such as the internal energy
of a molecule at zero Kelvin (0K), and
the charges on each atom making up
the molecule.

For example, the CM is an N × N
matrix where N is the number of atoms
in the molecule. The diagonal elements
represent the self-interactions of the
ith atom, and the off-diagonal entries
represent the coulombic repulsion be-
tween the ith and jth nuclei. This pro-
duces a compact matrix (see Figure 1)
that encodes the positions and electro-
static interactions between all the atoms

Figure 1: Conversion of the positional and electrostatic informa-
tion of a diamond cell into its Coulomb Matrix form via DScribe.2

in the molecule (re-
fer to this link
for more details on
all the descriptors
used).

In order to at-
tain sufficiently ac-
curate NN mod-
els, we require a
lot of data during
training. Hence, we
utilised the QM9
dataset3 which con-
tains 134,000 or-
ganic molecules with their correspond-
ing energetic and thermodynamic prop-
erties calculated very thoroughly and la-
boriously via traditional quantum chem-
ical analytical methods. This dataset is
readily accessible online and is thus
used as a benchmark for developing
new quantum chemical tools, as well
as for comparative purposes when pub-
lishing new research. In terms of data
handling, we sorted the QM9 dataset in
increasing value of internal energy at
0K, and then reserved every fifth data
point for the test set, ensuring that the
test was representative of a range of in-
ternal energies. The remaining data was
randomly separated into an 80:20 split-
ting of training and validation sets, re-

spectively. The end goal of the project is
a supervised learning task, in which we
train the algorithm on a labelled dataset
(QM9) in order to predict a final output
label (internal energy at 0K); this is the
standard regression or classification ML
procedure.

We implemented our NNs via the DL
Python library TensorFlow with Keras
2.0 back-end, and used the software
package KerasTuner to optimise the hy-
perparameters of the network in order
to minimise the mean squared error
(MSE) of our predicted results versus
the true values given by QM9. These
hyperparameters included the learning
rate, the batch size, activation function,
weight initialisation, as well as the num-
ber of neurons and hidden layers mak-
ing up the network topology. This ap-
proach uses either an iterative random-
search optimisation or a Bayesian op-
timisation that minimises your desired
loss function (MSE, in our case) in a
systematic manner, as opposed to a very
long and laborious brute-force method
of optimising the NN hyperparameters.
This task was completed separately for
each molecular descriptor because there
is no universally optimal NN architec-
ture for any given problem (see

“No Free Lunch”4 theorem), and each
descriptor has a different number of fea-
tures (see Table 1), altering the number
of neurons needed in the input layer.

Finally, for the High-Performance
Computing (HPC) part of the project,
we benchmarked the speeds of both de-
scriptor creation and NN training us-
ing GPUs and CPUs, parallelising the
latter with multiple cores. This was
achieved using the remote server com-
puting node provided by our host site at
the Slovak Academy of Sciences, where
we were given access to two Intel Xeon
CPUs and an NVIDIA Tesla K20m GPU.

Neural Network Model Results
and Benchmarking

Optimization of NNs is the heavy lift-
ing of the project; in order to save a
lot of time, it is imperative that ed-
ucated guesses are made concerning
what hyperparameter options to test be-
fore running the tuning via KerasTuner.
Batch size and learning rate took the
accepted standard values of 32, 64, 128
and .01, .001, .0001, respectively. For
weight initialisation, we tested He Uni-
form and Xavier Uniform initialisers,
which are considered the state-of-the-
art and either is compatible with the
majority of activation functions. The ac-
tivation functions we tested were the
rectified Linear Unit (ReLU), exponential
Linear Unit (ELU), softplus, and shifted
softplus (ssp),5 described by the follow-
ing equations:

ReLU(x) =

{
x, if x ≥ 0

0, if x < 0

ELU(x) =

{
x, if x ≥ 0

ex − 1, if x < 0

softplus(x) = ln (ex + 1)

ssp(x) = ln(0.5ex + 0.5)

Finally, we tested different NN
topologies selecting from between 1-
4 hidden layers each with a variable
number of hidden neurons from the set,
{32, 64, 128, 256}.

In Table 1, we see the optimised NN
structures for each molecular descrip-
tor and their corresponding predictive
accuracy. While the best hyperparame-
ters varied across descriptors, a batch
size of 32 and an ADAM optimiser were
universally optimal. To summarise, the
CM achieves the best MSE by an order
of magnitude over the second best de-
scriptor, MBTR. The latter was a further
order of magnitude more accurate than
the local descriptors ACSF and SOAP.

In terms of descriptor creation, as
we can see from Figure 2, the speed up
ratio, R = tserial

tparallel
, for complex descrip-

tors with thousands of features (ACSF,
SOAP, MBTR) consistently exceeds 2
and reached a maximum of ∼10 for 16
CPU cores on MBTR. This highlights the
importance of parallelising the creation
of descriptors with 3000 features or
more. Conversely, in the case of simpler
descriptors like the CM, invoking par-
allel implementation produces an over-
head greater than the eventual speed up
achieved using multiple cores. Hence
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Table 1: Summary of Optimised Molecular Descriptors and their Internal Energy Prediction Mean Squared Error (MSE)

Descriptor # Features Learning Rate Activation Function Hidden Layer Topology Weight Initialiser MSE

CM 841 0.0001 softplus [256] Xavier Uniform 0.002
MBTR 9500 0.001 ELU [64,64,32,128] Xavier Uniform 0.01
SOAP 4920 0.001 ELU [256,32,128] He Uniform 0.241
ACSF 3190 0.0001 softplus [128,32,16] He Uniform 0.521

with R < 1, it is not efficient to paral-
lelise in this scenario.

Figure 2: Graphs for computation times

For NN training, we found that there
is an inverse relationship between time
and number of CPU cores used in the
training process, as seen in Figure 2.
This is an expected result and highlights
that one should aim to utilise multiple
cores in order to achieve the best perfor-
mance. It is also clear that a single GPU
core outperforms a single CPU core by
∼ 2x. However, if we use 8 CPU cores
or more, the training process is consis-
tently faster than a single GPU.

Final Thoughts

Ultimately, the CM was the best molec-
ular descriptor in capturing the salient
features of molecules. This is a surpris-
ing yet satisfying result when one con-
siders that the CM is the simplest de-
scriptor with the fewest features by a
significant margin (see Table 1) and is
therefore the most computationally effi-
cient. It was also expected that descrip-
tors that focus on global features like

the CM and MBTR would produce the
best predictions on global quantities like
the internal energy of a molecule at 0K
and this proved to be the case.

On the HPC front, as expected, GPUs
provided significant speedup to single
CPU computation. Reducing computa-
tion time during NN training is ex-
tremely important and the improve-
ments in hardware such as GPUs and
more recently Tensor Processing Units
(TPUs) are the primary reason that DL
is a leading method in modern comput-
ing. These improvements have allowed
researchers and programmers to effec-
tively use large DL models to solve prob-
lems which previously took many years,
in only a few hours.

However, contrary to general com-
puting consensus, we found that paral-
lelised CPU cores were faster than even
the GPU speeds. We speculate that this
unexpected result was either due to a
malfunction with the NVIDIA GPU used,
or perhaps TensorFlow has optimized
GPU calculations for newer GPU hard-
ware. In future work, we hope to solve
this GPU issue and validate the widely
accepted fact, that GPUs are superior
execution platform for NNs to CPUs.

Additionally, we hope to use NNs
with a multi-neuron output layer in or-
der to predict other molecular proper-
ties such as the charge or spin of each
atom that makes up the molecule and
we postulate that descriptors like ACSF,
focusing on local molecular features,
will produce the best results.
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Efficient Fock matrix construction in localized
Hartree-Fock method

Speeding up the
HF method
Ioannis Savvidis, Zsurka Eduárd

The scope of our project is to improve an
already working algorithm that calculates
the ground state solution of large
molecules. The algorithm is an
implementation of the Hartree-Fock
method. By using the Sparse BLAS library,
which is specifically designed to handle
the multiplication of sparse matrices, we
are planning to speed up the algorithm.

The Hartree-Fock (HF) method
is used in computational
physics and chemistry to de-
termine an approximation of

the wave function and the energy of
molecules. The algorithm starts with an
initial electron density of the molecule,
which is inserted in the Hamiltonian,1

and it solves the time-independent
Schrödinger equation. After the first
run, the algorithm provides a new
guess for the electron density. Next, this
guess is plugged back into the Hamil-
tonian and the Schrödinger equation is
solved again. The result will be slightly
different, due to the electron density
being different from the initial guess.
This cycle is repeated until the electron
density doesn’t change anymore. This
cyclic structure is the reason why the
HF it is also called the self-consistent
field method. A graphic representation
of the algorithm is presented in Fig. 1.

In reality, it’s not the Hamiltonian
that is used in the calculation, but an-
other matrix that already contains the
Hamiltonian of the molecule, which is

Figure 1: Schematic of the Hartree-Fock al-
gorithm.

called the Fock matrix.2 The implemen-
tation of the HF method by Noga and
Simunek3 replaces the usual step of di-
agonalizing the Fock matrix (see Fig.
1), with a simple matrix-matrix multipli-
cation. If we are considering the paral-
lelization of the algorithm, the diagonal-
ization is an unwanted step.3 As such,
this implementation of the HF method
can be easily parallelized, since the for-
mulation of the algorithm is diagonal-
ization free.

In the matrix-matrix multiplication
that replaces the diagonalization step,
one of the matrices is the electron den-
sity matrix. For large molecules contain-
ing thousands of atoms, each atomic
orbital will overlap only with the neigh-
boring orbitals, leading to only a few
non-zero elements in the density ma-
trix. Such matrices, that have only a
few non-zero elements, (at most half of
the matrix) are called sparse matrices
(as opposed to dense matrices). When
working with sparse matrices, it is ben-
eficial to use specialized functions and
data structures that take advantage of
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the sparse structure of the matrix. This
can lead to an improvement not only in
the memory use of the code, but also in
the execution time.

The main goal of our project is to
modify the existing algorithm, by tak-
ing advantage of the sparsity of the den-
sity matrix. We used a sparse matrix–
dense matrix multiplication function tai-
lored specifically for sparse matrices
and looked at the ways it improves the
performance of the algorithm. We also
studied how the allocation of the com-
puting nodes and cores of the super-
computer can be used in speeding up
the calculations. Our results show that
for small molecules the new algorithm
is slower, but for alkanes containing 24
carbon atoms or more, on average there
is a slight improvement in the run time.
We also found that the run time of the
code doesn’t necessarily increase with
the number of cores, and that the num-
ber of nodes used doesn’t decrease the
run time significantly.

The matrix–matrix multiplication

The implementation of the algorithm
outlined in3 is written in Fortran. In or-
der to have access to the sparse matrix–
dense matrix multiplication function,
we searched for an implementation in
Fortran of the Sparse BLAS library,4

short for (Sparse Basic Linear Algebra
Subprograms). The Sparse BLAS library
is a collection of functions and data
structures fit for handling sparse matri-
ces. Since these libraries are on average
20 years old, we hit multiple dead-ends
when trying out different implementa-
tions. Eventually we found a working
implementation of Sparse BLAS on a
StackOverflow post.5

The matrix–matrix multiplication
we were tasked to replace takes the
form

M = N ·D, (1)

where M , N are some matrices and
D represents the density matrix. The
multiplication function that the Sparse
BLAS library provides, requires that the
first matrix in the multiplication be
sparse. Thus, we transpose eq. (1) and
insert

MT = D ·NT (2)

into the function we use, where we
use the property of the density matrix
that D = DT . We thus add two addi-
tional steps to the algorithm in the form

of transposing matrix N , and having
to transpose back MT . Another com-
plication that arises is that the data
structures used in the original code and
the Sparse BLAS functions are differ-
ent. In the original code, the matrices
are stored in one-dimensional arrays,
while the Sparse BLAS function uses
two-dimensional arrays. Unfortunately,
all of these additional steps end up slow-
ing down the calculation.

Improvement in the run time

To compare the performance of the new
and the original codes, we used multiple
molecules: methotrexate (C20H22N8O5)
and 5 alkanes C6H14, C12H26, C18H38,
C24H50, C30H62, C36H74. A visual rep-
resentation of these molecules can be
seen in the top right corner of the first
page. The 5 chains of increasing length
are the alkanes and the molecule below
is methotrexate.

Figure 2: Runtime of the original and new
code for methotrexate. The original code is
faster for any number of cores.

Figure 3: Improvement in the run time of the code given in eq. (3), for C30H62 and C36H74.
Aside the 32 core case, the new code is faster for C36H74.

We used a single computational
node and started calculations on 1, 2,
4, 8, 16 and 32 of the cores within the
node. Firstly, we studied the run time of
the codes for methotrexate. The results
can be seen in Fig. 2.

It seems that in the case methotrex-
ate, the new algorithm is definitely
slower, no matter the number of cores
we use. Since we expect that the spar-
sity of the matrix will become more
important the larger the molecule, we
have chosen to study other larger
molecules. The size of the density ma-
trix is given by the number of basis
functions and in the case of methotrex-
ate, we use 572 basis functions. From
the 5 alkanes C30H62 and C36H74 have
considerably more basis functions, 730
and 874, respectively. We calculated the
relative improvement in run time for
C30H62 and C36H74, given by

η =
Tnew − Toriginal

Toriginal
, (3)

where Tnew and Toriginal are the run
times of the new and original code,
respectively. The calculation were per-
formed for a multiple numbers of cores,
similarly to the previous case. The re-
sults are shown in Fig. 3.

We can clearly see, that there’s a
slight improvement in the run time of
the new code, except for the case of 32
cores. We can get a better idea of the im-
provement in run time, by calculating
the average improvement in run time
for each alkane. We show our results in
Fig. 4a, where we excluded the 32 core
case. We can see that for the case of
C36H74 a slight improvement of ≈ 4.2%
in the run time on average is present.
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(a) The average improvement in run time of the new code, given by eq.
(3), for each alkane.

(b) The run time of the new code, for different number of cores, calculated
for the 5 studied alkanes.

Figure 4:

In order to have a clearer picture
of the improvement coming from the
modified matrix–matrix multiplication,
we would either have to study the
molecules using a different set of basis
functions, or choose larger molecules.
Unfortunately, we encountered some
numerical problems when trying a num-
ber of different basis functions, and we
couldn’t verify whether these results can
be extrapolated for larger molecules or
basis function sets. Nonetheless, this is
a step that could further the results of
this study.

The number of cores

As we have seen before in the case of
methotrexate, the run time of the code
doesn’t always decrease with the num-
ber of cores employed in the calculation.
In Fig. 2 we can observe that both ver-
sions of the algorithm are get faster as
we increase the number of cores from 1
to 8 cores, but at 16 and 32 cores they
slow down. This can be attributed to the
structure of the nodes. We use 4 IBM
Power 7 nodes, each with 32 cores and
3.61 GHz of a supercomputer located in
Žilina, Slovakia. Each node is equipped
with 4 CPUS. Therefore, in the 16 core
case, we can attribute the increase in
the run time to the two CPUS trying to
slow down the calculation, instead of
speeding it up. The same behavior can
be observed for the alkanes we studied.
We choose the same numbers of cores as
previously, and we present the run time
of the new code divided by the maximal
run time for a given alkane. The results
are presented in Fig. 4b.

One can clearly see a minimum in
the run times at 8 cores (except for
C18H38). A poor choice in the number
of cores can even lead to a threefold in-
crease in the run time (1 and 32 cores).
It’s also worth mentioning, that in the
case of the large molecules C30H62 and
C36H74 we obtain a good run time with
4 cores also. The original implementa-
tion of the algorithm yielded similar re-
sults.

We also studied how the number of
nodes used in the calculation affects the
run time. We used 8 cores per node and
we increased the number of nodes form
1 to 4. We observed a non-linear de-
crease in the run time and surprisingly,
when we used 4 nodes instead of 1, we
only saw a 7% decrease in the run time.
We therefore concluded, that it’s suffi-
cient to use only 1 node in our calcula-
tions.

Discussion & Conclusion

In this work, we have showed that by
using a matrix multiplication function
specifically written to handle the sparse
structure of the electron density matrix,
one can improve the performance of the
Hartree-Fock algorithm. Although we
were limited by time, we have shown
that there are strong signs that the mod-
ified code can help speed up the cal-
culations for large enough molecules,
such as the average decrease in run time
of 〈η〉 = 4.2% in the case of C36H74

(see Fig. 4a). In order to confirm our
findings, further research is need, using
larger molecules or larger set of basis
functions. Finally, we also studied how
the number of cores and nodes used

during the calculations can affect the
performance of the algorithm.
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Benchmarking HEP workloads on HPC facilities

HEP
Benchmark
Suite on
HPC
Marı́a Menéndez Herrero &
Miguel de Oliveira Guerreiro

In order to evaluate new computing
platforms for executing High Energy
Physics Workloads, a container-based
benchmarking suite was developed at
CERN. The goal of the project is to
understand how this workloads behave in
different HPC facilities and heterogeneous
systems and add new types of workloads
to the suite as well as combine different
benchmarking tools.

The demand for computational
resources to perform calcula-
tions related to High Energy
Physics (HEP) has been grow-

ing over the last few years. HEP work-
loads requires a large number of re-
sources due to the enormous ammount
of data and also HEP Experiments
have begun adopting heterogeneous
resources instead of homogenous CPU-
only workloads. How can we know if
the resources we have available are
up to the calculation we want to per-
form? And how do we know how much
resources we need to process a set of
data? One way to find out is through
Benchmarking. A HEP Benchmark Suite
based on container technology has re-
cently been developed and has only

been tested on a very small number
of HPC systems. Therefore, one of the
aims of this project is to test this Bench-
marking Suite on the Cartesius cluster
(SURFsara), to test the HEP workloads
on hardware types that have not been
tested so far, as well as to combine ef-
forts to explore a unified benchmarking
approach that can be utilized by many
areas of research.

In order to make the most of the
different existing heterogeneous ar-
chitectures, a collaboration between
four pioneering entities in their fields:
CERN, the European Organization for
Nuclear Research; SKAO, the organi-
sation leading the development of the
Square Kilometre Array radio-telescope;

GÉANT, the pan-European network and
services provider for research and edu-
cation; and PRACE, the Partnership for
Advanced Computing in Europe.

The purpose of developing this
Benchmark Suite is to explore the
different performances that supercom-
puters within the reach of the four
participating entities can have for the
development of high-energy physics
and astronomy calculations. For this
reason, the main goal of this project
is to develop a unified benchmarking
approach for the collaboration - which
will benefit all members. This task was
expored by trying to combine the Uni-
fied European Applications Benchmark
Suite (UEABS) with the HEP Bench-
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Figure 1: Modified script to run a Benchmark simultaneously on 5 nodes with the slurm queuing system and slurm queuing system
summary when the script is running

mark Suite. UEABS is a set of currently
13 application codes taken from the
pre-existing PRACE and DEISA applica-
tion benchmark suites, and extended
with the PRACE Accelerator Benchmark
Suite. Among the 13 codes included
we can find: ALYA, Code_Saturne,
CP2K, GADGET, GPAW, GROMACS,
NAMS, NEMO, PFARM, QCD, Quantum
Espresso, SHOC, SPECFEM3D and Ten-
sorFlow.

The list of Benchmarks available in
the current version of the Benchmark
Suite developed by CERN, are:

• HS06 is a subset of SPEC CPU
2006. It’s currently the "stan-
dard" benchmark for CERN bench-
marking, accounting, procure-
ment, pledges, etc.

• SPEC2017 is the newer version of
SPEC CPU (2017), however it was
never adopted by CERN as the of-
ficial benchmark, but is available
to run for comparison reasons.

• HEPscore is an application that
orchestrates user configurable
containerized HEP benchmarks.

• DB12 and ATLAS Kit Validation
are fast benchmarks that should
not be used for performance mea-
surements, but they are useful for
quickly performance of the HEP
Benchmark Suite.

The architecture of the Benchmark
Suite used can be seen in the figure in

the cover.

The Benchmark Suite reposi-
tory can be consulted in this link
gitlab.cern.ch/hep-benchmarks/hep-
benchmark-suite/

The following sections describe
the objectives set at the beginning of
the project, as well as the methodol-
ogy followed and the description of
the containerization systems used by
the Benchmark Suite. This will be fol-
lowed by a brief analysis of the results
achieved, ending with the conclusions
and the projection given to the project.

Objectives

For the reasons described above, one
of the mains goals of this project is to
study the performance at SURFsara as
well as investigate adding new types of
workflows, testing HEP workloads on
new hardware and trying to combine
this Benchmarking Suite with PRACE
benchmarking tools (UEABS).

Methodology

The methodology to be followed con-
sists of testing different workloads on
Cartesius (SURFsara) using the HEP
Benchmark Suite. Firstly, in order to
familiarise ourselves with the Bench-
mark Suite, the procedure followed
consisted of running short tests of the

DB12 benchmark in order to detect
any possible errors that might appear.
For this, it was necessary to perform a
previous analysis of Singularity, which
is designed for HPC with a focus on se-
curity - especially attractive as running
docker would require root privileges
(which are generally not available at
HPC sites). Singularity is compatible
with docker images, such as those
found from Docker Hub. Due to sev-
eral problems fixed latter to found the
Singularity module at Cartesius, fa-
miliarization with singularity was also
replicated at MareNostrum4 (MN4).

Then, to run the Benchmark Suite in
the command line two examples can be
seen in the following lines to run DB12.

bmkrun -c default -b db12

Where here, -c default refers to the
default configuration the Benchmark
Suite can be configured by the user in
order to customise their calculation ac-
cording to their interests. And also, an
example to run the HS06 and SPEC2017
Benchmarks is included.

bmkrun -c <alternate
config> -b hs06
spec2017

The second step consisted of modify-
ing the script that can be seen at the top
of Figure 1. This script represents an
example in which the Benchmark Suite
is executed using the slurm queuing
system to run the selected benchmark
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on 5 nodes simultaneously. As can be
read in the comments of this script it
is written in such a way that the nodes
are requested in exclusive mode use
with multithreading enabled. On the
other hand, in the second image in
Figure 1, you can see the summary of
the slurm queue system while this script
is running.

Finally, in order to combine the HEP
Benchmark Suite and PRACE UEABS
benchmarks, we selected GPAW from
the PRACE benchmarks list because it is
mostly written in Python and because
it was familiar to us. GPAW is a density-
functional theory (DFT) Python code
based on the projector-augmented wave
(PAW) method and the atomic simula-
tion environment (ASE). GPAW is freely
available under the GPL license. The
GPAW PRACE repository includes three
examples that can be used by the user
to analyse the performance of the ex-
amples for the proposed cases: carbon
nanotube, copper filament and silicon
cluster. To run it in in the command
line:

srun gpaw-python input.py

The container that is going to gen-
erate the image necessary to run GPAW
and implement it latter in the Bench-
mark Suite can be found in Docker
Hub, where in this link you can find the
instructions to generate the image with
Docker.

The next step to be followed consist
in running the GPAW Benchmarks in
the command line when implemented
in the Benchmark Suite and, finally, try
to automatize it. However, in this step
we have encountered some difficulties,
as it required a deeper analysis of the
Benchmark Suite implementation code,
which we have started to do in the last
few weeks, so progress in this step has
not been great.

Results and Discussion

Following the methodology described
in the previous section, in terms of test-
ing the calculation performed in MN4,
we initially found several dependency
errors when testing at MN4 due to bugs
in the HEP Benchmark Suite. On the
other hand, in the SURFsara partition,
Cartesius. We reported the bug details

to the HEP Benchmarking team, as this
was the first time it was encountered at
a HPC site.

The results obtained for the bench-
marks implemented in the HEP Bench-
mark Suite will be collected in a .json
file containing all the information re-
lated to the performance of the su-
percomputer once the job is finished.
In this project this document has not
been analyzed in depth, as we have
been focused on the exploration of
the Benchmark Suite when executed
in SURFsara and it’s extension with
UEABS.

As for the script shown in Figure 1,
tests have been carried out for 2, 3, 4...
and up to 10 nodes simultaneously. The
performance for each case has not been
analysed in detail, it has simply been
verified that no failure has been found
for running the Benchmark Suite on
different nodes simultaneously. In the
second image in the Figure you can see
how this calculation is being performed
on the partition named normal and how
by the node label each node is different.
In this step no significant bugs have
appeared other than problems in saving
the files that could be easily solved by
modifying the directories in the script.

As mentioned above, one of the
main objectives of this project was
the implementation of the Unified Eu-
ropean Application Benchmark Suite
in the Benchmark Suite developed by
CERN in order to automate it. As a rep-
resentative example GPAW has been se-
lected and the benchmarks included in
UEABS have been run within the locally
generated container image successfully
after analyzing the output of GPAW con-
tainer. However, due to the time avail-
able, the complexity of the code and
the HPC containerization process, this
task has not been completed. On the
other hand, the containers needed to
run the applications were found and
tested, also, it have been tested that the
image of GPAW-OpenMP is compatible
with Singularity so the last step needed
is just the implementation in the CERN
Benchmark Suite, but this is not a trivial
task as we could experience.

Conclusions and Outlook

Developing and completing this Bench-
mark Suite can be very useful to deter-

mine the performance of supercomput-
ers in a repeatable (thanks to container-
ization) and easy way. This is because
it is mainly focused on the automation
of different Benchmarks, so once the
benchmark is implemented in this HEP
Benchmark Suite.

To conclude, among the task ful-
filled during these two months project
we can find the exploration of the
Benchmark Suite in SURFsara, which
includes the addition of workflows in
different nodes simultaneously as well
as the test of HEP workloads in this
new type of hardware. Although we did
not fulfill all of the goals the task of
combining the PRACE benchmarking
tools with this Benchmarking Suite,
however, given the progress we have
made in this regard, we are very hope-
ful that this will soon be achieved. On
the other hand, GPAW is a MPI work-
load in HPC. HEP Benchmark Suite is
not yet adapted for taking advantages
of these features of HPC, thus requires
significant development.
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High Throughput HEP Data Processing at
HPC

HEP Data
Processing
at HPC
Carlos Cocha & Andraž Filipčič

The High Energy Physics (HEP)
community typically employed High
Throughput Computing (HTC) type of
facilities for data processing and
physics analyses of data coming from
the Large Hadron Collider (LHC). For
that reason, the goal of this project is
to use several types of workloads to
take mock-ups, scale them out and
evaluate their effectiveness at an
HPC scale.

Introduction

HTC type of facilities are traditionally
employed by the HEP community for
the purpose of the LHC data processing
and various types of physics analyses.
Furthermore, with recent convergence
of AI and HPC, a single but modular and
flexible type of facility could replace
single-purpose based environments in
the near future.

Furthermore, LHC type of workloads
are mostly data-driven, which means
that a lot of data has to be ingested and
substantial amount of output produced.
However, the handling of input and out-
put using thousands of nodes becomes
a bottleneck.

Nowadays, part of the HEP commu-
nity evaluates various proof-of-concept
designs and how this data flow works.

The idea for this project is to scale differ-
ent workloads, but still both data driven,
and understand the limitations of the
existing model and observe peculiarities
of HPC systems under heavy dataflow
load as well. In this sense is necessary
to benchmark these facilities in order to
evaluate and rank system performance
and find its limitations.

For that reason, the goal of this
project is to take various I/O driven
applications/mock-ups, similar to the
I/O driven physics analyses that could
employ some type of Machine Learning
or Deep Learning, scale them out at an
HPC facility and evaluate their effective-
ness under heavy dataflow load.

Methodology

The HPC system used for the devel-
opment of the project is the CSCS
Grand Tavé1 located in the Swiss Na-
tional Supercomputing Centre (CSCS)
in Switzerland. It has a theoretical peak
performance of 436.63 TFlops and max-
imum number of nodes equal to 164.
The Scratch filesystem which is the
shared storage connected via infiniband
interconnect to the system is used to
measure the cluster performance.

The first part of the project was fo-
cused in get familiarized with the Grand
Tavé system. Later, mock up tests using
FIO2 and IOR were generated to obtain
and visualize performance metrics (e.g.
bandwidth).
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FIO

Flexible I/O tester (FIO)2 is an open
source synthetic benchmark tool that
can generate various I/O type work-
loads. The biggest difference comes
from how the data is being read from
the disk, see Figure 1.

Figure 1: Types of I/O access patterns.

In sequential access, the system
reads the information to the file sequen-
tially, starting from the beginning of the
file and proceeding step by step. On the
other hand, during random access the
system can read information anywhere
in the data file.

Inside a FIO job file is possible to
set-up the different parameters of the
workload one wants to simulate, such
as: the block size (bs), the number of
clones of the job (njobs), the filesystem
to be tested (which in this case is the
Scratch filesystem of Grand Tavé) and
the type of the I/O pattern.

Then, submitting the job file
through Slurm is possible to plot the
metrics as a function of the number of
nodes and other parameters (e.g. njobs).
If we scaled out to a high number of
nodes and high number of njobs the
peak of performance for a certain work-
load configuration can be visualized.

Sequential read

Figure 2: Bandwidth for sequential read
with bs = 4K configuration.

For example, Figure 2 shows the to-
tal bandwidth utilization for different
number of nodes and number of jobs
in a sequential read configuration with
a block size of 4 kilobytes (4K) where
a maximum bandwidth of 2.2 GB/s is
obtained.

Random read

Figure 3: Random read with bs = 4K.

Testing a random read workload us-
ing the same sequential read configura-
tion with a block size of 4K, as we ex-
pected, the random read is slower than
the sequential read with a bandwidth
peak of 0.36 GB/s, see Figure 3.

Figure 4: Sequential reads 3D plots. Left: bs = 8K. Right: bs = 16K

Figure 5: Random reads 3D plots. Left: bs = 8K. Right: bs = 16K.

Now, the metric under different
block sizes are tested and the results,
visualized in 3D, are shown in Figure 4
and Figure 5 for a sequential read and
random read configuration respectively.
Two important facts are observed. First,
the bandwidth increases at the same
rate as the block size does. Second,
roughly the same amount of I/O opera-
tions per second.

Then, the maximum bandwidth re-
sults for different block size configura-
tions are summarized in Table 1. In av-
erage, the sequential read is 6 times
faster than the random read configura-
tion. But, random access has the advan-
tage that the system knows where the
data is stored and can find it more easily
(using indexing).

Bandwidth (GB/s)

Mode 4K 8K 16K

Seqread 2.27 4.34 8.30
Randread 0.36 0.71 1.37

Table 1: Maximum bandwidth as function
of the block size.
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IOR

IOR is a parallel IO benchmark that can
be used to test the performance of par-
allel storage systems using various in-
terfaces and access patterns.3

The main difference between FIO
and IOR is that while FIO runs mul-
tiple processes using fork() function,
IOR uses MPI to handle multiprocess-
ing. This causes no difference in the test
results, as it is simply a different way
to start the processes. At the same time,
it also enables communication between
processes, which means that it compiles
all the test results into a single log file
rather than having a separate log file for
each process, making the interpretation
of results much easier.

Another notable difference between
the two tools is that FIO is able to
quickly generate random files that it
then reads, while IOR has to go through
the process of actually fully writing all
the files it requires before then reading
them.

With IOR we generally used larger
block sizes than with FIO, it seemed
to run a lot better that way, and was
also faster, which was fairly useful as
we were running short on time.

Sequential read

Figure 6: Bandwidth for IOR sequential
read, block size = 16MB

As seen in Figure 6, the curve is
roughly similar to the ones in FIO (Fig-
ure 2). It spikes faster and reaches a
higher bandwidth, this is both likely due
to the increased block size.

In Figure 7 we see that IOPS are
much lower compared to FIO, due to
the larger block size meaning less trans-
fers need to be done.

Figure 7: IOPS for IOR sequential read,
block size = 16MB

Random read

Figure 8: Bandwidth for IOR random read,
block size = 16MB

In Figure 8 we see a high spike right
at the start, when only a single node
was used. We suspect this may be due to
the random file access for processes not
bypassing the memory caching, but we
are uncertain why this did not appear
with sequential reads (Figure 6). The
random reads should be much slower
than sequential reads, we’re not certain
why they performed so well here, which
bears further investigation.

Caching

Memory caching is a big problem when
benchmarking filesystems. If the files
that a node is reading are small enough
to all fit within its memory, then after
the first time it reads the files, it will sim-
ply access the data from its own mem-
ory rather than accessing the disk.

FIO invalidates the cache by default,
which seemed to work well. But IOR
requires some toggles to be turned on
to use workarounds.

There are several ways to avoid this
problem:

• Ensure files are larger than the
node’s memory capacity, meaning
it will be unable to fit them all in
its memory and will have to re-
peatedly access the disk.

Due to time constraints, we were
unable to properly try this option,
as our tests already had a long
runtime, and sufficiently increas-
ing the file sizes would make the
tests take too long.

• Randomize which nodes read
which files. This should make it
so in repeated tests, the files read
by each node are shuffled, mean-
ing it will have to access different
files each time. The node should
eventually run out of memory ca-
pacity so when it would read the
same file later on, it will not be
cached anymore.

We’re uncertain how well this
worked with our tests since mul-
tiple processes ran on the same
node, meaning if they read each
other’s files, those could poten-
tially still be cached in that node’s
memory from earlier.
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Recognition and classification of subsea
structures using artificial intelligence and
high-performance computing

Machine
Learning
How to Sea
Mario Gaimann & Raska Soemantoro

Understanding subsea reliefs is typically a
task given to specialist geologists
manually labelling each area. With
artificial intelligence and high performance
computing, we propose a method to
automate this process entirely.

E veryday, when you get up,
take a hot shower and text
"Good morning", you probably
do not realise how important

the seabed safety is for these activities.
This relation may seem odd, but in our
daily lives we rely on a range of hid-
den infrastructure deep on the seafloor,
without noticing. In fact, the gas used to
boil your water and the bits and bytes
of your text may have whizzed through
submarine pipelines and cables. Even if
this infrastructure is deep under the sea,
there are potential hazards threatening
their safety1 (and hence, the safety of
your hot shower!).

The most important hazards are so-
called geohazards. They include for-
mations such as submarine trenches,
canyons2 or seamounts, which can
cause earthquakes and submarine
landslides.3 Because of their impact on
infrastructure, marine life, and coastal
safety, marine geologists cruised the
coastal sea in research vessels and
recorded the depths of the seafloor us-
ing sonar devices. This was done in the
Italian MaGIC project4 (Marine Geohaz-
ards along the Italian Coasts).

Figure 1: 3D Visualization of the submarine
landscape off the coast of Calabria, Italy.

Based on the depths at various
positions, the geologists obtained the
shape of the underwater landscape, and
recorded it in so-called bathymetric
maps (bathymetry is the study of floors
of seas, lakes and other water bodies).
They were then able to recognise rel-
evant seabed structures and geohaz-
ards, and sketched them in the map. To-
gether, this lead to a composite map of
depth and geological features drawn as
lines, telling us where geohazards are
located. There are some catches how-
ever: this submarine relief recognition

by geologists is a tedious, time consum-
ing process. Geologists might also dis-
agree about the exact location of cer-
tain geohazards. And of course, as to
err is human, this manual procedure is
prone to errors, and certain geohazards
could be potentially left out. Because of
these reasons, we need an automated
technique, which promises to be faster,
objective and more reliable. And exactly
this was the challenge that we tackled
in our Summer of HPC project: to de-
velop an automated technique that is
able to recognise geohazards on a pre-
viously unseen bathymetric map. What
techniques can we use to automatically
recognise these geohazards?

Building an AI geologist

To solve this problem, we have to ask
ourselves how human geologists recog-
nise geohazards. With years of training
and knowledge, they are able to tell
which areas of a submarine landscape
are geohazards. They recognise geohaz-
ards by looking at certain characteris-
tics of the bathymetric map: the depth
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of the sea, how the depth changes (the
slope of the subsea terrain), and other
more sophisticated parameters (topo-
graphic indices). For example, a sub-
marine canyon is characterised by a
deep, channel-like region, surrounded
by higher regions, and there is a steep
transition between these regions.

Analogous to how an aspiring geolo-
gist learns what makes a geohazard, we
would ideally like to train a machine to
perform this recognition. The solution
lies in a particular field of computer sci-
ence, which has dealt with such “intel-
ligent” machines for many years: Artifi-
cial Intelligence (AI)!

For our geohazard learning problem,
we use deep neural networks (DNNs),
which can be imagined as an artificial
brain. A DNN consists of multiple lay-
ers of artificial neurons, which are in-
spired from real, biological neurons:
they are linked to other neurons and
fire once they receive certain signals.
By adjusting the connections between
the artificial neurons, the DNN is able
to learn. Overall, the sum of all neu-
ral connections can be described by
a complex mathematical model with
millions of parameters, which are op-
timised step-by-step. This approach typ-
ically requires a large amount of data
(which we have thanks to the Italian
MaGIC project) and a large amount
of computational power to process the
data (which we have thanks to the Sum-
mer of HPC!). With the MARCONI100
supercomputer,5 operated by our host
institution CINECA in Italy, we combine
the power of high performance comput-
ing (HPC) and AI. For this purpose, we
used graphical processing units (GPUs)
and a corresponding programming tech-
nique called CUDA, which significantly
accelerated the training of our “AI geol-
ogist.” In the following we show you
which model we chose and how our
data flows through our machine learn-
ing pipeline.

Case study: Detecting geohaz-
ards in the Italian coastal sea

While there have been initial studies
for the automated recognition of seabed
structures,6,7 our large-scale deep learn-
ing approach can be considered novel
in the field of submarine geology. This
project started as a blank canvas, mean-
ing that we had to come up with the
right software tools and strategies for
a broad range of tasks, such as pre-

processing raw data, designing and
training a machine learning model, as
well as performing evaluations. We
were excited to take on this challenge
and started from zero by processing a
set of raw X, Y and Z coordinates form-
ing a bathymetric map of the Ionian
continental margin, off the coast of Cal-
abria in southern Italy. In the following,
we describe the 5 steps that our method
comprises in detail.

Two R-CNNs for recognition and
classification of subsea struc-
tures

In the first step of our method, the
bathymetric map is visualized using GIS
(Geographic Information Systems) soft-
ware, where secondary features such
as slopes, curvatures and topographi-
cal indices are derived from depth data.
This outputs three separate maps, each
describing these selected secondary fea-
tures, as shown in fig. 2.

Figure 2: Three geological feature maps
plotted in red, blue and green. Merging
them into one image yields a combined RGB
map, shown in the map on the first page
(without lineaments).

The maps are then combined into
one composite map using the conven-
tional colour channel system RGB; Red,
Green, and Blue. Essentially, we treat
the measurement data like an image.
This is an ideal strategy as like images,
bathymetric measurements have some
inherent hierarchy in where and how
features are placed.

Figure 3: Small windows cut from the full
composite map shown on the first page
(without lineaments).

Secondly, the composite map is cut
into smaller windows as shown in fig. 3.
For each window, we employ an algo-
rithm called Selective Search8 to localise

each feature. This algorithm uses a vari-
ety of complementary image partition-
ing methods to deal with as many im-
age conditions as possible. The output
of this stage is a list of possible areas,
or bounding boxes where features might
exist, as seen in fig. 4. As the manually
labelled data is available through the
larger map (shown on the first page),
it is possible to match a label to each
bounding box.

Figure 4: Selective search results from a
single window as shown in fig. 3. Each sub-
image framed by a white boundary box con-
tains a geologically relevant region. Colored
lines here (and in the first page composite
map) describe manually sketched geological
features such as submarine canyons, which
are used as labels for our dataset.

The third step is where we finally
train the neural network model; we use
each bounding box as the training im-
ages and the labels provided as the de-
sired output. This is a well-known task
in the field of computer vision, which
is typically solved using the supervised
learning of so-called Convolutional Neu-
ral Networks (CNNs).9 These are simi-
lar to traditional neural networks, but
a CNN convolves the input in the first
layer similar to how neurons in the
visual cortex react when given visual
stimulus.10 As we have already done
the feature regions in the previous step,
this model is therefore called a Region-
based Convolutional Neural Network
(R-CNN).11 And as the type of subsea re-
liefs are plenty and can be quite similar
to each other, we employ two models,
trained in parallel. The first model is the
feature existence model that is trained
to recognise whether an area contains
a feature or not, and the second is the
feature type model that further classi-
fies each area into a single type of re-
lief. Using this architecture, the model
is trained to correctly assign the cor-
rect label (i.e., the type of subsea re-
lief) to a part of the composite map. To
achieve high accuracies, we adjust the
parameters (so-called hyperparameters)
of our models. At this stage, we have
completed the training section of the
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Figure 5: Snapshot of the training process of our feature existence model using the Tensorflow framework.

framework, which concerns converting
labelled digital maps into training data
and the training itself. This is shown in
fig. 6.

START

Train RCNN model on
feature type

Map cutting

Selective search

GIS Processing

Train RCNN model on
feature existence

Training

END

Figure 6: Flowchart of model training.

The final step is the evaluation stage,
in which we combine both feature type
and existence models. This stage is vi-
sualised in fig. 7. Once we cut the map
and perform selective search, we pass
images with regions of interest to the
feature existence model. If no feature
existence is predicted, the image is dis-
carded. If the first model predicts that a
feature might exist in the given image,
it passes the image to the feature type
model. The second model predicts the
expected class of the given image, and
then the predicted class is then stored
together with the image, giving us a col-
lection of geological images and their
predicted labels.

END

Check if feature exists
using existence model

Check feature type using
categorical model

Choose one area in set

NO
YES

Evaluation

START

Figure 7: Flowchart of model evaluation.

Predicting geohazards with high
accuracy

Our work resulted in a fully automated
seabed relief classification framework,
using two R-CNN models. The training
section of the pipeline contains steps to
convert the map into learnable data for
the two models, and the evaluation sec-
tion contains steps on how to integrate
both models into a fully automated sys-
tem. Both the feature existence model
and the feature type model achieved ac-
curacies of over 90% as shown in fig. 5,
which allowed us to make predictions
with high confidence.

Conclusion

In this project, we set out to indepen-
dently develop an AI-based method to
automate the classification of subsea
reliefs. Our method comprises 5 steps;
pre-processing of geological data, per-
forming selective search, training two
R-CNN models, and evaluating the pre-
dictions. Doing research in a domain
that intersects between machine learn-
ing and marine geology is an exciting
challenge to take on for a small team
of a physicist and an engineer, but we
are glad to have gone through such a
rewarding journey.
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Combining Big-data, AI and 3D visualization for
datacentre optimization

Visualisation
and Anomaly
Detection of
A Supercom-
puter
David Mulero Pérez, Sepideh Shamsizadeh

This project aims to look for a way to create
a virtual replica with which we can visualise
all the information we have from the Mar-
coni 100 supercomputer and use that data
to detect anomalies. And proposing a deep
learning(DL) model for anomaly detection.

High-performance computing
(HPC) makes it easier to per-
form large amounts of com-
putation in projects of all

kinds. For this purpose, supercomput-
ers consisting of hundreds of nodes are
used, each consisting of many cores.
The need for supercomputing is grow-
ing, and new centers are being built,
often larger and more powerful than
the previous ones. Due to the number
of components, monitoring and main-
taining the state of supercomputers is
not an easy task.

Therefore, solutions to this problem
are being sought. Finding a way to con-
trol the states and to predict possible
errors. In addition to this, supercomput-
ers do not have the same architecture,
although they are often similar, and a
specific solution must be designed to

work with this computing center.

Anomaly detection is the process of
accurately analyzing time-series data in
real-time, identifying unexpected items
or events in data sets, which differ from
the norm (no anomalies). Also, it can
be an extreme case of an unbalanced su-
pervised learning problem, as the vast
majority of data generated by real su-
percomputers is, by definition, normal.

In today’s world, the issues concern-
ing their maintenance are increasing
by rapidly becoming larger and com-
plex the High-Performance Computing
(HPC) systems. Anomaly detection can
help pinpoint where an error occurs, en-
hancing root cause analysis and quickly
getting tech support before reaching a
critical state.1

Method and Results

Method for Visualisation

First of all, let’s look at the architecture
of the Marconi 100, which we are going
to work with. Marconi 100 is made up
of 55 racks. Each rack has 20 nodes in-
side it. And each node is composed of
2 x 16-core processors and 4 GPUS. As
a curiosity, with its 32 Pflop/s, it was
the ninth largest supercomputer in the
world in 2020 and uses the Red Hat
Linux distribution as its operating sys-
tem. To create this visualisation we used
the VTK (Visualization Toolkit)2 pack-
age for Python and Pandas to handle the
data in table form. The data we need is
extracted from an ExamonDB database.
The database has information since the
supercomputer was started. Data such

38



Figure 1: VTK Pipeline

as the temperatures of both the CPU
cores and the GPUs. The power, voltage
and memory consumed by each CPU.
And one of the most important data for
us is the status, which indicates whether
the node is working properly or has a
problem. A value of 0 means that there
are no problems and any other value
means that there is a problem.

Since it is a very large amount of
data and we want to facilitate its man-
agement, it is stored in a different file
for each node, that means 980 files. We
name these files by their node name.
This is always the rack number and the
identifier of the node within the rack.
For example, node 15 in rack 208 would
have the following name r208n15.

Creating the 3D model within VTK is
easy thanks to the vtkSTLReader class,
which allows us to import 3D files in
STL format. In this way, I have been
able to use the Marconi 100 3D models
that I was provided with by the CINECA
visualisation team.

VTK library offers different classes
that are responsible for carrying out dif-
ferent parts of the process. In short, the
visualisation pipeline consists of the fol-
lowing parts: Sources, used to read raw
data. Filters can then be used to mod-
ify, transform and simplify that data.
Mappers are responsible for creating
tangible objects with the data. And at
the end of this pipeline are the Actors,
which are responsible for encapsulat-
ing these objects in a common interface
that has many freely modifiable proper-
ties. These Actors are the ones that are
passed to our renderer to show them in
the scene. A diagram is shown in figure
XX. In addition to all this, other much
more specialised classes can be created
that allow us to develop a more interac-
tive environment, among other things.
In my case, I have used this to create
keyboard shortcuts that I use to move
around the time axis when displaying
data.

The reading and processing of data
requires a lot of computing time, so
it is interesting to parallelise the pro-
cess. And in this case it is very easy to
do so, as the data for each node is in
a separate file and inside Python we
store it in an individual table. So we
have used an instance of ProcessPoolEx-
ecutor from Python’s concurrent.futures
module, which creates as many threads
as nodes we have to read and handles
them automatically depending on the
capacity of our CPU. Doing this, I have
managed to triple the loading speed in
my pc that only has 6 cores. Using a
Marconi 100 node can reduce the load-
ing time by up to 10 times.

Figure 2: The 3D model within VTK

Result for Visualization

In figure 2 we can see an example of
what has been the result of the creation
of the virtual replica of M100. You can
see a 3D model of the racks, the walls,
and even where the air conditioners are
located. Each node has the following
information: a text with the power it is
using (this text turns red if the power is
too high), a square representing the sta-
tus of the node (green if everything is
working properly and red otherwise). In
addition, on the left side of each node,
we can see a heat map with all the tem-
peratures of the cores of the node and
the top 16 dots refer to the tempera-
tures of processor 1 and the bottom 16
dots refer to the temperatures of the

second processor.
Furthermore, all this data can be dis-

played in 15-minute intervals using key-
board shortcuts. To do this, callbacks
that VTK allows have been used. When
a callback is executed we move the time
forward or backward by 15 minutes and
update the data of the objects that are
being represented in the scene (Sources
objects). As we can see, no textures are
used and the objects have very few poly-
gons, otherwise, it could consume a lot
of resources if run on some devices. In
this case, we have to give priority to us-
ability and we don’t care so much about
how it looks aesthetically. It could be
optimized for use on the Marconi 100
nodes and get much better performance.
In this case, a lot more details could be
added.

Figure 4: Structure of autoencoder

Anomaly Detection

Autoencoder is an unsupervised learn-
ing technique capable of efficiently com-
pressing and encoding data and recon-
structing the data from the reduced en-
coded representation to a representa-
tion close to the original input as possi-
ble. For using Autoencoder for anomaly
detection, we first train an Autoencoder
on normal data, then take a new data
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Figure 3: Compration Dense and LSTM model.

point and reconstruct it using the Au-
toencoder. We used the data of combi-
nation of 5 nodes.

Result of Anomaly Detection

Training and evaluating machine learn-
ing models usually require a training
set and a test set. In most cases, train
and test splitting are done randomly by
taking 80% of the data as train data and
using the rest for the test, unseen by the
model. In the case of time series, we
cannot choose random samples and as-
sign them to either the test or the train
because it makes no sense to use the
future values to determine past values.

The first 80% is given as training
data and the remaining 20% as test.
Time series data must be transformed
into a structure of samples with input
and output components before it can be
used to fit a learning model. To embed
time series data to our network we used
TimeSeriesGenerator.

We selected two autoencoder mod-
els for training our data. Dense model
which, All layer of encoders, latent, and
decoders were dense layer. And The
LSTM model that the encoders and la-
tent layer were LSTM layer and for de-

coders were dense layer. The activation
function for each layer was SELU and
optimization function was RMSprop(1e-
3).

We train both the Dense and LSTM
models on all data and normal data to
compare their performance. As you can
see the results of total absolute repro-
duction error of baseline and anoma-
lies for Dense and LSTM models on all
and normal data are shown in Figure
3. What we want to see the higher re-
production error on anomaly and low
reproduction error on normal data. The
plot with high separation between re-
production error for anomaly and nor-
mal data is the best. So, the best model
is the Dense on normal data. We are
working on a clean data set. We figure
out if we are using the LSTM, we take
count the temporal dependencies. So,
as Dense model is better than LSTM we
can say that there is no temporal depen-
dencies between folds.
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Investigating the Performance, Scalability and
Visualisation of the MPAS atmosphere model

Scaling, Tiling
and the global
atmosphere
Eschenfelder, Jonas
Schoder, Carla Nicolin

MPAS Atmosphere was designed with scalability
in mind. Its use of Voronoi tessellations allows for
scaling in model resolution and it’s focus on
parallel computing allows for scalability in
performance. We tested this for both global and
regional models and found good strong and weak
scaling. We also developed visualisation tools
that allow for easy conversion of the raw data to
beautiful animations using Python.

a

aImage modified from https://mpas-dev.github.io/

What shapes can tile a
sphere? This seemingly ab-
stract geometry problem
becomes very applied as

soon as you start thinking about how
to split up the world. We are used
to the latitudes and longitudes, seem-
ingly splitting up the world into rect-
angles. So it seems only logical to
use this system when setting up atmo-
spheric models. But while it is a good
system to pinpoint where you are on
this planet, it comes with many prob-
lems for modelling. First, the distortion
of these seemingly regular rectangles
(something that has plagued cartogra-
phers for a long time) makes it impos-
sible to create mesh with uniform res-
olution spanning the entire globe. Sec-
ondly, as regional weather not only de-
pends on large scale patterns but also
small scale regional complexities, we
often need a high resolution over the
region of interest but only a lower reso-
lution everywhere else. When working
in rectangles this will end up creating
harsh boundaries along the edge of re-
gions with different resolutions, leav-

ing the modellers with artefacts that
are hard to clean up. To solve these is-
sues the developers of the Modelling
Predictions Across Scales (MPAS) Atmo-
sphere model, resorted to using a simi-
larly abstract mathematical object, the
Voronoi Tessellation. Voronoi Tessela-
tions create meshes, where, instead of
defining an area by its boundaries, it
is defined by a central point and each
cell spans the area that is closest to
it’s central point. When the points are
spaced regularly, a hexagonal mesh cov-
ering the entire globe is created without
any distortions. Through the Voronoi
mesh, irregular cell shapes are possi-
ble and this allows for resolutions to
vary smoothly without creating model
artefacts. Another advantage of MPAS
is that it was built with parrallel com-
puting in mind, promising good per-
formance when run on HPC systems.
Be it numerical weather predicitions or
the modelling of the impact of climate
change, fast and reliable atmospheric
models are needed.

In this project we tested MPAS At-
mosphere on ARCHER2, the UK’s new

national supercomputer, to investigate
its performance and scalability. We also
looked at how to best visualise the out-
puts, as NCAR, the developers behind
MPAS, recently announced stopping of
development of their own plotting lan-
guage NCL in lieu of moving to Python.

Scaling and Performance

We used the most recent release
of MPAS atmosphere, available via
gitHub here: https://github.com/MPAS-
Dev/MPAS-Model. There are two use
cases for MPAS, it can either be run
globally to model the entire Earth’s at-
mosphere at a time or regional cuts can
be made to only model that areas atmo-
sphere. We tested both and the results
are shown below.

Global Models

To test the global model we ran
the Jablonowski-Wiliamson baroclinic
wave1 test. This is a standard idealised
case often used to test different atmo-
spheric models. While not as complex
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Figure 1: left: Performance of different meshes in a global 150 hour Jablonowski-Wiliamson baroclinic wave. right: Performance of
different simulated times in a regional cut using a 60 to 3km mesh.

as a real case, this case allowed for good
comparison between different meshes
and run times without much set up
in between. The first thing we inves-
tigated is how performance scales with
different meshes. As MPAS uses unstruc-
tured Voronoi meshes in the model it
is fairly straightforward to change be-
tween them. We used uniform meshes
with a cell size of 120km (40962 total
cells), 60km (163842 total cells) and
48km (256002 total cell). Note with the
first two that we need four times the
cells to double the resolution. With this
we would expect the run time to also
quadruple, as the number of cells in-
forms how many integration steps need
to be done by the model. We also tested
a variable mesh using a circular refine-
ment with cell sizes varying from 92 to
25km. This is used as it has the same
number of cells as the 60km uniform
mesh (163842 cells), so that we can
test whether the refinement introduces
any extra overhead.

Figure 1 shows the performance of
the 150 hour runs. Note, that the mesh
names show the refinement (x1 mean-
ing uniform) and the second number
shows the total number of cells in the
mesh. The run time on a single node
(128 cores each) increased by around
4.3 times from the 120km to the 60km
mesh. This is slightly worse than ex-
pected, but is most likely due to 128
cores being already near the ideal for
the 120km mesh, while the 60km mesh
only reaches it’s fastest run time on 4
nodes. The x1.163842 (60km uniform)
mesh and x4.163842 (92-25km refined)
mesh show very similar scaling through-
out, indicating that indeed the number

of cells is the important factor and re-
finement does not add more overhead.
Overall, we found that around 320 cells
per core are a good estimate for ideal
performance, this number however var-
ied slightly for each mesh. Others2

have shown around 150 cells per core
as ideal behaviour for more complex
cases, so this depends on the exact use.

Figure 2: Weak scaling of the regional
cut using 1 node per simulated hour

Regional Models

For the regional cut, we tested a sim-
ulation based on weather data from
January 2010 for the Western Mediter-
ranean. We used a mesh with varying
cell sizes between 60 and 3km and sim-
ulated between 1 and 8 hours. On a
single node run time increased linearly
and stayed constant at about 1000s
(16min 40s) per simulated hour. As
seen in figure 1, there is some super-
linear speedup initially. Since this does
not show up in the global runs, we be-
lieve this is due to extra overhead from
the model reading in updated boundary
conditions every simulated hour. Good
strong scaling overall is observed and
the model stays over 60% efficient even

after the run time plateaus, allowing us
to simulate eight hours of weather in
around 17 minutes. When looking at
the weak scaling of the regional model
(see figure 2), we observe near ideal be-
haviour throughout the experiment. An
efficiency drop of of less than 20% at 8
nodes is promising and shows that 128
cores per simulated hour is a good es-
timate for efficient running of regional
models.

Visualising the atmosphere

Visualisation method

Atmospheric models, like any model,
are only of limited use if the outputs
cannot be visualised in a way that
makes the complex results easily un-
derstandable for humans. This is why
we also worked on a visualisation tool
for MPAS Atmosphere. Which physi-
cal parameters are being stored and at
what frequency these outputs are given
can be easily configured before running
MPAS. The outputs are stored as com-
pressed netCDF files, which store both
the physical parameters and the mesh
specifications used.

Figure 3: netCDF archive structure. Credit:
Hoyer, S. & Hamman, J.. (2017). xar-
ray: N-D labelled Arrays and data-sets in
Python. Journal of Open Research Software.
5. 10.5334/jors.148.

Since they are compressed files, they
save on storage but can be complicated
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to work with. Luckily, Python already
provides a package to interface with the
netCDF library. A key point that must
be considered, when working with the
output from MPAS, is that there are
three different types of location for
each cell, a central cell location, the
location of its vertices and the edge lo-
cations (see fig.:4). Furthermore there
is not only a single layer of cells, but
several vertical levels to deal with.

Figure 4: Stored location for a cell
within the Voronoi mesh. Central cell lo-
cation: dark blue, Vertex location: cyan,
Edge location: light green
Which location needs to be used de-
pends on which physical parameter
is to be plotted. For example the sur-
face pressure or the temperature are
attached to the cell centre, whereas
the wind speed, which can be under-
stood as a gradient between cells is
attached to the edges. There already
exists a Fortran program to interpolate
the MPAS output for each parameter to
consistent coordinates on the longitude
and latitude grid (see ). After this con-
version we are able to use Python to
plot physical parameters in longitudes
and latitudes.

The conversion step using Fortran is
not necessary, but makes working with
the outputs easier. In Python, standard
mapping packages like Cartopy can be
used to plot the data in 3D or 2D using
different projections and allowing to
add physical or political maps in the
background to help contextualise the
outputs.

Visualisation Examples

Our regional example described above
outputs 38 possible physical measure-
ments which could be plotted. The
simulation started at 6 pm and ran for
a total of 8 hours until 2am the next
morning. Outputs were saved every
hour, giving us nine time steps for plot-
ting. We can easily create animations
for the entire model with these outputs
(as shown in our presentation here).
Examples of these outputs are shown in
Figures 5 and 6.

Figure 5: Surface temperature over 8
hours. An overall drop in temperatures
during the night can be seen, as well as
already lower temperatures in the high
mountains of the Alps and Pyrenees.

Figure 6: Meridional Wind plot over 8
hours. The dark spot in the middle of
the figure, is a well know wind pattern,
the so-called Mistral Wind. That this is
visible in our output data, again reflexes
the validity of our MPAS run.

Conclusions

MPAS Atmosphere shows good strong
and weak scaling in both global and
regional runs. The number of cells in
the mesh and length of simulated time
show the biggest impact on perfor-
mance. Thanks to the flexible resolu-
tions within models, it is possible to
compensate high resolution in one are

by using bigger cells away from the area
of interest.

In our experiments with a regional
cut covering the entire Iberian Penin-
sula and southern France, we were
able to simulate 8 hours of weather in
around 17 minutes of real time. This
shows MPAS’s potential to be used for
numerical weather predictions.

While visualisation of the outputs
requires some post processing of the
netCDF outputs to get the latitude and
longitudes for each data point, we devel-
oped scripts that automate this process.
After this, the data can easily be plotted
using Python, further easing the use of
MPAS Atmosphere.

Overall, the good performance on a
supercomputer like ARCHER2, the ver-
satility of the model core and the ease of
plotting the outputs makes MPAS Atmo-
sphere promising for fast and reliable
modelling of the worlds atmosphere.
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Re-engineering and optimizing Software for the
discovery of gene sets related to disease

Re-engineering
and Optimizing
the Genomicper
Package
İrem Okur, Aybüke Özçelik

Current technology developments enable
us to analyze more genetic data points to
determine their role in disease. Project
2114 aims to increase the size of data sets
that the Genomicper Package could
manage and to speed up the processing of
current data sets.3

G enomic permutation or Ge-
nomicper is a R package. It is
a permutation approach that
uses genome-wide association

studies (GWAS) results to determine
the significance of gene sets and path-
way associations. The GWAS study finds
single nucleotide polymorphisms that
are linked to trait variations.

This project includes the optimisa-
tion of the Genomicper package by us-
ing various optimisation techniques, see
the methods section below..

Introduction

Developments in the science especially
the field of mathematics and biology
have made it possible to analyze and
interpret biological data in a computer
environment. This is called bioinfor-
matics, especially when the data sets
are large and complex. Bioinformatics
has led to a detailed examination of

the effects of genetic factors on disease
susceptibility. This technology is also
used in all kinds of different and wide
areas, from network and system biology
to drug research.

In the study of the genomicper pack-
age, single nucleotide polymorphisms
(SNPs) with trait variation are aimed
to be detected by genome-wide asso-
ciation(GWAS).1 Genomicper is an R
package currently available from the
CRAN repository, the main distribution
point for R packages.

The motivation behind this project
is to re-engineering and optimizing the
Genomicper Package to provide the abil-
ity of to analyze huge data sets (tens
of millions) by using personal comput-
ers. It can analyzes data sets ranging
from 30 thousand to 8 million. The data
of the project summarizes the connec-
tion between Single nucleotide polymor-
phism or SNPs and traits (phenotype).

Methods

Figure 1: Development cycle of the code.

The development cycle used in this
project is illustrated by Figure 1. First,
profiling is done and most expensive
routines are identified with the help
of profvis. Once an expensive rou-
tine is identified it is further profiled
and performance improvements are
compared against an implementation
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of the original code using another R
package - microbenchmarks. Then, the
expectedqual function is used to check
whether the operation gives correct
results. If the results are the same, go
to the next step, if the results are differ-
ent, go back to the previous step. The
final step is comparison, The process-
ing speed of the code belonging to the
previous version are compared with the
code that has been optimized. If there
is a decrease in processing time, the
optimized code is used in place of the
previous code. If the optimization pro-
cess is unsuccessful, project continues
with the previous code. So a cycle is
completed and profiling is done to start
a new cycle.

In more detail, with the help of the
Profvis R package interactive graphical
interface for visualizing data from pack-
age was done. When the genomicper
package was profiled, the memory us-
age and execution time of the each
routine could be easily detected. The
microbenchmarks was applied to quan-
tify improvements of changes compared
to the original.

Results

Figure 2 shows the top three most
expensive routines are genome_order
read2_paths and snps_permutation. Op-
timisation of these three routines made
the package more efficient. After we
were satisfied with the efficiency of our
code we began comparing the original
version and the optimised version.

Figure 2: Profile of the package.

As we can see in Figure 3 the orig-

inal code on the left and the version
being optimised _v2 on the right. In
_v2, we used multiple optimisation tech-
niques. The final result which is illus-
trated by Figure 3, is because of Mi-
crobenchmark’s multiple runs. It helped
more clear to see the comparison of the
original version and version two. To ex-
plain better, the fact that getting a dis-
tribution comes from this.

Figure 3: Comparison of the GenomeOrder
routine.

Discussion and Conclusions

The project aim was to reach the larger
data sets that the Genomicper Package
can handle and to be able to process
existing data sets faster. Optimisations
that worked faster with larger data sets
were preferred to those that showed
performance improvements only for the
smaller data sets. As a result of the im-
provements we have made genomicper
should be able to handle larger datasets
faster. More importantly, we have intro-
duced a methodology that should con-
tinue to improve the performance of
genomicper in the near future.

Future Work

The Genomicper Package is an open
source project that researchers can ben-
efit from. The project can be written in
the Python programming language, be-
cause researchers who do not know the
R programming language can benefit

from it and because of its strong math-
ematical processing speed. In addition,
there is a topic investigated by the team.
If the data to be processed is adjusted
according to the P threshold value, a
significant decrease in the processing
time of the R package can be expected.
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Aybüke Özçelik, Izmir Institute of
Technology
Phone: +90 507 425 3691
E-mail: aybuke ozcelikk@hotmail.com

PRACE SoHPCSoftware applied
R

PRACE
SoHPCAcknowledgement
Thanks to our mentor and co-mentors
that were very helpful and
understanding.

PRACE SoHPCProject ID
2114

Irem Okur

Aybüke Ozcelik

45



Performance of Parallel Python Programs on
ARCHER2

Accelerating
Python on
AMD CPUs
Alejandro Dinkelberg
Jiahua Zhao

Numerical Python calculations can achieve
speeds in a similar range to C and Fortran.

The broad application of Python
and its simplicity lead to a
huge community of users. The
advantages of readability and

dynamic typing for writing Python code
come along with a slow computational
performance which in turn makes it
Python unattractive for complex cal-
culations. Nevertheless, its popularity
exerts pressure to accelerate Python.

Complex simulations and extensive
numerical calculations are highly rec-
ommended candidates to execute on
High Performance Computing (HPC)
systems. Recently, the EPCC1 topped
up their HPC systems and is now using
the UK HPC Tier-1 AMD-based Super-
computer ARCHER2. This leads to an
interest of evaluating the performance
of Python on AMD-based systems since
there rarely exist studies on the perfor-
mance improvements for AMD-based
HPC systems.

The languages C and Fortran deliver
the highest standards for computational
performance and therefore they will
play a benchmark role for our Python
code. Although naive Python lags far
behind, we will show here how to
transform Python code to accomplish
C/Fortran performance. We will mainly
measure the performance on the HPC
system ARCHER2 and compare it to an
intel-based HPC system (Cirrus). The re-
sults will show us what improvements
we can expect and how competitive
Python is.

Computational Fluid Dynamics
Our performance benchmark is an ex-

ample from the Computational Fluid Dy-
namics (CFD). It simulates a fluid flow
in cavity approximating a flow pattern.
The algorithm discretises the problem
on a two-dimensional grid, to approxi-
mate the partial differential equations
by using the Jacobi algorithm. It can be
described as an iterative process which
converges to a state with an approxi-
mated solution. Each iteration adds pre-
cision to the result until reaching a sta-
ble state. Additionally, increasing the
grid size leads to higher precision but is
also more computationally intensive.

Figure 1: Example of an approximated flow
pattern with in and out flow

How is the problem being solved?
The determination of the flow pattern

is broken down to a finite problem size

and is approximated by using a grid. For
every cell , we use the stream function
Ψ for zero viscosity to calculate fluid
velocity:

∇2Ψ =
∂2Ψ

∂x2
+
∂2Ψ

∂y2
= 0 (1)

The finite version of the equation gives
us the option to compute the stream
by averaging the value of the cell’s four
nearest neighbours:

0 =Ψi−1,J + Ψi+1,j + ΨL,j−1

+ Ψi,j+1 − 4Ψi,j

(2)

Scalabilty of CFD approximation

1. The Scale factor (sf) determines
the grid size (minimum size 32
x 32). The grid is represented as
a matrix so that sf specifies the
required memory size in our cal-
culation.

2. The number of iterations is the
precision parameter of the algo-
rithm.

3. The Reynolds number (Re) is
the degree of the fluid’s viscosity.
It adds complexity to the problem
while making it more realistic.

Note that the main computational costs
are in the iterative process of the algo-
rithm (see Fig. 4, jacobistepvort). In our
project, we focus on improving this pro-
cess as the calculation is the same for
every iteration.
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Methods to improve our Python code

The benchmark for our algorithm im-
provements is a naively written Python
program. To improve its velocity and to
reduce computational costs, we intro-
duce the following approaches:

Code optimisation - It can be ob-
tained by vectorize the for-loops
with a matrix calculation provided
by the NumPy2 package. Addi-
tional improvement is promised
by the package NumExpr3 that
resolves mathematical operations
efficiently to accelerate NumPy’s
matrix calculations.

Divide and Conquer - The serial ver-
sion of our grid calculation is us-
ing just one processor at a time
for the calculation. What if we
divide the grid and run it on
multiple processes, using multiple
CPUs? The language-overarching
message passing interface (MPI)
is a technique for processor com-
munication. Mpi4py4 is a Python
package that implements the func-
tionality of MPI.

GPUs instead CPUs - The specialty of
the GPUs is the wide-spread paral-
lelisation of the small tasks. There-
fore, GPUs often have more than
hundreds of device cores. Here,
we can use Cuda from the Numba5

package to implement the code
for the GPU.

Focus: Parallelisation of Python code

We use a one-dimensional domain
decomposition6 and narrow down
the problem into smaller ones. In
Python, we decompose our grid one-
dimensional (x-dimension) to slice it
into sub grids in order to allocate each
sub grid to a single process. These cal-
culations can run in parallel.

Our Jacobi algorithm is based on in-
formation about the cell’s neighbours.
Splitting up the grid provokes a lack
of information at the boundaries of the
sub grids. Hence, we have to enable the
communication between the processes.

Halos are boundary layers of each
sub grid that are shared with another
neighbouring sub grid. If the halo of a
sub grid is updated and it gets informed
by its neighbouring sub grid, this sub
grid updates and informs that is was up-
dated (see Fig. 2). The halo swaps en-
sure that the information is up-to-date.

Figure 2: Sub grids performing halo swaps

About ARCHER2
EPCC’s ARCHER2 is an HPE Cray EX

supercomputing system with an esti-
mated peak performance of 28 PFLOP/s.
The final system will have 5,848 dual
sockets compute nodes based on AMD
EPYC Zen2 (Rome) 64 core CPUs run-
ning at 2.25 GHz, given 748,544 cores
in total.7 Each standard compute node
has 256 GiB of DDR4 memory. Except
for GPU programs (using single NVIDIA
Tesla V100-SXM2-16GB on Cirrus8), our
CPU programs run on standard compute
nodes with Cray compiler (cc & ftn) and
Cray python (3.8.5.0). See Fig. 3 for de-
tails.

Figure 3: The hardware & software details
of ARCHER2: standard compute node.

Profiling and optimizing
First, we run the serial Python bench-

mark programs using a single rank.
Given the problem size sf = 256, the
naive Python code needs about 896 sec
per iteration, whereas the NumPy ver-
sion only takes about 1.2 sec. We use
cProfile to analyze the time consump-
tion during run time (see Fig. 4).

Figure 4: The hotspot functions in Python
programs.

The function jacobistepvort is com-
putationally intense and takes up to
90% of the time, followed by main and
deltasq. This loop implements the equa-
tions for finite viscosity which are a
much more complicated than Equation
(2) but have the same general structure
where each point depends on its four
neighbours. Further on, we focus on ja-
cobistepvort. The naive Python code up-
dates the data at each point by using
double for-loops, whereas the NumPy
version allocates the memory before
calculating and iterates internally to
update the data, which is more effi-
ciently implemented. To speed up the
Numpy version, we introduce NumExpr
to speed up the array calculation. We
use the function evaluate to convert the
original calculation expression into a
fast numeric expression and to optimize
the data access. In addition, we speed
up naive Python by using Numba shift-
ing the jacobistepvort calculation to the
GPU platform.
Results for serial versions
The serial Python programs, except for
Numba version running on a GPU on
Cirrus, were tested on ARCHER2 (see
Fig. 5).

Figure 5: Performance: serial (single CPU
core / GPU).

In comparison to the serial versions
of the CFD program, the implementa-
tion of the GPU-based version is 6 times
faster than the NumPy version and even
slightly faster than the C and Fortran
versions. It is important to ensure that
the data copying from CPU to GPU and
back is minimised. The NumPy version
is nearly 800 times faster than naive
Python, and the performance of NumPy
version after NumExpr optimization im-
proves greatly, even compared to the
performance of C and Fortran versions.
This indicates that NumExpr has a good
optimization for NumPy arrays calcula-
tion at this problem size.
Parallel programming
To improve the comparability and the
evaluation of the performance, we use
the serial NumPy version as a baseline
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(1.18s per iteration). In Fig. 6 we dis-
play the results of the parallel versions
on one ARCHER2 node for: C-MPI, For-
tran MPI and Python with NumPy MPI
and with NumPy using NumExpr.

Figure 6: Performance: parallel (single node
/ multiple ranks).

Overall, the speed-up of all paral-
lel programs increases with the num-
ber of ranks (see Fig. 6(a)). For the
Python programs, the performance im-
provement is small with a small num-
ber of ranks (1 to 16), as well as for C
and Fortran. The NumExpr optimized
version is close to C and Fortran at 16
ranks. In the case of a large number of
ranks (32 to 128), the performance of
all programs improves significantly. The
Python NumPy MPI consistently lags be-
hind the other three, while the perfor-
mance of NumExpr optimized version is
still close to C and Fortran. In Fig. 6(b)
we see that after more than 16 ranks,
the scalability of the NumExpr version
is better than non-NumExpr version.

When the number of ranks (multi-
ple compute nodes) increases further
(Fig. 7), the scalability of Python pro-
grams decreases, especially after 256
ranks. The performance of C and For-
tran programs increases sharply, while
the speed-up of Python programs in-
creases slowly (see Fig. 7(a)). In par-
ticular, it is shown that the scalability
of non-NumExpr version is better than
NumExpr in Fig. 7(b). It is slightly bet-
ter than linear while going from 128
to 2048 ranks. The C and Fortran scala-
bility is massively super-linear, presum-
ably because of cache effects: as the
local problem size gets smaller, it sud-
denly fits into cache and gets a huge per-
formance jump (between 256 and 512
ranks). Mpi4py may have more serious
blocking problems because the commu-
nication overhead across nodes is often
larger than that within nodes. We would

like to address this problem in future
work as we expect also a speed-up with
mpi4py on more ranks.

Figure 7: Performance: parallel (multi-
node).

Conclusion
Our work demonstrated the feasibility
of Python HPC, and we are convinced
that Python solves scientific problems in
a flexible manner. Python can be used
efficiently on HPC systems when com-
bined with scientific acceleration pack-
ages such as NumPy, NumExpr, Numba
and so on. For allocating the problem
over multiple nodes and achieve high-
speed parallel computing, Mpi4py can
be used. Our results show that the com-
bination of NumPy and NumExpr gives
Python programs similar performance
to C and Fortran in the serial case. In
the parallel case, if the number of cores
is at its maximum and there is no cross-
node communication, the performance
of Python programs (about 48x speed-
up) combined with "NumPy + NumExpr
+ Mpi4py" is close to C and Fortran.

Nevertheless, if multi-nodes are used,
the NumExpr Python version has no
advantage here and the Numpy ver-
sion is more extensible. Of course, C
and Fortran still have unbeatable com-
putational advantages for large-scale
computing, so we recommend that re-
searchers choose the right programming
language for the actual problem: If you
want to solve the problem more con-
venient, you can use Python although
you should use accelerating techniques.
Naive Python is not recommended at
all. If you want to solve the problem on
large-scale nodes, you may prefer C or
Fortran with MPI to receive the most
efficient results.
Future work
We will explore Python for large-scale
computing in the future. It will be in-
teresting to investigate larger problem

sizes and optimize Python performance
on more nodes on ARCHER2, and we
will try to optimize it more for AMD
Zen2 architecture.

At present, we are only beginning
to use the Heterogeneous Computing
Platforms (GPUs) to accelerate Python
programs, and we have not yet fully uti-
lized the computing power of GPUs. So
in the future, we will improve GPU ac-
celeration performance for Python pro-
grams and implement Python programs
which support multi-GPU use.
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Parallel anytime branch and bound algorithm for
finding the tree-width of graphs

Branch
Bound for
SoHPC
Valentin Trophime
& Oliver Legg

The goal of the project is to accelerate the
computation of tensor network
contractions, which are used to simulate
quantum computers. Parallelising
tree-width computation and clever
heuristics can help achieve these goals.

Our project is motivated by the
need of simulating a quan-
tum computer. In order to
evaluate the performances of

real quantum computers we need to
compare them to “what we expected”.
This expectation is the result of the sim-
ulation of the virtual quantum computer
inside a classic computer. Simulating
such a computer is done by contract-
ing a tensor network this is basically
a great multiplication of tensors of
different dimensions. There are many
possible orderings, (choose where you
put the parenthesis in your expression)
to compute this multiplication - some
are more efficient than others. A dual
problem of this is to find the best vertex
elimination order that gives the best
tree-width of the network in the end of
an elimination process.

Finding the best order is known as
an NP problem therefore the current
approaches in literature are based on
heuristics that give an approximation or
on "clever brute-force" techniques. Our
goal is to implement two algorithms,
one based on heuristics and flows called

Flow Cutter and another using branch
and bound paradigm with parallelism
called FPBB. For fast parallel branch
and bound, Valentin implemented the
flow cutter algorithm in a Julia package
and Oliver implemented the QuickBB
algorithm. An explanation will be pro-
vided for how flow-cutter works. How-
ever, the original paper1 is available if
necessary. Likewise, the QuickBB algo-
rithm will have an explanation and the
paper2 will be available.

Vertex Elimination

The first notion necessary to dive into
our problem is the vertex elimination.
It is a simple procedure which requires
a graph and a sequence of nodes. This
sequence is called a vertex elimination
order because it will tell us when a
node will be removed in the procedure.
The procedure is basically taking a node
from the sequence, connecting all of its
neighbours together then removing it,
and repeating the cycle. While doing
so we manage a variable named tree-
width equals to the maximum degree

all nodes during this process. Here is
a visual example of this process on a
simple graph:

Flow

A flow is an integer value between 0
and C where C is the capacity of the
pipe (i.e the maximum amount of wa-
ter/info/whatever you can put in it).
We also introduce 2 notions for nodes,
source and target. A source node is
essentially a node that creates flows so
that it can throw more than it receives.
The opposite is the target node which
absorbs flows so it can receive more
than it gives. The other nodes respect
the flow conservation i.e same amount
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of flow in and out.

Here is an example of a flow graph
with 1 as the source and 5 as a target,
the current flow is 11(= 4 + 6 + 1) and
in other nodes we can see the conserva-
tion law for instance in node 2 we have
4 in and 3 + 1 out.

Finding the best way to flood a net-
work to transport things from a source
node to a target node is a well-known
problem and it is demonstrated that
finding the maximum flow is equiva-
lent to find a minimal capacity cut. It
will primarily try to solve this max flow
problem to find cuts.

Cut and separator

A cut is a partition in two disjoint sets
V1 ∪ V2 = V of all the nodes in a graph.
We also refer a cut as a set of arcs/edges
with one side in V1 and the other side
in V2. The size of a cut is defined as the
number of cut-arcs in it, and its expan-
sion as size

min(|V1|,|V2|) . We can also define

a imbalance rate ε = 2·max(|V1|,|V2|)
n − 1

where n = |V |. Knowing those 2 num-
bers, we can say that a cut C1 is domi-
nated by another cut C2 if and only if
C1.size ≥ C2.size ∧ C1.ε ≥ C2.ε. From
a cut we can compute a separator.

A separator is similar to a cut but
it is a partition in three disjoint sets
V1 ∪ Q ∪ V2 = V and there is no
edges/cuts between V 1 and V 2. Separa-
tor also has size (=|Q|), expansion and
imbalance rate (same definition respec-
tively as for cut), therefore separator
can dominate each other too. The way
Hamann and Strasser suggest to do the

conversion cut to separator is by picking
one node from the largest side for every
cut-arc and put it in Q. Their objective
is to use separator to split graph in two
balanced halves.

Nested dissection

This algorithm is made of three layers:
the nested dissection, the separator and
the core flow-cutter.

Nested dissection consists of taking
a graph, computing a separator, with
which you cut the graph in 2 parts (or
more) i.e 2 disjointed sub graphs. Re-
peat the same process on the 2 sub
graphs until they verify some properties
like “is a tree” or “is complete” where
it’s easy to compute their order and
tree-width. To create the final order for
the root graph, start from the end by
adding separators then graph orders
(when they verify the previous proper-
ties and are computed directly). For ex-
ample, if you had a graph G, its sepa-
rator is S and it splits G in G1 and G2,
at this point the order is [order(G1),
order(G2), S] (I write S but in reality
we append all of its nodes and order
doesn’t matter inside S, the only im-
portant thing is that S is after G1 and
G2). Now let us start to nest things
with G1 and suppose that G2 can’t con-
tinue because it is complete. G1 will be
split using S1 and its sub graphs are
G11 and G12. At this point the order is
the following: [order(G11),order(G12),
S1,order(G2), S]. For the sake of sim-
plicity, we will suppose that G11 and
G12 are also complete to end the
example here. Just one note here,
our order [order(G11),order(G12),
S1,order(G2), S] and this one [or-
der(G11),order(G12),order(G2), S1 S]
lead to the same tree-width so picking
one or another depends on your choice
when thinking about implementation.
Another way to think about this ap-
proach is more visual and involve a tree
like this. Therefore, the choice depends
on how you want to iterate through this
tree.

For performances reasons we will
try an iterative version even if recursion
seems nice here. During the main loop
we try to maintain the count of tree-
width by counting cell’s size with one
formula from this other paper3 from
the same authors. Cell here is a data
structure define in the paper, it has two
sets of nodes: interior and boundary. Its
size is define as |interior|+ |boundary|.
Knowing that we can condense the dis-
section layer in this pseudo code:

Separator from flow-cutter

This layer simply calls the flow-cutter
core algorithm with random inputs sev-
eral times, and collect all those cuts in
a collection. In practice we use multi-
threading with the Threads.@threads
macro from Julia to parallelise this part.
After what we removed dominated cuts
and select the one with min expansion
before converting it to separator and
returning it. This can be write in this
pseudo code:
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Flow-Cutter core

Now it’s time to explore how the flow-
cutter algorithm works and how it
chooses cuts. We will use the idea of
flows on undirected graphs so we dou-
ble each edge to 2 arcs in both direc-
tions. All the capacities will be 1 be-
cause we don’t have capacities in the
input graph we use and also because it
has a clever simplification with residual
graphs that we no more need to com-
pute. The algorithm will manage 4 sets
of nodes S, T, SR and TR which mean
sources, target, source-reachable and
target-reachable. The idea is to solve
the max flow problem, find the min cut
and then add source (if source reach-
able size is too small) or target (if target
reachable size is too small) in order to
enhance the cut’s balance by resolving
the max flow problem and repeating the
process several times to get more and
more balanced cuts. The pseudo code
given in the paper is the following:

Practical results

Here is a speed-up graph obtained
by applying multiple threads on the
whole algorithm to the Sycamore 53
20 graph (≈ 2000 nodes and ≈ 4000
edges) on one node of Kay, a super com-
puter from ICHEC, with different num-
ber of threads. I measured the average
execution time on 20 calls for each num-
ber of threads.

As the single threaded version take
around 4.5 sec on Kay, the optimal 9-
threads version should be around 1 sec.
Therefore the performances of the al-
gorithm are good but not as good as
expected. Furthermore comparing our
implementation to the one provided by
the authors in C++, our gives different
results of tree-width way to high.

We also implemented an MPI wrap-
per for both algorithms to compare
with the authors code. Concerning flow-
cutter, the wrapper will start different
processes running the algorithm in a
loop for a given amount of time. Each
call has a different seed and each pro-
cess gets the best tree-width and the
best-order we find. In the end processes
compare their results and select the
best pair of orders/tree-widths. On the
Sycamore 53 20 graph, according to
the the implementation provided by
the authors of the paper, we should
get a tree-width around 57 for 30s of
computation. Within the same amount
of time, (8 processes, 9 threads on 2
nodes of Kay) we reach 94, which is
quite far from the expected value. Wait-
ing longer doesn’t seem to help a lot,
for 2min so 4 times longer we get 92
so a minor 5%(= (94−92)

(94−57)) improvement.
We suspect this to happen because we
choose to keep an undirected graph in
the core flow-cutter part and not to use
the expanded graph.

The expanded graph is a used to
map an undirected graph to a directed
one. If we use an expanded graph, the
forward grow and backward grow will
be different – which is why it leads to
our unexpected behaviour. We suspect
the issue to be related to the compu-
tation of the the tree-width during the
main loop in the dissection. We encoun-
tered problems in the implementation
regarding values returning with a dis-
tance of 1 to the value expected by

a posterior computing the tree-width
from the order. This difference is mainly
due to a formula used to compute size
of close cells. This is detailed in this
paper,3 which seems true but actually is
false in some specific counter examples.
Strasser states, the formula is incorrect
only when a sub-optimal separator is
chosen. A way to fix this is to create
an expanded graph before calling flow-
cutter and change the growing method
to differentiate forward and backward.

Conclusion

I conclusion, this project ended with
mixed results. In terms of pure perfor-
mances and code quality, we think the
project has been very enjoyable. How-
ever, it was disappointing to not have
enough time to find the lowest tree-
width. SoHPC was an amazing experi-
ence where we learned a lot about MPI,
multi-threading, Julia and improved our
English - we would love to be a part of
it again.
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Hpc implementation of the Earth Observation(EO)
data and optimization of the workflow of Graph
Processing Tool(GPT)

Working with
geospatial
data on HPC
Rabia Özdoğan

Earth observation data can include many
layers, which refer to resolutions. High
spatial, spectral, and temporal resolutions
have significantly increased data volumes,
and analyzing the data requires
high-performance computing.

We know the effects of the
industrial revolution and
the importance of the in-
formation it provides us.

So much so that we even determined
the historical periods of this revolution.
What would the HPC implementation
era look like if we divided the impor-
tance of geospatial data and how it
changes the world with the information
it provides?

When this implementation era
brings together applications such as arti-
ficial intelligence and machine learning,
how do we analyze the world’s informa-
tion?

According to European Space
Agency (ESA) annual report 2020,
in the Sentinel family, a total of
50,964,670 products had been down-
loaded by users since the start of data
access operations, with a total data
volume of 41.35 PB. Over 500 EO
satellites have been launched in the
last half-century. With the metadata
provided by these satellites, we can
instantly observe the changes in the
world.

Figure 1: Layers of the geospatial data

Working with GIS data brings meta-
data even with the specific time and
place. Handling this Metadata requires
the processing of multiple stages. MPI is
designed to allow the execution of mul-
tiple processes on different processors.
Multiple processes work concurrently
to communicate and collaborate with

each other. There are many satellites
for working earth observation. In our
case, we use sentinel 2 which provide
us optical observation about both land
and water.

Workflow

Before working with GIS data, we
learned to process the data we obtained
as open source from Esa (European
space agency). This preliminary step
was done with Snap software and al-
lowed us to obtain your XML file. We
tried to get this file again while working
in the terminal of the supercomputers
provided by The Irish Center for High-
End Computing (ICHEC). Briefly, the
process was repeated in two stages as
usual computing and high-performance
computing.

• Pre-processing;
*Spectral selection,
*Spatial selection

• Processing with Graph Processing
Tool (GPT)

• Installing Snap Software and GPT
on HPC.

52



• working in the terminal of
the supercomputers provided
by The Irish Center for High-
End Computing.

• Using XML file while working on
HPC.

The process

We determined our work area with the
Spatial Resolution and Spectral Bands
selections that we applied to this meta-
data.Even this process can take time on
our normal computers.

We can do these operations via com-
mand Shell or the Graph Processing
Tool (GPT) with python that we can run
jointly on Windows or Unix systems. So
we can do these processes using gpt and
python,with the HPC provided by The
Irish Center for High-End Computing
(ICHEC) at NUI Galway, without going
into snap software of our computers.

Although we work in a specific re-
gion when dealing with GIS data, more
than one layer is used in studies. If there
is a layer, spatial or non-spatial machine
learning can be applied to it. But in the
analysis of GIS data for the multiple lay-
ers used in this process in our normal
computer, it lasts too long for a very
small region.

So with XML file of that metadata,
we can do these steps on the High-
Performance Computing (HPC) termi-
nal. With this implementation, the pro-
cessing of the metadata is getting signif-
icantly faster.

We can obtain the subgroup we cre-
ated from these by entering the specific
algorithmic calculation. Necessary cor-
rections can be made for the analysis of
the image. In our case, clear cloudless
data was required for the detection of
algae, so we applied also atmospheric
correction from the beginning.

Figure 2: After first correction
Finding true keys

All layers were combined in a subgroup
to refer to a certain height. Necessary
calculations in our case ndvi index and
channel selections are used in determin-
ing the algal region were made.
Corrections are like finding true keys
that belong to different doors. The se-
lected study area was Malahide which
is situated approximately 18 km north-
east of Dublin city. There are many cor-
rections and calculations of the band
selection.
First, the atmospheric correction was
needed for a clear vision of the area.
Then two necessary bands, red (B4),
and near-infrared (B8) were selected.

Figure 3: Equation of the normalized
difference vegetation index

Because near-infrared light is strongly
reflected, and red light is absorbed by
vegetation; the vegetation index is good
for quantifying the amount of vegeta-
tion(Algal area) in the sea.1

Figure 4: vegetation classes and NDVI
value comparison

Figure 5: after NDVI calculations

Figure 6: Before last step

More hands to find true keys
This work can be thought of as a key bas-
ket for many doors. Through the litera-
ture search, we learned which doors to
pass through, but what about the keys?

It can be thought of as the part
where the necessary calculations are
made by selecting a specific region and
properties of the metadata and map-
ping them to the keys. Using High-
performance computing, we still have to
calculate the pairing phase of these keys.
Again, there may be human-induced
calculation errors. However, the stage
of finding the key made the process of
each calculation stage is faster, brings
us to the last door a lot faster.

Acknowledgements
Special thanks to Sita Karki who opens
to new doors that I didn’t know.
Award statement
I don’t think that I deserve a reward
for blog posting and doing other jobs
aside from searching related articles
and implementation. This particular
area taught me that work hard and try
to explore more about an inspirational
thing. When I learned more things, my
mind occupied more with that. I always
wondered that when I reach my reach
my really loved topic, how it would
change me. I want to thank you all for
your understanding and making me re-
alize myself more)

Reference
1 Hashim, H., Abd Latif, Z., and Adnan, N. A.: UR-

BAN VEGETATION CLASSIFICATION WITH NDVI
THRESHOLD VALUE METHOD WITH VERY HIGH
RESOLUTION (VHR) PLEIADES IMAGERY, Int.
Arch. Photogramm. Remote Sens. Spatial Inf. Sci.,
XLII-4/W16, 237–240, https://doi.org/10.5194/isprs-
archives-XLII-4-W16-237-2019, 2019.

PRACE SoHPCProject Title
Parallelizing Earth Observation
Workflow

PRACE SoHPCSite
Irish Center for High-End
Computing(ICHEC), Galway,Irland

PRACE SoHPCAuthor
Rabia Özdoğan, Izmir Institute of
Technology, Turkey

PRACE SoHPCMentor
Sita Karki, ICHEC, Ireland

PRACE SoHPCSoftware applied
Sentinel Application Platform (SNAP)

PRACE SoHPCMore Information
http://https://step.esa.int

PRACE SoHPCProject ID
2117

Rabia
Özdogan

53



Using VQE and QCT methods to simulate the
dynamics of a hydrogen molecule

Molecular
Dynamics on
Quantum
Computers
By Carola Ciaramelletti and Jenay Patel

The aim of this project is to find the ground
state energy of a hydrogen system, using
a variational quantum eigensolver (VQE)
together with the quasi-classical
trajectories (QCT) method, to simulate
molecular dynamics. These
quantum-classical hybrid algorithms are
used to solve for the minimum eigenvalues
of the Hamiltonian matrix, in the
Schrödinger equation. The end product is
a molecular dynamic simulation of the
hydrogen molecule, written in IBM’s Qiskit.

Quantum computing is one of
today’s scientific hot topics,
with the potential to vastly
improve our computation ca-

pacity in certain applications, due to its
use of quantum-bits, offering superpo-
sitions and much faster computations.
According to IBM, “quantum comput-
ing harnesses the phenomena of quan-
tum mechanics, to deliver a huge leap
forward in computation, to solve cer-
tain problems.” IBM is a world leader in
the quantum field, and have developed
an open-source software called Qiskit,
which we have used in the following

research, to work with IBM Q quantum
processors.

Figure 1: Bloch Sphere.

One of the most promising applica-
tions of quantum computing is used in
chemistry, to solve classically intractable
electronic structure problems. This in
turn helps us to understand reaction
rates better, and thus provides scope for
drug discovery. It means that we can
make predictions in quantum chemistry,
without physically going into the lab
and testing out different reactions. How-
ever, these simulations become increas-
ingly more difficult as the molecules get
larger and more complex. Right now,
we are at the infancy stage of quan-
tum computing, so you can only imag-
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ine the ground-breaking discoveries we
will make when its full potential is un-
locked.

Overview

As mentioned, the project is split into
two main parts: VQE, and the Quasi-
classical trajectories method (QCT).
The aim is to join these two parts into
one molecular dynamics simulation to
get an accurate solution to the Hamilto-
nian.

The Hamiltonian acts on a wave
function, and can be difficult to solve as
it requires excessive computation. How-
ever, using the Born-Oppenheimer ap-
proximation, we can split the Hamilto-
nian into two parts and solve them sep-
arately. The separation is done based
on the assumption that the nuclei is
much heavier in mass than electrons
therefore, the position of the nuclei is
assumed fixed as they do not feel re-
pulsion or attraction forces as much.
In turn, when representing the quan-
tum mechanical energy of the system,
the nuclear kinetic energy term can
be neglected. However, the approx-
imation still takes into account the
changes in position of the nuclei to de-
termine the electronic energy. Solving
the Schrödinger equation for the elec-
tronic part, leads to the rotational dy-
namics of the molecule, while solving
the nuclear part leads to the vibration
of the molecule. Together, this gives us
a molecular rotovibrational spectrum
for the hydrogen molecule we are mod-
elling, shown by the dynamic simula-
tions.

Figure 2: VQE algorithm visual schematic.

The VQE algorithm works by per-
forming energy measurements, using
quantum simulators or real quantum
hardware. These energy values are the
sum of the measurements of the ex-
pectation values, of each term that
contributes to the Hamiltonian. The
computed energy is fine-tuned using a
classical optimiser (either COBYLA or
SLSQP), to obtain a new set of varia-
tional parameters. These are then used

to prepare a new state on the sim-
ulator or hardware. This process re-
peats until convergence. In our situa-
tion, we use a general approach called
the quasi-classical trajectories method
(QCT), which combines the VQE with
the equations of motion

{
dRk

dt = Pk

Mk
;

dPk

dt = ~Fk

with
~Fk = −∇kEα(R)

and

E(R) =⇒ VQE energy,

in order to study molecular dynamics.

Methods

In our work, two different environ-
ments were compared for the calcu-
lation of the VQE curve, such as stat-
evector simulator, which represents the
ideal curve, and qasm simulator, as
well as two different optimizers, such
as COBYLA (constrained optimization
by linear approximation) and SLSQP
(sequential least squares programming),
and two different variational forms
for the ansatz: UCCSD, that is Unitary
Coupled-Cluster Single and Double Exci-
tation, and EfficientSU2. UCCSD is
constructed by applying a single and
double electron excitation operator ex-
ponentiated to an initial state, com-
monly chosen to be the Hartree Fock
mean field wave function, while Effi-
cientSU2 is a circuit consists of layers
of single qubit operations spanned by
SU(2) and CX entanglements.

Figure 3: statevector simulator.

Figure 4: qasm simulator, COBYLA opti-
mizer, UCCSD var form.

Moreover, the run was performed
on two different processors, such as Fal-
con and Canary, to which the ibmq_lima
and ibmq_armonk devices correspond.
The comparison between the two dif-
ferent devices is respect to the ideal
model. Were compared the curves ob-
tained with the noise-model referred to
the processors mentioned, and with the
noise-mitigations technique. It was also
chosen to compare the two different
optimizers for each of the variational
forms for the run done on the real quan-
tum computer.
Ultimately, it was chosen to compare
the various techniques with a single de-
vice, which is ibmq_armonk, choosing
UCCSD as variational form and SPSA as
the optimizer, that is a descent method
capable of finding global minima, shar-
ing this property with other methods as
simulated annealing. Its main feature is
the gradient approximation, which re-
quires only two measurements of the
objective function, regardless of the di-
mension of the optimization problem.
It can be used in the presence of noise,
and it is therefore indicated in situations
involving measurement uncertainty on
a quantum computation when finding a
minimum.1

Molecular dynamics simulations
were obtained by solving the system
of equations of motion with the iter-
ative calculation of the VQE potential,
through the Runge-Kutta method. Runs
were performed using the environment
statevector simulator and with UCCSD
as variational form and SPSA as opti-
mizer, which proved useful for converg-
ing with less than 200 iterations.
The comparison was made for different
initial conditions, where both the vibra-
tions (in which both atoms posses zero
momentum) and rotovibrations (which
include momentum of both atoms) of
the molecule can be observed.

Results

Below are shown the graphs of the plots
of the various VQE comparisons, and
some images taken from a rotovibra-
tional simulation.

Figure 5: statevector vs qasm simulator.
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Figure 6: Comparison between Falcon and Canary processors performed respect to the ideal model, where UCCSD variational form is on
top, and SU2 variational form is below. The graph on the right shows the run only on Canary, with SLSQP optimizer and UCCSD as
variational form, showing the data acquired with and without noise and noise mitigation.

Figure 7: Some images of the dynamics simulation of H2, calculated with the following initial conditions: r1 = (0, 0, 0), p1 = (0, 0, 0),
r2 = (1, 0.8, 0), p2 = (−0.3, 0, 0).

Conclusion

From the analysis of the collected data
we can conclude that the comparisons
show that the UCCSD variational form
is better than EfficientSU2, which is
much more difficult to optimize. Also,
the COBYLA Optimizer is more efficient
than SLSQP, but the SPSA optimization
method is what best helps in conver-
gence of results. The curve given by the
noise-mitigation technique follows very
well the data obtained from the run on
real QC, reproducing it almost perfectly
for both the processors. Lastly, the simu-
lations show a feasibility of combination
of method of quasi-classical trajectories
with VQE.

Future outlook

This project was inspired by a very hot-
topic in nowadays chemistry - mole-
cural dynamics performed on hybrid
quantum-classical architectures. Thus,
we hope to improve on it by further
analysis of the problems and their sub-
stantial components like a choice of ef-
ficient optimizers and variational forms.

We also hope to continue in that direc-
tion, making more robust conclusions
from our computations and possibly fo-
cusing also on optimization of quantum
circuit properties (e.g. their depth). Last
but not least, we aim to simulate the
dynamical system with additional (miti-
gated) noise as the very next step.
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Quantum algorithms and their applications

Breaking
the Bounds
using
quantum
algorithms
Lucı́a Absalom Bautista
Spyridon-Andreas Siskos

In this project we have focused on
studying quantum computer theory and
quantum algorithms such as Grover,
Deutsch-Jozsa and Shor, implementing
the last one to factorize numbers, which
can be used to break the most famous
encryption algorithms, RSA.

Quantum computing is a well-
established research area on
the international scientific
scene.

Anyone who has heard of it knows
about its potential and the revolution
that it will bring in the coming years.
In our project we start from scratch by
defining the concept of qubit, the quan-
tum version of the classic binary bit
physically realized with a two-state de-
vice. If you have one qubit and you ask
yourself: "What can I do with it?". The
answer is clear, you can only change its
state or you can measure it. But what
if we had two qubits? Then we could
do all of the above as well as create
qubits with the special feature of being
entangled. This means that if I measure

one qubit, I don’t need to measure the
other, as its result is the same or oppo-
site (it depends on the type of entangle-
ment used). This amazing phenomenon
is harnessed by quantum teleportation,
which is the basis for quantum cryptog-
raphy.

Quantum computing basics

Qubits

The two basics states of qubits are |0〉
and |1〉 corresponding to the 0 and 1 of
the classic bit. But in addition, qubits
can be in a state of quantum super-
position combining these two states
(α|0〉+β|1〉). An intuitive graphical rep-
resentation of a qubit can be achieved

using the Bloch sphere, shown in Fig.
1. Apart from the states |0〉, |1〉, there
are other possible general states of type
|Ψ〉.

Figure 1: The Bloch sphere
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Gates

Quantum computing uses different
properties of quantum states to perform
computation:

• Superposition: is one of the fun-
damental principles of quantum
mechanics and it can be seen as a
linear combination of all quantum
states.

• Entanglement: A pair of qubits
is entangled when the quantum
state of each particle cannot be
described independently of the
quantum state of the other par-
ticle. In other words, the outcome
of the measurement of one qubit
will always affect the measure-
ment of the other qubit.

How do we achieve these states? Using
quantum gates whose operations with
one or more qubits can be described
by linear algebra. As quantum theory is
unitary, quantum gates are represented
by unitary matrices.

Using the concept of the Bloch
Sphere, we can visualise the gates as
the composition of rotations around the
X, Y and Z axes. The most commonly
used gates are Hadamard gate, Paulis
X, Y and Z gates and CNOT gate. Using
linear algebra, the matrix describe for

an X gate would be:
(

0 1
1 0

)
.

Figure 2: Representation of Hadamard, X,
and CNOT gate

Quantum circuits

Quantum circuits are an ordered se-
quence of quantum gates and measure-
ments, all of which may be conditioned
on and use data from the real-time clas-
sical computation. They can be repre-
sented graphically as shown for exam-
ple in Fig. 3.

Figure 3: The quantum teleportation circuit

Deutsch-Jozsa algorithm

It was the first example of a quantum
algorithm that performs better than the
best classical algorithm.

Problem: We are given a unknown
Boolean function f i.e. given a string of
bits it returns either 0 or 1:

f({x0, x1, ...})→ 0 or 1

where xn is 0 or 1 and this function is
either balanced or constant, meaning
that a constant function will return 0’s
or 1’s for all possible inputs and a bal-
anced function will have 0’s for half of
the inputs and 1’s for the other half. Is
our function f balanced or not?

Solution: In a classical computer in
the best case scenario we would need
at least 2 queries to the oracle to deter-
mine whether the function is balanced
or not. In the worst case we need half
the number of inputs plus one. The
power of quantum computation lies in
the fact that with a single query to the
oracle we are able to know if our func-
tion is balanced or not. Our function
f(x) implemented in the oracle is de-
scribed as follows

f : |x〉|y〉 → |x〉|y ⊕ f(x)〉

where ⊕ is addition modulo 2 (XOR).
So let’s mathematically derive how

the algorithm circuit (Fig.4) works!
1. We get two quantum registers,

one with n qubits initialized to |0〉 and
a single qubit initialized to |1〉.

|ψ0〉 = |0〉⊕n|1〉

2. We apply a Hadamard gate to
each state to create superposition state.

|ψ1〉 =
1√

2n+1

2n−1∑

x=0

|x〉(|0〉 − |1〉)

3. We apply the quantum oracle.

|ψ2〉 =
1√

2n+1

2n−1∑

x=0

(−1)f(x)|x〉(|0〉−|1〉)

4. We then apply a Hadamard gate
to each qubit in the first register.

|ψ3〉 =
1

2n

2n−1∑

x=0

(−1)f(x)

[
2n−1∑

y=0

(−1)x·y|y〉
]

=
1

2n

2n−1∑

x=0

[
2n−1∑

y=0

(−1)f(x)(−1)x·y
]
|y〉

where x·y = x0y0⊕x1y1⊕...⊕xn−1yn−1

5. From the last formula it can be
seen that the probability of measuring
|0〉⊕n is

∣∣∣∣∣
1

2n

2n−1∑

x=0

(−1)f(x)

∣∣∣∣∣

2

so if f is constant, then this probabil-
ity is 1. But if f is balanced, then the
probability of measuring |0〉⊕n is 0.

Hence, if we measure all zeros, we
can say with certainty that f is constant.

Figure 4: Deutsch-Jozsa algorithm circuit

Grover’s algorithm

Grover’s searching algorithm shows us
the superior speed searching of quan-
tum algorithms in database which can
be speeded up quadratically comparing
it to the classical algorithm.

Problem: We are given a list of N
items and we want to search for one
special item, let’s call it a. Our task is to
find the item a.

Solution: To find item in an unstruc-
tured database with a classical algo-
rithm, we would have to check on aver-
age N/2 times and in the worst case sce-
nario we would have to check N times.
With quantum computers and Grover’s
algorithms we can find the solution with
only

√
N steps.

Grover’s algorithm solves Oracles
that add a negative phase to the solu-
tion states:

Uw|x〉 =

{
|x〉 if x 6= a

−|x〉 if x = a

So a way of implementing this Ora-
cle would be

Uw|x〉 = (−1)f(x)|x〉
If we want to find the item a in our

database, we have to construct the ora-
cle in such a way to give us as a return
value the item that we want to find. To
be more specific, when the state of the
item a comes into the oracle, we want
to flip its amplitude value in the nega-
tive phase to the solution states. With
this method, we are going to have some
solutions but not only the optimum.
In order to get the optimum solution,
we have to apply the Grover’s diffusion
operator that it will help us determine
the final solution.
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Shor’s algorithm and number
factorization: breaking RSA.

Introduction

Shor’s Algorithm is one of the best
known quantum algorithms, because it
can be used for fast number factoriza-
tion. It’s an hybrid algorithm meaning
that part of it can be executed in a clas-
sical computer and another one in a
quantum computer. In this way, we take
advantage of both classical and quan-
tum computers.
So why is Shor’s algorithm so powerful?

The best algorithm for number fac-
torization in classical computers be-
longs in NP class, but Shor’s Algorithm
O(b3) in complexity time and O(b) in
space complexity, which means that it
can solve our problem in polynomial
time.

One of its well-known applications
is in cryptography and how it can be
used to break the RSA encryption, that
it is most common cryptographic algo-
rithm that it is used all over the world.

In this section we are going to study
number factorization for numbers, 35
and 91. The solutions provided for num-
ber 35 was run in a real quantum com-
puter, but the one provided for number
91 was run in a simulator because it re-
quires using a number of qubits that IBM
free quantum computer doesn’t support.

Explanation

Problem: Given an integer number
N , we want to find another integer p
between 1 and N that divides N .

Solution:

1. Choose an integer number a so,
that 1 < a < N .

2. Compute gcd(a,N) (this can be
done using Euclid’s algorithm).

3. If gcd(a,N) 6= 1, then a is a non
trivial factor of N . Finish.

4. If not use the period-finder quan-
tum program to find r, the period
of the following function.

f(x) = ax mod N

i.e. the smallest integer r for
which

f(x+ r) = f(x)

5. If r is odd go to step 1

6. If a(r/2) ≡ −1 mod N
go to step 1

7. The factors of N are

gcd(a(r/2) ± 1, N)

Finish.

Let’s start with number 35. For that we
choose a = 6. We use the quantum al-
gorithm to compute the period r.

Shor’s algorithm for
factorization of number 35

The circuit described below finds the pe-
riod, r, that is needed in step 4 of the
general factorization algorithm. For this
we use 5 qubits.

1. The first step is to apply
Hadamard gate (H), to the first
2 qubits, in order to have them
in superposition and a XOR gate
to the third one in order to use
it in the two custom functions of
modulo that we built.

2. Then we used the 2 custom func-
tions(oracles) that we built for
61 mod 35 and 62 mod 35, taking
as an input the first and the sec-
ond qubit which are in superposi-
tion for each case.

3. The last step of the algorithm is to
run an Inverse Quantum Fourier
Transform (QFT†) on the 2 first
qubits and then measure them.

Figure 5: Period-finder circuit for N = 35,
a = 6.

The Oracle described in step 2 works
with three qubits and in a first step it
changes qubits q0 and q2, then we apply
an X gate in qubit q1.

Figure 6: 61 mod 35 Oracle

Measured Results

Figure 7: Results obtained by running on
IBM quantum computer imbq_quito.

The value whose probability stands out
apart from 0 is 10(2). We can take this
as the r period because the search pe-
riod r is calculated as the ratio of the to-
tal number of possible outcomes, which
in this case is 4, and the smallest non-
zero outcome, which in this case is 2.

Also, this period r can be deter-
mined as the number of peaks of the
probability histogram, which, as can be
seen, is again the number 2. Outputs
01 and 11 with smaller probabilities are
due to the inaccuracy of the quantum
computer used, so we neglect them. If
we used a simulator their probability
would be zero.

Ending the algorithm

For that we follow the steps 5, 6 and 7:

Step 5

r = 2, so we continue to step 6.

Step 6

62/2 ≡ −1 mod 35

The equation above doesn’t verify so
we continue to step 7.

Step 7

We calculate the factors:

• gcd(6 + 1, 35) = gcd(7, 35) = 7

• gcd(6− 1, 35) = gcd(5, 25) = 5

Our solutions are numbers 7 and 5
and we can see that 7× 5 = 35 so ...

We have succeeded!
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Figure 8: Results obtained by running on IBM quantum simulator imbq_qasm_simulator.

Shor’s algorithm for
factorization of number 91

This algorithm only differs from the pre-
vious one in the number of qubits and
the oracles. In figures 10 and 9 we can
see how we implemented the circuit and
the oracle.

The value of the variable a should
be chosen as small as possible, so a = 4
was the best choice. Fig. 9 shows a cir-
cuit simulating the 4x mod 91 function.

When used repeatedly, this circuit
generates successively the values 4, 16,
64, 74, 23, 1, 4, 16, 64, 74, 23, 1, 4, 16,
... etc., which corresponds exactly to the
function of 4x mod 91. The truth table
of this circuit is shown in 1.

Table 1: 4x mod 91 function truth table.

Input Output

0000001 (1) 0000100 (4)
0000100 (4) 0010000 (16)
0010000 (16) 1000000 (64)
1000000 (64) 1001010 (74)
1001010 (74) 0010111 (23)
0010111 (23) 0000001 (1)

Figure 9: 41 mod 91 Oracle.

Figure 10: Period-finder for N = 91, a = 4.

Measured results

From histogram in Fig. 8 we can see
clearly that the highest probability value
have 6 peaks (0, 11, 21, 32, 43, and 53),
so the period r = 6.

The period r can also be calculated
as the ratio of the total number of pos-
sible outcomes, which in this case is
64, and the smallest non-zero outcome,
which in this case is 11. However, in
some cases (like this one) an integer
number may not come out. Then it is
sufficient to round the result and make
sure that this rounded value matches
the number of histogram peaks.

Ending the algorithm

For that we follow the steps 5, 6 and 7:

Step 5

Looking at the peaks of the his-
togram we see r = 6.

Step 6

44/2 ≡ 64 ≡ −1 mod 91

The equation above doesn’t verify so
we continue to step 7.

Step 7

We calculate the factors:

• gcd(43+1, 91) = gcd(65, 91) = 13

• gcd(43 − 1, 91) = gcd(63, 91) = 7

Our solutions are numbers 13 and 7
and we can see that 13× 7 = 91 so...

We have succeeded!

Conclusions

In this summer internship we have ex-
perienced building quantum circuits of
concrete examples, running them on
simulators, as well as on real quantum
computers!

We have verified that the real prac-
tical use of quantum computers is cur-
rently hampered mainly by their inac-
curacy and the small number of qubits.
If this obstacle is removed in the future,
the quantum computers will play a key
role in high-performance computing.
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Implementation of a Carbon nanostructures
simulation library for the Hubbard model.

Building a
CNS software
Marc Túnica
This project aims to design and develop a
software to model carbon nanostructures.
Particularly, a simulation of the Hubbard
Model applied to carbon nanostructures.

Diamond Carbon structure.

CNS simulation in a nutshell

THe carbon nanostructures
(CNS) simulation is the simu-
lation and modelling of carbon
nanostructured systems, their

properties and behaviour in particu-
lar conditions. Roughly speaking, we
can define a carbon nanostructure as a
structure, composed exclusively by car-
bon atoms, in which at least one of the
three spatial dimensions is of the or-
der of hundred or ten nanometers (re-
member that 1nm = 10−9m). There
are several types of carbon nanostruc-
tures, with different shapes, organisa-
tion of the atoms and, hence, an enor-
mous variety of properties.2 The most
familiar is the graphene (figure 1a).
The graphene is a bi-dimensional layer
(a layer with the thickness of an atom)
arranged in a honeycomb lattice. It
is a material characterised by its effi-
cient thermal and electrical conductiv-
ity. Also is flexible and hard, so has
an infinite number of possible applica-
tions. We shall mention carbon nan-
otubes (CNT) (figure 1b). This partic-
ular nanostructure consists of a carbon
atoms honeycomb lattice which is en-
rolled forming a tube with a small di-

ameter (about ten or hundred nanome-
ters). Another important carbon nanos-
tructure is the fullerene, that can be
described as the typical soccer ball (fig-
ure 1c).
The connection between High Perfor-
mance Computing (HPC) and simula-
tion CNS becomes apparent consider-
ing some details about the way such a
simulation is implemented. Key opera-
tions come from the branch of linear
algebra (matrix-matrix, matrix-vector
operations, inversion of matrices, de-
terminants, and many more) in large
dimensions (greater than 100) which
can utilise the continuously increasing
advances in HPC related fields. This
project aims to implement a CNS sim-
ulation library with CPU, GPU, multi-
CPU and multi-GPU support. Specifi-
cally, we want to base our framework
in the Hubbard model, that is a simple
theoretical model which describes the
interaction between particles in a lat-
tice. The main objective is to design a
software with some linear algebraic op-
erations that can operate with fermion
matrices and time vectors. A fermion
matrix is an operator which contains
the information of a fermion system,

that is a physical system formed by
fermions (common matter particles).
According to the Hubbard model, we
can describe a CNS system using this
sort of matrices. Since this is an ed-
ucational and informative report, we
will not provide an extensive explana-
tion about fermion matrices and the
Hubbard Model, however, the reader
can find some useful information in nu-
merous references.3,4 In our model, we
also apply the discretization of space-
time. The time, for our purpose, is not
continuous. It is divided in Nt parts.
The distance between each time-step
is δt (small enough to be a good ap-
proximation). Then, our time encom-
passes t = {0, 0 + δt..., Nt − δt,Nt}.
Dropping the dimensions as all com-
putations are done without units,
we store the information in a Nt-
dimensional time-vector. Hence, t →
t = {0, 1, ...Nt − 1, Nt}. The spatial di-
rections are naturally discretized by the
ion grid, with each point position cor-
responds to the position of a particle.
Then, the spatial volume corresponds
to the number of carbon atoms of our
system.
Let’s introduce a few notation based on

(a) Graphene (b) Nanotube (c) Fullerene

Figure 1: Most familiar nanostructures images. Plotted by the VMD software.1
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Block Function Input Output

Tensor
class1

Operator *
Tensor and a number Tensor multiplied by the number.
Two tensors Element wise product of the two tensors.

Operator[] A succession of integer numbers (indexes). The sub-tensor or element of the index given.
Shape A integer number (i). The i-dimension size.
Exponential A tensor. The exponential of the tensor.
Expand A tensor and a dimension (dim). A tensor with an extra dimension of value dim.
Shift A tensor, an integer (positions) and a number

(boundary conditions).
The tensor shifting a number (positions) of positions and
multiplying periodic elements by a boundary condition.

Linear
Algebra1

Mat.-vec.
product

Two Tensors. A tensor equals to the product of the inputs.

Fermion
Matrix

BF A tensor (e(κ̃−µ̃)) and a Time-Tensor (φ). A Time-tensor equals Bt′eiφ × e(κ̃−µ̃).
Exp.-disc. A tensor (e(κ̃−µ̃)) and two Time-Tensors (φ, ψ). A Time-Tensor solution of (4).

Table 1: Table some of the relevant functions implemented in the library. Mark 1: Symmetric function for Time-Tensor.

the references Wynen et al.3 and the
isle documentation.4 The fermionic ac-
tion is an abstract quantity which de-
scribes the overall physical system of
the fermions.5 It can be described by
the formula

S =− log detM (φ, κ̃, µ̃)

·MT (−φ, σκ̃κ̃,−µ̃) ,
(1)

where κ̃ is the hopping matrix,6 µ̃ is
the chemical potential and σκ̃ = ±1.
M is a matrix (fermion matrix) and
MT denotes the transposed matrix. M ,
in our implementation,

M (φ, κ̃, µ̃)x′t′,xt = δx′,xδt′,t

− Bt′Ft′ [φ, κ̃, µ̃]x′,x δt′,(t+1),
(2)

where Bt′ = 1 if t 6= 0 and −1 if
t = 0. This variable lets us to en-
code the anti-periodic boundary condi-
tion. δx′,x and δt,t′+1 are Dirac’s deltas.
Ft′ [φ, κ̃, µ̃]x′,x =

(
eκ̃−µ̃

)
x′,x

eiφxt . Here,[
eκ̃−µ̃

]
x′,x

and eiφxt are a Nx × Nx
and a Nx × Nt matrix respectively. We
suppose that Nx is the spatial volume
(number of carbon atoms) and Nt the
temporal dimension. Summing up, the
problem is reduced to calculating the
expression

Gx′t′,xt =
[
eκ̃−µ̃

]
x′,x

eiφxtδt′,(t+1). (3)

Imagine another situation. We want to
multiply expression (2) by a tensor ψxt

of dimension Nx × Nt. Note that the
word tensor does not refer the math-
ematical object but simply to a multi-
dimensional matrix. Then,

Mψxt =

Nx,Nt∑

x=0,t=0

δx′,xδt′,tψ
xt

− Bt′Gt′x′,txψ
xt.

(4)

Thus, because of the Dirac’s delta
δt′,(t+1), the most complex expression
to evaluate is

Nt∑

t=1

Gx′t′,xtψ
xt = Gx′t′,xtψ

xt, (5)

and this is one of our principal goals.

Structure of the library
But how is our library organised?
In C++, a class is a block which
holds its own data variables and func-
tions used to manipulate these vari-
ables, which can be accessed and
used by creating an instance of that
class.7 Our software, written in C++
based on the torch library,8 imple-
ments two classes (so two distinct kind
of tensors). The first one, the Tensor
class, is only a spatial tensor (with-
out time variable). The other one is
the Time-Tensor class. In this latter
case, an extra dimension (discretiza-
tion of time) is stored. Both classes
have the same functions and a vari-
able (from now namely data) that is a
torch :: tensor. All the information is
stored in data. In addition, we imple-
ment also more functions distributed
in two namespaces, termed Linear Al-
gebra and Fermion Matrix. A names-
pace is a declarative region that pro-
vides a scope to the identifiers (func-
tion, variables, ...) inside it.9 The "Lin-
ear Algebra" namespace incorporates
some functions related to matrix linear
algebra operations. On figure 1, most
relevant functions are explained. Let’s
talk about some definitions that are in-
teresting to understand the algorithms.

• Given a tensor, we multiply it by
a scalar if we multiply each ele-
ment of the tensor by the scalar.

• The element wise product of
two tensors is the multiplication
of each element of the tensor by
the element in the same position
of the other one (of course, it is
mandatory that both tensors have
the same dimension).

• The element wise exponential
of a tensor is the exponential of
each element of the tensor.

Within all the functions implemented
by the two classes, the most interest-

ing is the called shift function. The
shift function allows the translation of
all the element of a tensor. For exam-
ple, let ψ be a n-dimensional vector
ψ = (ψ1, ...ψn), if we shift one posi-
tion, we obtain ψ = (ψn, ψ1, ..., ψn−1).
This function is motivated by the com-
putation of expression (5). Computa-
tionally, We can obtain ψx,(t+1) apply-
ing the shift function.
Regarding "Fermion Matrix" names-
pace, "BF" function is the responsible
to calculate expression (3). The input
must be two matrices (

[
eκ̃−µ̃

]
x′,x

and
φxt). It reproduces, for every time-step,
the following algorithm:

1. Calculate i · φx. Remember that
for a particular fixed time, φx is a
Nx-dimensional tensor.

2. Calculate the element-wise expo-
nential of the preceding result.

3. Expand the solution by the ex-
pansion function ("expand"), so
we obtain a Nx ×Nx tensor.

4. Then, we are able to apply
the element wise product by[
eκ̃−µ̃

]
x′,x

, since its dimension is
also Nx ×Nx.

5. We repeat the process for each
time. At the end of the loop, a
Nt ×Nx ×Nx tensor is returned.

6. To apply boundary conditions
(B), we multiply by −1 the first
time-row (theNx×Nx tensor cor-
responding to t = 0).

We do not stop here. To compute equa-
tion (4), we must apply the subse-
quent algorithm, corresponding to the
function Exponential Discretisation
("exp.-disc.") from the "Fermion Ma-
trix" namespace:

1. We determine the solution of
equation (3) with the previous al-
gorithm. Let’s denote the solution
by M , which is a Nt × Nx × Nx
Tensor. The next steps, have to be
applied for each time.
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Figure 2: Benchmark results. For each temporal dimension Nt = {200, 400, 500, 700, 800, 1000}, plot of the bandwidth(in mb/s) as a function of the
number of carbon atoms(Nx) and the time execution (in seconds) as a function of the number of carbon atoms.

2. We shift one position tensor ψx.
So, for a particular time, we take
a Nx tensor.

3. We multiply this shifted tensor
by a Nx × Nx tensor, M , at
a particular time. We use ma-
trix vector multiplication func-
tion ("mat-vec").

4. We repeat steps 2 and 3 for each
time. At the end, a Nt × Nx ten-
sor is obtained. With our nota-
tion, Gx′t′,xt · ψxt.

5. Return the difference between
Nt×Nx tensors, ψxt−Gx′t′,xtψ

xt.

Benchmark and conclusions
The proper and easiest way to bench-
mark the program is through some ex-
amples. Nonetheless, we created ran-
dom tensors of different dimensions
in order to obtain the fermion matrix
and multiply it by a Time-Tensor (Exp-
Disc function). It provided us a gen-
eral vision of how the program is work-
ing, even, without examine a partic-
ular case. We used the benchmark li-
brary google/benchmark.10 The aim
of the benchmark is to compare our
implementation with other ones and
select the better optimised. For our
torch implementation, the outcomes
are showed on figure 2. On the right
column of each cell (there are two cells
at each row), the time of execution
per the number of carbon atoms per
each temporal dimension is plotted.
The reader can observe that the time
increases with the number of atoms
and executions are slower for size-
able temporal dimensions. Evidently,

this tendency is expected, so at larger
volumes and greater temporal dimen-
sions, more operations are executed,
raising the time of execution. On the
left column, the bandwidth as a func-
tion of the number of atoms is repre-
sented (also for each temporal dimen-
sion). The bandwidth is the rate of data
transmitted over a path. It is the vol-
ume of information transferred and de-
creases when space volume increases.
The main hypothesis is that large-scale
tensors spend more memory, and the
bandwidth is reduced. The reduction
of the bandwidth is extremely fast and
can be a problem for real-live mod-
elling, because we need to model sys-
tems with a huge amount of parti-
cles. Although, benchmark conclusions
are suitable with other simulations pro-
grams such as Isle.4 We can not deter-
mine if torch is the proper library, since
we do not have relevant data of coun-
terpart implementations yet. Neverthe-
less, it can not be rejected. To sump up,
this report operates as a preliminary
first benchmark and shows that torch
implementation is a feasible possibility
to simulate carbon nanostructures.
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Investigating the performance and bottlenecks of a
taskified Fast Multipole Method

Tiny, tiny,
tasks! Huge
Impact?
Arthur Guillec & Tristan Michel

Current hardware theoretically allows us to
perform an incredible amount of floating
point operations per second (FLOPS).
However, it is very difficult to fully utilise this
potential. We will therefore measure how
much of the resources of a computer a given
tasking framework manage to use in the
context of the Fast Multipole Method (FMM).

First of all, what is the Fast Mul-
tipole Method (FMM)? It is a
technique developed to acceler-
ate the calculation of long-range

forces in the N-body problem. There are
many applications in molecular dynam-
ics, plasma physics and astrophysics.

Naive solving methods are ex-
tremely limited in application because
of their O(n2) complexity. The FMM
and its complexity in O(n) is therefore
a must in solving the N-body problem
when there are many interacting enti-
ties, it is even been said to be one of the
top ten algorithms of the 20th century.

However, for larger inputs, FMM is
still very time consuming. Since this
method is used at every time step of

a numerical solving algorithm, the exe-
cution time must be extremely low. So
there is only one solution to reduce the
execution time: parallelizing the pro-
gram.

To achieve this goal, we started
working with a sequential implemen-
tation of the FMM written by a team
at the Jülich Research Centre. The pro-
gram is divided into 5 steps that we
modified to accommodate a tasking
framework called HPX, a general pur-
pose C++ runtime system for parallel
and distributed applications developed
by the STE||AR group at Louisiana
State University.

Once this was done, we bench-
marked our program to identify poten-
tial bottlenecks. Even though the main
bottlenecks accounted for only a tiny
fraction of the total program execution
time, we rewrote the associated codes
because, as Amdahl’s law dictates, we
would not have been able to achieve
large speedups on large distributed sys-
tems otherwise.
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Methods

Lambda expressions

The C++11 standard introduces
lambda expressions which allow us to
define anonymous function object (or
functor). These are very convenient
because they can be defined locally and
passed as arguments to a function.

Furthermore, lambda expressions
are capable of capturing variables in
scope either by copy or reference. In a
context where one starts with a sequen-
tial program and wishes to parallelize
it in the form of tasks, this is extremely
convenient because portions of the
program such as the contents of a for
loop can be inserted inside a lambda
expression, thus forming a task.

Asynchronous task

The hpx::async function takes
as arguments a function (a function
pointer or a lambda expression) and its
arguments. Its behavior is the same as
the async defined in the standard C++
library.

Let’s suppose that the function
passed as an argument to hpx::async
returns a double type. hpx::async
then returns a future of double, i.e. a
hpx::future<double>. This future
allows us to delay the execution of the
function and to execute it on one of the
available processors. As long as the exe-
cution of the function is not completed,
the future suspends the execution of all
HPX threads trying to access the result.

Simultaneous use of both features

The two features mentioned above
have an extremely strong synergy. In-
deed, we have seen that lambda expres-
sions allow us to define tasks locally
whereas hpx::async can execute
them asynchronously. This is everything
you need to parallelize a program.

But it is not that simple in practice
and in the case of the FMM, the main
troubles come from the nature of the
algorithm.

Figure 1: FMM Workflow

In its initial version, the program
can be broken down into 5 passes.
Passes 1 to 4 correspond to calculations
of far field interactions, i.e. interactions
between well separated particles. On
the other hand pass 5 corresponds to
the calculation of near field interac-
tions, i.e. interactions between particles
that are too close for the FMM to be
used via the interactions of multipole
expansions.

When executing this algorithm se-
quentially, it is sufficient to execute
these passes one by one in the correct
order (except for pass 5 which can be
executed at any time). But what about
once parallelized? Let’s take a look at
the two steps of pass 1 to understand
the problem.

Figure 2: Pass 1 P2M

During the first part of pass 1, often
referred as P2M for particule to multi-
pole, we compute a multipole expan-
sion for each box at the lowest level of
our tree.

Figure 3: Pass 1 M2M

During the second part of pass 1,
often referred as M2M for multipole to
multipole, we combine those multipoles
to obtain multipoles of groups of boxes.

As you can see, computing a multi-
pole at depth d = 3 requires the prior
calculation of two multipoles (because
the scheme is for 1D, otherwise in 3D

we would have 8) at depth d = 4. The
same rule applies to all other levels. If
we keep the original structure of the
code which calculates the multipoles
level by level, we are forced to insert
synchronization barriers at each level
to ensure that all underneath tasks are
completed.

This is not ideal and some
may prefer to use an operator like
hpx::when_all so that each multi-
pole calculation can begin once the
tasks associated with the calculation
of its two underneath multipoles are
completed. The only problem is that
this way of proceeding is very different
from the sequential version and so we
reach the first disillusionment: modi-
fying a program to work with tasks is
not trivial and often requires extensive
code changes, making it impossible to
simply wrap the loops of our program
with lambda expressions. Fortunately,
none of this is impossible!

Results

The holy pass 2

If we had to mention one thing that
went particularly well, it would be the
parallelization of pass 2.

Figure 4: Pass 2

During this pass, we translate re-
mote multipoles into local Taylor mo-
ments. As you can see, there is no
particular difficulty because the involve-
ment of multipoles in the calculation
of those local moments is read-only!
We can therefore create a task for the
calculation of each moment without
worrying about anything!

Let’s have a look at the benchmark
results for this pass with a number of
particles n=12960, a depth d=4 and
a multipole order p=20 as parame-
ters. The benchmarking computer has
4 sockets, each containing one Intel(R)
Xeon(R) CPU E7-4830 v4 @ 2.00GHz
(14 cores per socket). This configuration
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will remain the same in all the following
graphs.

Figure 5: Pass 2 benchmark (linear scale)

At first sight, it seems that we almost
have a linear speedup. The graph can
be switched to logarithmic scale to see
more detail.

Figure 6: Pass 2 benchmark (logarithmic
scale)

As you can see, with 56 processors
the parallelization efficiency is 97%. As
if that wasn’t pleasant enough, this pass
is responsible for most of the program’s
execution time (more than 95% in fact).
As these results were good, it was time
for us to optimize the rest of the code.
Without knowing it, we were about to
discover the 80-20 Rule.

The cursed passes

After this period of extraordinary
results came a period of desolation
during which the slightest acceleration
was expensive, very expensive in terms
of time and modifications compared
to the sequential version. The smallest
gains were those that took the longest
to achieve.

Figure 7: Pass 3 benchmark (logarithmic
scale)

Figure 8: Pass 4 benchmark (logarithmic
scale)

In the end, passes 3 and 4 were not
that bad with efficiencies around 65 and
92% for 56 processors respectively. The
results of passes 1 and 5 were less con-
vincing. In fact, they were actually very
bad. These are the main bottlenecks to
be investigated in the future.

Conclusion

To conclude, let’s add up the duration
of each pass so we get the overall exe-
cution time.

Figure 9: Full benchmark (linear scale)

Figure 10: Full benchmark (logarithmic
scale)

At first glance, one could say that
the job is done. After all, the overall
efficiency of parallelization is still 95%
with 56 processors. If one or two passes
are not perfect, it should not change
much after all.

Let’s assume that the two deficient
passes are not modified and that their
total duration is constant and equal to
a percentage of the single thread exe-
cution time: let’s say 0.1% (arbitrary).
Then Amdahl’s law will inevitably come
back to haunt us. Let’s do the math. We
know that the theoritical speedup s is:

S =
1

f + 1−f
n

where:

• n is the number of processors

• f is the fraction of the problem
that must be computed sequen-
tially (in our example 0.1%)

This implies that:

S ≤ 1

f

In other words, the speedup will
never exceed 1/0.001 = 1000, no matter
what resources we have available (it’s
something that money can’t buy). This
may sound extremely frustrating, but
it tells us something very deep about
high performance computing: this is a
very merciless field that only rewards
those who spend a lot of time and en-
ergy tracking down the smallest bottle-
necks!
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Numerical simulation of Boltzmann-Nordheim
equation

Inhomogeneous
equation with
parallel
computations of
collisions
David Knapp and Artem Mavliutov

In order to accurately simulate the equation,
it is important to introduce the transport part,
thus making it a non-homogeneous
equation. The main bottleneck of the
equation is the computation of the collision
term, therefore, the first step to obtain a fast
solution is to parallelize the collision
operator in an optimal way.

Classical Maxwellian distribution

The Boltzmann-Nordheim equa-
tion or quantum Boltzmann
equation describes the time
evolution of a gas. When this

gas formed by bosons is cooled down
to a low temperature we can observe a
Bose-Einstein condensate which is one
the most striking quantum phenomena
in nature. It is also described as the fifth
state of matter. The study of this equa-
tion is still undergoing and can bring
us closer to an understanding of this
quantum effect.

We are interested in the following
kinetic equation that represents the
behavior of the distribution function
f(t, x, v) : R+ × Ωx × Rdv → R which
characterizes the number of particles
per unit volume dx × dv in the phase
space Rdx × Rdv at time t ∈ R+:

∂tf + v · ∇xf = cQ(f) ,

where x ∈ Ωx ⊂ Rdx is the position,

v ∈ Rdv is the velocity,
t ∈ R+ is the time variable,
c ≥ 0 is a dimensionless scaling param-
eter for the collisions,
Q(f) : R+ × Ωx × Rdv → R is the colli-
sion operator.

Numerically this equation is solved
by discretizing the time and solving sep-
arately the transport equation and sub-
sequently solving the collision step with
initial solution of the transport. In the
next iteration the initial solution for the
transport equation is taken as the so-
lution of the collision equation in the
previous time step.

Introducing the transport part, thus
increasing the dimensionality of the
problem by 2-3 dimensions in space is
one of the goals of the project. The other
goal deals with the optimization of par-
allel computation of the collision kernel.

The collision kernel of the simula-
tion is computed using spectral meth-

ods.1 The collision term of the equation
can be split into six parts, where four of
them are used to describe the behavior
of the quantum particles. The work of
David focuses on the first of the quan-
tum collision terms, which takes most
of the time during the computation.

Q1,q =

∫

Rdv

∫

Sdv−1

B |ξ − ξ∗| , θ)

G(t, x, ξ)G(t, x, ξ∗)

G(t, x, ξ∗)dσdξ∗

The goal was to implement a new
elaborate method using advanced MPI
techniques to decrease the work each
process has to do during the computa-
tion of Q1,q.

Methods
Transport part
The transport part is solved with the

Finite Volume Method.2 The principal
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motivation for this method is its conser-
vational property which is the main key
when modeling physical process. There-
fore, the conservation of flux is done by
integrating the distribution function in
space:

∫ xi+1

xi−1

f(tn+1, x)dx =

∫ xt
i+1

xt
i−1

f(tn, x)dx,

where xti±1 = xi±1 − v∆t.
In order to correctly implement a con-
servational method, we have to rewrite
this equation in an updating form. Thus,
setting

Φi+1(tn) =

∫ xi+1

xi+1−v∆t

f(tn, x)dx

the conservational form becomes:
∫ xi+1

xi−1

f(tn+1, x)dx =

∫ xi+1

xi−1/2

f(tn, x)dx

+ Φi−1(tn)

− Φi+1(tn)

The next step is the reconstruction
of the primitive function on each sub
interval [xi−1, xi+1] using Lagrange in-
terpolation:
1. Compute the average

fni =

∫ xi+1

xi−1

f(tn, x)dx

F (tn, xi+1)− F (tn, xi−1) = ∆x fni

2. Interpolate the primitive function

F̃h(tn, x) = F (tn, xi−1) + (x− xi−1)fni

3. Differentiate the primitive function
to obtain the distribution

f̃h(tn, x) =
∂F̃h(tn, x)

∂x

Collision part
The computation of the Q1,q-collision

term can be improved by using ad-
vanced MPI-communication developed
by Alexandre Mouton. Implementing
the new MPI-communication leads to
two adaptation in the current state of
the algorithm. First, we use a custom
communicator in the computation of
Q1,qwhere we have to organize the
splitting of the processes of the old
MPI_COMM_WORLD communicator. Sec-
ond, we have to adapt the distribution
of the data over the processes, such that
every process in every communicator
has the data it needs to fulfill its compu-
tation.

We assume, that we have S × S̃ pro-
cesses in the MPI_COMM_WORLD com-
municator. For our pattern of com-
municators, we want to split the
MPI_COMM_WORLD communicator in
two ways, once along the rows and once
along the columns. For the communi-
cator along the rows, this results in S̃
communicators with S processes each.

Figure 2: The splitting of the
MPI_COMM_WORLD communicator. At
the top the splitting along the rows, at the
bottom, the splitting along the columns.

For distributing the data to the pro-
cesses we take advantage of the fact,
that the process of rank 0 in the first
row communicator is also the process
of rank 0 of the column communica-
tor. In our case, data of the i-th pro-
cess in the first row communicator is
needed on every process in i-th column
communicator. With this communicator-
structure we can use MPI_Bcast on ev-
ery column-communicator to distribute
the data.

Compared to the original version of
the computation of Q1,qwe need more
communication. But due to the commu-
nication we can avoid a a large loop
over the whole computational domain,
which should decrease the computa-
tional cost on every process

Initial and boundary conditions
The boundary conditions are periodic

in the space domain x ∈ Ωx and in the
velocity domain3 v ∈ [−L,L]dv .

The initial distribution is the follow-
ing:

f0 (x, v) := g(x)τ(v)

x ∈ [0, 1]dx , v ∈ [−L,L]dv ,

g(x) := 1 + 0.5 cos(2π x)

g(x) ≥ 0, x ∈ [0, 1]dx ,

where τ is the classical Maxwellian
distribution.

Results
Transport part

Figure 1 shows the time evolution
of the distribution function which was
computed in 5 dimensions (1D time, 2D
space, and 2D velocity). Unfortunately,
only 1st order accuracy is guaranteed.
To alleviate this problem, it is neces-
sary to introduce slope correctors4 that
limit the high order terms at the points
in which the gradients are steep. Only
then it is possible to introduce high or-
der interpolation terms. Another prob-
lem regarding accuracy is the size of
the mesh. Increasing the mesh size im-
proves the accuracy but also the com-
putational time. Finally, we have to be
careful when choosing the size of the
velocity domain since we must fulfill the
CFL1 conditions.
Collision part
After implementing the method, we in-

vestigate the scaling of it and compared
it with the original implementation of
the Q1,qcollision term. We compared
the two implementations using two ex-
periments. For the first one, we run the
simulation using eight processes and in-
creased the size of the grid in every new
run. Initially we use a 16× 16 grid. Af-
ter each run, we doubled the size of an
edge of the grid. In the second exper-
iment, we fixed the size of the grid to
64 × 64 and increased the number of
processes after each run, starting with
a run using two processes.

Figure 3: The results of running the simula-
tion with 8 processes and different grid sizes.
The graph hybrid describes the results of the
new implementation, classical the original
version

Figure 3 shows, that the new imple-
mentation is faster than the original one.
Nevertheless, the new method scales
similar to the original implementation
regarding the size of the grid. A reason

1Courant–Friedrichs–Lewy condition: C = v∆t
∆x

≤ Cmax where Cmax is usually taken as 1 for the explicit time marching scheme. This condition is
necessary for the convergence of a numerical scheme.
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Figure 1: Snapshots of the time evolution of the distribution function f(t, x, v) : R+ × Ω2D
x × Ω2D

v → R integrated in space

for this behavior can be, that with an
increased size of the grid, the commu-
nication takes more time. Nevertheless,
the remaining part of the computation if
fast enough, such that the new method
remains faster.

Figure 4: A comparison of the scaling of the
classical and the hybrid implementation

Figure 4 shows again, that the new
implementation is faster than the orig-
inal one, but we can also see, that the
hybrid method scales better than the
original one. It is interesting to observe,
that the two methods have a similar run-
time for two processes. But the hybrid
method scales faster and for more pro-
cesses.
Discussion & Conclusion
Transport part
It is safe to say that the initial ver-

sion of non-homogeneous Boltzmann-
Nordheim equation was implemented
successfully. Moreover, we were able to
increase the space dimension to 2D. The
future work can be focused primarily on
improving the accuracy and handling
of numerical instabilities. Furthermore,

extension to 3D case in space can be
seen in the future. Also, for the correct
solver to work it is absolutely neces-
sary to parallelize even further the al-
gorithm keeping in mind the specificity
of non-homogeneous equation. Finally,
the current version of the transport is
parallelized with openMP later it can
be further adjusted to MPI and CUDA.
Collision part

Two month ago, we had the goal
to implement a better scaling and
faster version of the computation of
the Q1,qterm in the computation of the
quantum collision in the Boltzmann-
Nordheim equation. With the presented
results we delivered such implementa-
tion. Nevertheless, we can improve the
computation even further. The spectral
accuracy of the current implementa-
tion can be enhanced, as we observe
errors at the magnitude of 10e−8, but
we should be able to decrease it down
to machine precision. Additionally we
should testify the current results with
more processes and on a larger grid-size
as both the number of used processes
and the size of the grid are not very
large. We observed, that the communi-
cation between the processes is more
intensive in our version of the code. If
we can decrease the communicational
effort without changing the overall
method, we could improve our imple-
mentation even further.
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Parallel radiative heat exchange solver for analyzing samples from the
OSIRIS-REx space exploration mission

Parallel
radiative
heat-exchange
solver
Cormac McKinstry, Venkata Mukund Kashyap
Yedunuthala

Develop a parallelized radiative heat exchange
solver that can simulate the thermal activity of
regolith samples collected by the OSIRIS-REx
space mission

Abstract

Objective of the project is to develop
a Finite Element Method based solver
for radiative heat exchange observed in
the material present on the surface of
asteroids, termed Regolith. Solution of
heat transfer equation accounting for ra-
diation requires evaluation of view fac-
tors between any two elements within
the meshed domain. Computationally
expensive evaluation of double area
integral to determine view factors re-
quires evaluation of the "visibility" be-
tween such elements, which is done
through implementation of ray-tracing
libraries. The view factor integral is
approximated to algebraic equations
through Gaussian Quadrature. Upon
successful evaluation of approximated
values of view factors through applica-
tion of quadrature, the view factors are
integrated into the evaluation of weak-
formulation of heat transfer equation.
Thermal response is to be estimated
then through Finite Element Method.
Parallelisation is to be implemented
through libraries such as PETSc, FEMS.
These libraries support shared memory
and distributed memory development.

Introduction

On the 8th of September 2016,
NASA launched the OSIRIS-
REx space exploration mis-
sion from Cape Canaveral. It

launched with the aim of landing on
the near-Earth asteroid 101955 Bennu,
collecting samples from it’s surface and
transporting them back to Earth for
analysis.

The spacecraft landed on Bennu on
the 20th of October 2020, and success-
fully gathered between 400g and 1kg of
regolith, the loose, granular rocky ma-
terial that covers the surface of Bennu
and many asteroids like it. The space-
craft is due to arrive back on Earth in
September 2023.2

The purpose of this project is to
study the thermal responses of this re-
golith. We want to understand it’s be-
havior under different thermal situa-
tions, and how they vary with factors
such as the sizes of the particles. We
want to know this as asteroids such as
Bennu can act as "time capsules", in-
dicating what might have been seen
around the formation of the Solar sys-
tem.

Sections of the project

This was a project of two halves

1. The calculations of the view fac-
tors of a given arrangement.
These are the coefficients neces-
sary for to determine thermal ra-
diation. This was done by Cormac
McKinstry

2. Upon calculation of view factors,
further task was to simulate the
thermal behaviour by calculating
temperatures through finite ele-
ment method. This part was han-
dled by Venkata Mukund Kashyap
Yedunuthala.

View Factor Calculation

The view factor is a coefficient describ-
ing how thermal radiation moves be-
tween surfaces. It’s calculation and accu-
racy is vital to the heat exchange solver,
but doing so in reasonable time accu-
rately is a non-trivial challenge.

Theory

The view factor F12 describes, of the
thermal radiation radiated by Surface

70



1, how much of it is received by surface
2. The view factor is described by the
equation,

F12 =
1

A1

∫

A1

∫

A2

Cosθ1Cosθ2
πr212

dA1dA2

(1)

Figure 1: Two surfaces that see one another

The double area integral is computa-
tionally expensive to do accurately, and
benefits from all speed increases that
can be found. That was the crux of the
problem.

The arrangement of regolith was
described by a surface mesh of a set of
non-touching spheres. The first ques-
tion that needs to be answered is what
surfaces have a line of sight from one
to the other. For this we use Embree.

Figure 2: A mesh of triangles representing
two spheres

Embree

Embree is Intel’s ray tracing package
and collection of kernels. While Embree
is a large and multifaceted package in-
cluding many advanced ray casting and
rendering functions, we simply use it to
determine whether there is a free line
of sight between two triangles. We use
Embree due to it’s versatility across plat-
forms, and it’s inbuilt optimization and
parallelisation strategies.3

Integration methods

The choice of integration methods for
the double area integral was central to
the view factor problem. For this project
gaussian quadrature methods were im-
plemented, choosing particularly cho-
sen weighted points such that they re-
turned accuracy that would require mul-
tiple orders of magnitude more points
to be selected to achieve with evenly
weighted points. The implementation
was set up so that at use the program
could be set to sample 1, 6, 16 or 64
points, depending on what constituted
acceptable run-time and accuracy for
the user. This was important as for n
sampled points, n2 calculations were to
be done.

Parallelisation

We sought to parallelize the view factor
calculation process in order to speed up
the process. After the sequential version
of the code was tested, a version imple-
menting parallelisation with MPI was
made.

Currently, the implementation of
parallelisation is a simple, naive one,
where each processor is assigned a set
of triangle-pairs to check if the see
one another and if so calculate the
view factor. This is unoptimal, as it
will likely have non-balanced proces-
sor workloads, with some dealing with
many pairs of triangles that see one
another and must be integrated over,
and some having very few or even none.
There are further steps that could in fu-
ture be taken to balance the processor
workload and speed up the computation
time.

Finite Element Method

Introduction

Finite element method is a numerical
technique developed in the past few
decades. It is primarily used to solve
boundary value problems through di-
vision of a domain into a number of
sub-domains, also known as elements.
A boundary value problem is the com-
bination of an initial value problem,
which in turn could be a set of ordi-
nary or partial differential equations,
and the boundary conditions of the do-
main. Boundary conditions reflect the
conditions of the surroundings of the
domain in consideration. The solutions

are obtained on the nodes of an ele-
ment, which are the points that make up
the corners of an element. Typically, the
boundary value problem is converted
to a set of algebraic equations through
different mathematical manipulations,
and such a set of equations is solved
iteratively for each element for a given
period of time. The solutions are ob-
tained in an assembled form at the end
of each time step. This procedure within
the context of this project are explained
below.

Theory

Heat transfer could be described as the
process of flow of heat between two
bodies. Considering that regolith is a
body in space, the process of relevant
heat transfer could be modeled using
following equation:

ρcṪ + qi,i − f = 0 (2)

Here in equation (2), qi,i describes heat
transfer contribution through conduc-
tion and radiation, with ρ being density
of the material, c being the specific heat
capacity of the material, and f refers
to source terms. Additionally, reducing
the equation (2) to its so-called weak-
formulation is necessary for FEM for-
mulation. Contributions from conduc-
tion and radiation are modeled using
Fourier’s law (3) and Stefan-Boltzmann
law (4), which are described as follows:

qi = −kT,i (3)

qi = εσ

N∑

j=0

Fij(T
4
i − T 4

j ) (4)

In equation (3), the term k refers to
thermal conductivity of the material.
The Stefan-Boltzmann law, as described
in (4) is of particular importance in
this project. It is important to note that
in this particular formulation, the ra-
diation terms act as a boundary con-
dition, since the radiation is mostly
from the Sun and is observed from a
single direction. In equation (4), the
term Fij describes the view factors be-
tween two elements termed i and j, the
term ε refers to emissivity of the ma-
terial. The term σ is known as Stefan-
Boltzmann constant and has the value
of 5.670374419× 10−8Wm−2K−4. The
view factors, evaluated as described in
the earlier section, are integrated into
this particular problem at this point.

Upon evaluation of weak-
formulation as described above, the
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terms are converted into matrix for-
mulations suitable for finite element
method. This procedure is known as
discretization. The resultant algebraic
equations are now solved iteratively.
This is achieved through usage of FEMS
– a finite element computing software
developed by Modesar Shakoor, our
co-mentor.

Meshing

Meshing is the process that divides a
given domain into elements, as required
by FEM computations. FEMS offers its
own tools to create such meshes, and
offers interfaces to import meshes that
were created by third-party softwares
like GMsh. As opposed to view factor
computations, FEM computations are
done on a volumetric mesh. As such,
this requires appropriate correlation of
elements present on the surface mesh
with elements present in volumetric
mesh. In this project, surface mesh was
constructed using triangular elements
and volumetric mesh was constructed
using tetragonal elements. Therefore, a
comparison of barycenters is thought to
be an appropriate method for such a cor-
relation. As the project is divided into
two halves, this required an efficient
file handling to export and import view
factors for corresponding elements. An
example mesh could be seen in Fig.3.

Figure 3: Example volumetric mesh for two
cube-shaped domains

FEMS

FEMS as a software is developed en-
tirely in C. It uses libraries such as
LibXml2 for XML-document parsing,
which are used to configure a certain
problem, and GLib2 for additional data
structures. The software is compiled us-
ing CMake, which offers high flexibil-
ity for inclusion of any additional li-
braries to enhance the functionality of

this software package. As one can imag-
ine, the operations as described above
could be, computationally, highly ex-
pensive. Fundamentally, FEMS offers
shared memory parallel implementa-
tions using OpenMP at its foundations,
as well as linear algebra libraries such
as CBLAS/LAPACKE or Eigen3. Addition-
ally, for some components, FEMS en-
ables parallelization through PETSc and
MPI. This project was to be built upon
such an implementation of FEMS.

PETSc

PETSc – the Portable, Extensible Toolkit
for Scientific Computation, provides
data structures that enable seamless
parallelization of a scientific computing
problem. It is vital in this project as the
system of algebraic equations obtained
as described above conduces to a sparse
system that is different to classical Fi-
nite Element Method. Therefore, one
needs to provide or alter the existing
sparsity pattern in order to correctly ac-
count for resultant contributions from
radiation. PETSc affords the flexibility
to achieve this particular aspect.

Conclusions and discussion

In this study, we had focused on a spe-
cific case of heat transfer that is of par-
ticular importance to space exploration
and astrophysics.
As discussed, the complicated math-
ematical modeling and computation
of such a convoluted physical phe-
nomenon involves a high degree of com-
plexity. Advancements in mathematics
to solve differential or integral equa-
tions, such as quadrature or time inte-
gration schemes assume utmost impor-
tance in such an analysis. Implementa-
tion of a parallel Finite Element Method
solver is expected to significantly ease
such an analysis.

Appendix

Project Timeline

Week 3 (5 July – 25 July)
Read the necessessary bibliography to
understand the situation and the prob-
lem. Installed and set up the relevent
pieces of software, libraries, etc.
Week 4: (26 July – 1 August)

Initial programming of the view fac-
tor calculations and the nonlinear finite
element solver using PETSc.
Week 5 (2 August – 08 August)

Continue work on programming,
gather initial results.
Week 6 (08 August – 15 August)
Refinement, correction and fixing of

code, reassessing choices to gain more
accurate results.
Week 7 (16 August – 22 August)
Validation of results, comparing results
to existing knowledge.
Week 8 (23 August – 31 August)

Parallelized the existing code for
greater efficiency, prepared final re-
ports.
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Hybrid AI Enhanced Monte Carlo Methods for
Matrix Computation on Advanced Architectures

Bayesian
parameter
search for
matrix
inversion
Adrian Lundell and Iakov Kharitonov

We implement a parameter search for an
advanced matrix inversion algorithm to
accomplish faster solving speeds.
Furthermore, we perform benchmarking
and analysis to find improvements and
extensions for increased usability.

Introduction

Solving of large systems of linear equa-
tions, or specifically finding the inverted
matrix A−1 given by

Ax = b (1)

is of great importance in a wide range of
fields, from economics to engineering.
One way to increase the computation
speed is to multiply the equation with
the preconditioner matrix M to get an
easier equation system

MAx =Mb. (2)

No general method of computing a good
preconditioner exists but there are a
number of algorithms for creating ap-
proximate solutions, typically parame-
terized with a number of values heavily
impacting their effectiveness.

With this project we aim to develop
an efficient parameter search algorithm
for the Markov Chain Monte Carlo for
Matrix Inversion (MCMCMI) approxi-
mation using a Bayesian sampling ap-
proach. We also look into the possibil-
ities to use information from previous
preconditioner computations by study-
ing the correlations between a set of
matrix features and their optimal pa-
rameters.

Theory

The motivation of Bayesian inference
in context of the problem presented is to
gain insight into the posterior distribu-
tion over some unknown parameters of
the model. Posterior distribution is the
conditional distribution for variables
that haven’t been observed yet given the

data (which has been observed). For the
majority of cases, it is not deemed possi-
ble to analytically derive it. Luckily, for
the Bayesian sampling approach, know-
ing it is not required. We can construct
methods that sample exactly from the
posterior distribution and use statistics
from the samples to represent that dis-
tribution. Using these statistics, we can
make inferences and predictions.
Our algorithm can be generally outlined
in the following way:

1. It takes the data (previously made
samples) and builds a regression
model from it

2. Using the method described in de-
tail below, it computes the most
optimal set of model parameters

3. Guided by the best parameters, it
takes a new sample (evaluates the
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model) with a strategy that tries
to minimise biased sampling

Figure 1: Three steps of the algorithm show-
ing the convergence of the model.

As shown by figure 1, this is an itera-
tive process that aims to improve on
the quality of inferences based on the
modelled distribution as it progresses.
It experiences certain pitfalls, which
will be further discussed along with
attempts to avoid them.

Markov Chain Monte Carlo refers to
a class of algorithms based on first con-
structing a process to generate samples
with a probability distribution mirror-
ing the problem to be solved, followed
by sampling this process to find said
distribution. For the case of matrix in-
version the algorithm was first proposed
by Neumann and Ulam, distributed in
print by MTAC,1 and later on extended
to general matrices and implemented
in C++ and Python for large architec-
tures by Lebedev, A., Alexandrov, V. and
Strassburg, J.23 The algorithm works
by performing a number of random
walks on the matrix and iteratively up-
dating a sum for each matrix element
every time it is reached, choosing the
path and calculations such that the
expected average value for each ele-
ment turns out to be the sought after
inverse. This introduces one parameter
ε or the stochastic tolerance determin-
ing the number of random walks, and
one parameter δor the truncation tol-
erance, determining how the path is
determined. In theory these could be
set infinitely small to end up with the
exact solution in infinite time, but for
the computation of a preconditioner a
calibration is necessary. For a detailed
explanation of the algorithm please
refer to.3

Gaussian process (GP) is a type of
stochastic process that constitutes an
infinite collection of random variables,

where a finite selection of those is dis-
tributed according to a joint Gaussian
distribution. That Gaussian distribution
is characterised by its mean and covari-
ance (kernel). Given a dataset (matrix
evaluations by MCMCMI method), the
Gaussian process defines a range of best
fitting functions. The function of choice
is the one that offers the best-behaved
nonlinear fit to the data. This is Gaus-
sian process regression.
The optimisation using GP is centred
on computation of the expected gradi-
ent over the posterior distribution. f∗ is
the function evaluated at x∗ and given
the data X and the model y = f(x) + ε
where ε is the Gaussian noise, its ex-
pected gradient4 is

∇E|f∗|X, y, x∗| =
n∑

i=1

α∇k(x∗, xi)

(3)
where α = (K + σ2

nI)
−1y.

I is the identity matrix and K de-
fines the covariance for all datapoints,
Kij = k(xi, xj). The RBF kernel is
defined as

k(xi, xj) = e−
d(xi,xj)

2

2l2 (4)

where l is the length scale and d is the
Euclidean distance. Its gradient is

∇k(x∗, xi) = k(x∗, xi)
xi − x∗
l2

(5)

As part of this optimisation approach,
the calculated gradient makes it visu-
ally intuitive to understand the shape
of the function, and the behaviour of
the system in response to change in pa-
rameters. In the current case, as it will
be explained later, we are considering a
3D surface because we are optimising
two parameters.

Matrix features, such as norm, eigen-
values, ratio of non-zero entries to all
entries (sparsity), symmetry, etc, are dis-
tinct characteristics of matrices and also
means to classify them. In the context of
initial motivation of this project, these
features would be considered synony-
mous with “states” in ML algorithms.

Method

The algorithm was developed in Python
3.9.5, using the libraries Numpy and
Pandas for data handling and the Gaus-
sianProcessRegressor from sci-kit learn
for the Gaussian process regression.

The Gaussian process was initialised
with the standard RBF kernel and a
limited length scale range between 0.3
and 10, as smaller length scales tended
to favour an overfitted function surface.
Furthermore a noise level of α = 0.001
was introduced to prevent this issue.

To find the optimal parameter values for
the Gaussian process we used gradient
ascent with a fixed step length to find
local maximas, repeating the process
a number of times to ensure that the
global maxima is found. Since the ex-
pected gradient of the Gaussian process
is cheap to compute compared to each
point evaluation, and since the model
in itself is approximate making an exact
solution unnecessary, this part of the
algorithm was not deemed important
to optimise further at this stage.

For evaluation, a previous Python im-
plementation of the serial MCMCMI
algorithm was used and the matrix was
inverted with and without precondi-
tioner to find the ratio between these
two execution times and see the im-
provement in each sample. Using this
relative reward value rather than some
absolute timing allows for easier com-
parison between matrices of different
complexity and matrices computed with
different resources.

Initially in the project the goal was to
include the matrix features into the
statistical model to create a general
model for all possible matrices, or at
least a subset of a certain type. After-
wards it was, however, realised that
the project was not yet mature for such
an ambitious undertaking,and we had
to separate the project into finding op-
timal points for single matrices, and
studying the correlations between a
number of matrix features and their
optimal parameters.

This approach led to two types of ex-
periments: first optimising parameters
for single matrices, followed by plotting
the optimal parameters as a function of
their matrix features.

As far as the authors are aware this
project is the first parameter search
algorithm aimed at the MCMCMI al-
gorithm making a qualitative benefit
analysis difficult, instead we provide
some overview of what performance
can be expected and some lessons
learned during the project on how to
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improve the results going forward.

After initial development all experi-
ments were run on the Hartree super-
cluster using Python 3.6.5, using a sam-
ple set of six sufficiently large matrices.

Figure 2: Convergence in reward and step
length of the algorithm. Lines with the same
color indicate several runs of the same ma-
trix.

Results

A combined plot of the convergence
of the reward and the parameter step
length between samples for 6 different
matrices can be seen in figure 2. It is
apparent that the algorithm converges
toward some set of parameters within
10 samples for all runs, but that these
parameters are either not particularly
optimal, or that the variance in com-
putation time for the same parameter
choice is similar to the variance from
choosing parameters.
To find why this is the case, individual
runs were studied in detail by plotting
the model surface with more and more
samples added. This resulted in three
findings:

1. Outliers. For some samples there
is a scale factor of five reward in-
crease compared to samples very
close in parameter space, raising
suspicions that the result is due

to externalities such as some load
changes in the computer cluster
node rather than the parameter
choice.

2. Heavy bias toward initial samples.
By design the algorithm tries re-
gression with very few points,
which in some cases causes it to
get stuck in a local maxima of the
initial samples. As with all search
algorithms this is a question of ex-
ploration vs. exploitation, where
it seems like the algorithm cur-
rently leans too much towards the
latter option.

3. Smooth reward surface. As more
points are added the Gaussian
process tends to smoothen out
rather than get more detailed,
which sometimes causes maxima
to be erased in favour of a clus-
ter of semi optimal points close
together.

Discussion

From the results it is clear that the algo-
rithm may be improved with inspiration
from the problems found in the testing
data.

Outliers should be removed, with the
slight complication of determining
which points are outliers.

Naively one could start the algorithm
with a rough grid sampling to avoid the
problem of the exploration. A more so-
phisticated solution would be to borrow
something close to the epsilon param-
eter in the epsilon-greedy algorithm
from reinforcement learning within the
optimiser method rather than finding
the maxima all the time, allowing to
decrease the exploration over time.
To combat the smoothing a more in
depth analysis of what type of surface
to expect would be required, essentially
finding kernels and parameters opti-
mised for the matrices. For example the
Matern kernel has a rougher surface
which could suit the problem better.

One step towards a more generalised
version of the algorithm would require
the consideration of matrix features, de-
fined previously. In that case, the model
would extend over all the dataset (ma-
trices) and not be confined to a single
trial set of samples. This could help
to get a general sense of behaviour

of systems with features (e.g. matrix
norms) close to ones evaluated and in-
fer optimal regions in parameter space
for similar classes of matrices. Such
improvement would, of course, require
a more extensive dataset with larger
matrices. That, in turn, may lead to
a practical necessity for parallelising
the optimisation code and adopting
the parallel version of MCMCMI due to
increasing computation time.

As highlighted in the issue with outliers,
using ratio of runtimes as the reward
might be a biased approach. Large scale
computing systems are likely to exhibit
temporal load variability, even when
working on a node exclusive from other
users. This is due to scheduled tasks
running in the background at different
times of day that are generally beyond
user’s control. That leads to the idea of
using the number of steps of MCMCMI
method as the reward in order to ex-
clude external factors. The downside is
that the model would contain less infor-
mation of several types of computation
involved.
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Scaling HMC on large multi-CPU and/or
multi-GPGPUs architectures

Probability
sampling
inspired by
fields
Morten Holm, Tiziano Barbari

Stochastic parameter fitting is
resource-consuming: Stan already offers
great algorithms for Bayesian inference,
but let us try to improve them anyway, with
code optimisation and parallelism!

The Stan core library offers
several high-performance in-
ference algorithms written in
C++, used for scientific mod-

elling. We tried to enhance the perfor-
mance of the Hamiltonian Monte Carlo
(HMC) algorithm, enabling the algo-
rithm to run on distributed systems us-
ing MPI as well as shared-memory mul-
tiprocessing programming via OpenMP.

Introduction

The purpose of our project was the im-
plementation of a more efficient, par-
allel, and scalable, Hamiltonian Monte
Carlo; we started with an existing sta-
tistical framework and an already im-
plemented C++ code skeleton, and
tried to improve the data structure and
the integration methods. Simulating an
ensemble using a Structure of Arrays
(SoA) approach will also enable GPGPU
processing more readily down the line.
Let us briefly illustrate with a basic ex-
ample what stochastic parameter fit-
ting is, and how it relates to Stan; the
"coin toss" example that we used for test-

ing consists in:

• data (the outcome of 2 coin toss
experiments):
y1 = (0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1)

(balanced coin)
y2 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

(totally unbalanced coin).

• the model and the wanted proper-
ties of the parameters to be com-
puted:
θ1, θ2 ~ beta(1, 1)
θ1, θ2 ∈ [0, 1]
y1 ~ Bernoulli(θ1)
y2 ~ Bernoulli(θ2).

Such a declared model is first read by
Stan, then translated into C++ code,
and finally used in conjunction with
any C++ algorithm that we devise
and feed to Stan itself, specifying its
intended use. The algorithm we built is
an HMC method able to sample from a
posterior distribution (Bernoulli, in our
example); the framework uses our code
to return the final parameter estima-
tions, which for our toy model should
be approximately θ1 ~ 0.5 and θ2 ~ 1.

Theory

MCMC. Now let us give a bit of con-
text to our HMC implementation: HMC
is a very special Markov Chain Monte
Carlo (MCMC) algorithm. MCMC meth-
ods sample from a continuous random
variable (RV) and we can use these sam-
ples to compute integrals over that RV,
such as its expectation or its variance.
How, you ask? Sampling means that a
point starts from an arbitrary position
and is evolved by sequentially applying
the so-called Markov transitions; what
we obtain are random "walkers" which
move around and try to reach points
that can contribute significantly to the
integral computation. Now, it turns out
that, in high dimensions, the density
and the volume (that make up the ex-
pectation) undergo a tension that forces
the highest probability into a narrow re-
gion of space, called typical set. Unfor-
tunately, such a walker will have a hard
time approaching the typical set, and
often exhibit random walk behaviour
(and hence a slow convergence) and au-
tocorrelation.
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HMC. Here is the focus of our project,
where HMC comes into play! This al-
gorithm introduces a fictitious physical
system, equivalent to the statistical one,
and simulates Hamiltonian dynamics in
it1! The samples are treated as physi-
cal particles, having a position q (a vec-
tor concatenating the statistical param-
eters) and a (randomly initialised) mo-
mentum p. The particles (or samples)
obey Hamilton equations and, ideally,
follow the Hamiltonian flux, quickly
reaching the typical set and efficiently
exploring it. Numerically, we have to
integrate, of course! Given that we are
in a Hamiltonian context, we do it with
symplectic integrators, which preserve
phase-space volume; although energy
is not exactly conserved, energy fluctu-
ations are bounded:3 hence, the com-
puted orbit stays close to the true orbit
even for long integration times. A gen-
eral formula for symplectic integrators
can be obtain starting from the Hamil-
tonian, assuming that it is separable:

H(p, q) = T (p) + V (q) (1)

A simplified form of Hamilton equations
are the building blocks of an order k
symplectic integrator, which executes
the following update steps k times:

qi+1 = qi + ci
pi+1

m
t (2)

pi+1 = qi + diF (qi)t. (3)

where c and d depend on k and i, and
F (q) is proportional to V (q), which is,
equivalently:2

• the positional negative potential
energy function

or

• the logarithm of the joint density
of the components of q.

Important examples are:

• the 1st order symplectic Euler
(c1 = d1 = 1), not time-reversible;

• the 2nd order Störmer–Verlet
(c1 = 0, c2 = 1, d1 = d2 = 1/2),
symmetric in time and of which
the leapfrog is a clever variant.

• the 3rd order Ruth:
(c1 = 1, c2 = −2/3,c3 = −2/3,
d1 = −1/24, d2 = 3/4, d3 = 7/24).
This, and another 4th order in-
tegrator by Ruth were initially
developed for, and distributed
among, the particle-accelerator
community.

Profiling. Extrae is a package devel-
oped by BSC (Barcelona Supercomput-
ing Center) and is used for tracing pro-
grams compiled and run with OpenMp,
MPI, or both. Specifically, it "gener-
ates trace files that can be later visual-
ized with Paraver" (from tools.bsc.es), a
powerful performance visualisation and
analysis tool. How? It inserts probes in
the application that we want to analyse,
in order to collect information useful
for determining the performance.
Paraver has two main ways of display-
ing its performance analysis, that per-
tain to two different types of informa-
tion:

1. the timeline display shows how
the code behaves in time and with
respect to processes, making it
easy to detect patterns;

2. the statistics display analyses the
"data that can be applied to any
user selected region", indicating
precisely what can be optimised,
and how.

Interestingly, Paraver can display sev-
eral types of objects, and they relate to
the parallel programming model con-
cepts (workload, application, task and
thread) and to resources group (system,
node and CPU).
Parallelisation. We employed MPI that,
for each node, would generate its own
ensemble and we performed a reduc-
tion step according to a summation op-
eration using MPI_SUM
MPI_Reduce(send_data, recv_data,

..., MPI_Op op, ... );

In the end we had to have the 0 rank
write all the data into a final ma-
trix of particle positions. Furthermore,
OpenMP was utilized, using common
pragma directives. Since this is an inte-
gral part of the project, let’s illustrate
how exactly this works. Using the sim-
plest case, we have a for loop; when
it is time for parameter estimations,
we create a matrix with the computed
particle positions. To do that, we call:

# pragma omp p a r a l l e l f o r
f o r ( Id=0; Id<loca lNumPar t i c l e s ; ++Id ) {

Utilising #pragma omp enables the
compiler to handle the parallelisation
and, further, we can enable parallelism
using the parallel construct. We can
use the for clause to indicate a for loop
that will tell the compiler to split up
the job to several threads. The function
that initialises the ensemble of particles
(using a Gaussian distribution for the
positions and a thermal distribution for
the momenta) is created in a similar
manner as follows
#pragma omp p a r a l l e l for c o l l a p s e (2)
for ( Id=0; Id<numPart ic le ; ++Id ){

for (param=0; param<numParam ; ++param)

Here the clause collapse(2) indi-
cates a nested for loop and will cause
the nested for loop to be combined into
a single for loop, meaning that each
index operation is independent of each
other. S.t. for i=1:N; for j=1:M
becomes for k=1:N*M. This structure
has the advantage of a parallel envi-
ronment without write conflicts: each
thread will have its own objects!

Methods
Our development is a subbranch of the

Stan Open-source software via a private
Github Repository; the programming,
testing and profiling were done on a
Cluster belonging to the Institute for
Theoretical Physics at the Hartree cen-
ter.
How to work with Stan. Stan can in-
terface with several programming lan-
guages; we used CmdStan, the shell
interface. Through the shell, we ran
the tests, performed the stochastic
fitting, accessed supercomputing re-
sources, and profiled. Therefore, we had
a standard pipeline of commands that
we routinely executed:

1. load needed modules: binutils
2.30, cmake 3.20.0, boost
1.72_gcc7, eigen 3.3.9,
mpich 3.2.1;

2. get updates from the repository;

3. build the code, test, profile;

4. update the repository.

The first build in step 3 is for using stan
itself and is here compiled with 5 cores:

$ make bu i ld −j 5

A few moments later, Stan is ready to
build a solution (our example), so let us
do it!

$ make examples / c o i n_ t o s s / c o i n _ to s s

For explaining the process, the stanc
compiler reads the .stan model and pro-
duces a C++ class (.hpp).
Finally, "the C++ compiler compiles all
C++ sources and links them together
with the CmdStan interface program
and the Stan and math libraries" (to
quote the CmdStan User’s Guide), and
creates an executable coin_toss.o which
will produce the wanted estimations.

Figure 1: Profiling using Extrae; Displayed
(blue lines) are the runtimes for each of the
16 thread in a selected area of a process.
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Figure 2: Displayed are the runtimes for
the parallelised simulation (solid line) and
the sequential time without parallelisation
enabled (dashed line).

Results
Actual coding. Stan provides algorithms
for estimating statistical parameters:
our job, in a nutshell, consisted in fo-
cusing on a single part of the process,
namely the efficient sampling from pos-
terior distributions. We tried and de-
vised a more efficient HMC, starting
from a sophisticated C++ code skele-
ton. Our job consisted in completing
some parts of the skeleton and imple-
menting new ones; in particular we cre-
ated or completed:

• the integrator structure, in partic-
ular the integrating step, mainly
using a leapfrog scheme and later
also 2nd order Störmer-Verlet.
Thus allowing us to run the sim-
ulation for different integration
schemes;

• an ensemble of particles, follow-
ing the Structure-of-Array model
(a single structure with one array
per particle feature);

• the HMC sampling algorithm;

• the estimation of the parameters
of the model;

• Parallelisation via MPI and
OpenMP.

The project involved parallelisation,
code optimisation and performance en-
gineering, and we achieved this by
means of code restructuring and pro-
filing tools (Extrae/Paraver). Our imple-
mentation of HMC turned out to be

Figure 3: Strong scaling using 16384 parti-
cles for increasing thread count with s being
the serial part of the code according to Am-
dahl’s law.

satisfactory, fast and producing mean-
ingful results for a large linear normal
model, a result not obtained by the
previous implementation!
An initial simulation with 214

particles, evenly spread out on
threads=[1, 2, 4, 8, 16], showed promis-
ing performance gains, using multiple
threads.

Discussion
An issue with OpenMP and the integra-
tor was encountered and unresolved,
most probably a framework issue with
Stan; it would require some investi-
gation, because resolving this issue
would increase performance. For the
working OpenMP, as seen on figure
3, a larger number of threads results
in a performance boost, and a greater
boost can occur testing for increased
node count. Due to a maintenance of
the HPC systems we could not retrieve
the data to show here, though. In pro-
filing, as figure 1 shows, we can find
sequences where the code stalls, i.e.
several threads wait for others to finish
before all threads collectively move on.
Smaller batches of sequences can be
used, not to avoid but to minimise the
possibility that a sequence becomes a
bottleneck for various reasons. In figure
2 we see a significant overhead from
the difference in run time (simulating
with a single thread). This is not really
an issue, as even most basic computers
now have at least 4 threads, which is
where the break-even point is seen. Not
shown here, we observed that 1024
particles per thread is the sweet spot
when performing the simulation: the

scaled speedup would peak at 4 threads
using 4096 particles and at 2 threads
using 2048 particles. This does not re-
flect, though, the outcome of figure 3,
where we run the simulation for 16384
particle and it should be seen that the
peak is at 16 threads, whereas the cause
for this is currently unknown.

Conclusion
Our implementation shows promise

for applications in Bayesian inference
and is more performing than the former
one, and could be scalable: this may be
the base for future work with further
parallelisation and extensions of the
algorithm.
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Benchmarking Scientific Software for
Computational Chemistry in The Dutch National
Supercomputer

Scientific
Benchmark
Sahin Can Alpaslan

I felt like I was entering an incredible
universe at a hpc workshop a few months
ago. Since then I have been doing my best
to explore this universe.

Abstract

The goal of my project is to get ac-
quainted with different relevant soft-
ware for scientific simulations and be
able to analyse and describe the perfor-
mance of the most relevant applications
that are currently run by researchers in
the field. The performance results will
give out a comprehensive summary of
the best compilation options that can
be used to achieve maximum perfor-
mance for different types of simulations
on CPUs and GPUs.

Figure 1: 1 Node Calculation

Introduction

The data from this Benchmark will be
used to understand better how to use
the resources of our HPC center. Will al-
low us to guide better the users in how
to run their simulations. Comparison
between different packages will allow
us to guide the users for the best code

to use depending on the system size.
Produce template scripts to be used CC
calculations on large systems. These re-
sults will be used to model the reac-
tion mechanism of HIV1 protease with
a larger QM layer. Ab initio quantum
mechanical methods(QM) are now able
to provide reasonably good values for
chemical optimization. We prefer this
method because the QM results give
high accuracy.

Why we need HPC?

Short answer is we have a limited lifes-
pan. The long answer is for many pur-
poses such as computational chemistry
the ability of process data in real time
is crucial. Although the performance of
personal computers is on the rise, it may
not be sufficient for calculations. We can
devote the time we gain to more analy-
sis or problem solving. We can enlarge
the molecular systems we work with or
obtain results closer to reality. That’s
why we use hpc systems.

Methods

Our molecule system contain 40 atoms
and using correlation consistent triple
zeta (cc-PVTZ) basis set and dlpno
ccsd(t) method. The ’cc-p’, stands for
’correlation-consistent polarized’ and
the ’V’ indicates they are valence-only

basis sets. They include successively
larger shells of polarization (correlat-
ing) functions (d, f, g, etc.) ’T Z’ triple-
zeta. This basis functions use for first
and second row atoms.

Figure 2: 2 Node Calculation

Dlpno ccsd(t) method is domain-
based local pair natural orbital
(DLPNO) CC methods that allows cou-
pled cluster calculations to be per-
formed on larger systems than ever
before. We use 2 packages for bench-
marking: ORCA[1] and Psi4[2]. Orca
enables to run ab initio molecular dy-
namics (AIMD) simulations of small to
medium-sized (non-periodic) systems,
using all the different electron structure
methods. Psi4 is an open-source suite of
ab initio quantum chemistry programs
designed for efficient, high-accuracy
simulations of molecular properties.
The program can compute energies,
optimize molecular geometries, and
compute vibrational frequencies.
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Discussion & Conclusion

Benchmarking is the practice of compar-
ing processes and performance metrics
and a way of discovering what is the
best performance being achieved. For
this reason, we performed benchmark
tests using different number of nodes.
When using HPC clusters, it is almost al-
ways worthwhile to measure the scaling
of your jobs.Our molecule system con-
tain 40 atoms, 100 electrons and 752
atomic orbital. So we can say that we
are working on a large system. Scala-
bility is defined as the ability to handle
more work as the size of the computer
or application grows. For HPC clusters,
it is important that they are scalable, in
other words the capacity of the whole
system can be proportionally increased
by adding more hardware. As you can
see on the Table 1, The system that we
are working on can scale. But it shows
strong scaling feature. Strong scaling,
the number of processors is increased
while the problem size remains con-
stant.Increasing the number of nodes
after a point has no effect on execution
time. Ok but what causes this? For real
speedup the speedup after 4 nodes gets
worse. Because of increasing data traffic
between the compute nodes, adding an-
other node can be a disadvantage and
will even slow down the application. It
can also be so said that the compute
time also cannot be reduced further as
the problem size cannot be further di-
vided to improve it for a effective reduc-
tion in time for data traffic and I/O. So
our system showed low strong scaling
feature. Using low and strong together
can be confusing, don’t be confused by
this. It is strong because our processing
time decreases when we increase the

number of nodes, but it is also low be-
cause it starts to remain stable after 4
nodes.

Table 1: Execution Time

Node Execution Time(min)

1 31
2 21
3 18,30
4 18,50
5 17,39
6 18,25
7 19,14

Future Work

I feel really lucky to be involved in
this project. For me, simulations and
coding mean constant problem solving.
HPC systems also save us time in these
solutions. In this way, we can spend
more time solving the problem instead
of waiting. As I mentioned above, we
could not achieve a linear scaling in
the project. After 4 nodes the execution
time remained the same value. I’ll dive
deeper and investigate why. I will try
to find answers to questions such as:
Why are some systems scaling while oth-
ers are not?, can we specify a general
method? How do we use automation in
calculations? Experting the hpc archi-
tecture and the mpi method seems like
a good start.
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Benchmarking Scientific Software for
Computational Chemistry on HPC systems

Benchmarking
Molecular
Dynamics
Simulations
Milana Mirkovic

Molecular dynamics simulations are a
powerful tool for studying the dynamics of
biomolecular systems. Thanks to
high-performance computing, we can now
easily simulate large systems and longer
time scales. However, code parallelization
introduces a new layer of intricacy to the
setting up of a simulation. Benchmarking
is a great way to get a clear overview of
the best setups and so help the users
achieve maximum performance.

The conventional experimental
methods, while important, can-
not provide insight into pro-
cesses happening at the atomic

level and on submicrosecond time
scales. Molecular dynamics (MD) sim-
ulations act as a "computational micro-
scope" that allows us to overcome these
limitations.1 To simulate a biomolecular
system, we need a model and a force
field. A model describes a molecule as
a collection of points that are assigned
coordinates in Cartesian space, mass,
and charge. The point can be equiva-
lent to an atom in the case of an all-
atom (AA) model2 (Figure 1A), or it
can represent a group of atoms, act-
ing as a "pseudo-atom", in the case of
a coarse-grained (CG) model3 (Figure

1B). How these points interact is de-
scribed by a force field,4 which con-
sists of a set of equations, called poten-
tial energy functions, and parameters
that are used in them. The computer
solves these equations for every point,
calculates the forces acting on them,

Figure 1: A. An all-atom model B. A coarse-grained model. Left is the
skeletal formula of the coarse-grained model on the right.

Superimposed are the correspondent pseudo-atoms.

and updates
the coordinates.
The type of
model dictates
what kind of
a force field
we are using,
which in turn
dictates the set
of parameters.
It also greatly
influences the

performance — it takes a lot of com-
putational resources to simulate an all-
atom system. By simplifying the repre-
sentation, we also reduce the number
of degrees of freedom, allowing us to
simulate bigger systems and longer pro-
cesses.
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One of the most popular simula-
tion software packages is GROMACS,5

which comes with plenty of options to
optimize simulation times, especially on
highly parallel systems. Parallelization
is implemented the domain decompo-
sition algorithm6 (Figure 2). Since run-
ning a simulation on a single core would
take too long, we can parallelize it by
decomposing the simulation box into
domains. Each domain is then assigned

Figure 2: A domain decomposition grid of
4×3×1 cells on 12 MPI ranks.

to an MPI rank, which calculates the in-
teractions within the domain. Some of
the calculations can also be offloaded
to a GPU, which can further improve
the performance. Additionally, the way
GROMACS was compiled can also in-
fluence the performance. However, the
scaling is not always linear and depends
on the size of the system and the type
of algorithm used. Since most of today’s
MD simulations are done on HPC sys-
tems, it is therefore absolutely necessary
to perform extensive benchmarks of rep-
resentative all-atom and coarse-grained
systems, as this data helps guide the
HPC users how to best use the available
resources.

Methods

The simulations were run on the su-
percomputer Cartesius at SURFsara.
The benchmarked nodes were the
CPU nodes of type "Haswell" and
"Broadwell", with 24 and 32 cores
per node respectively, and the GPU
nodes, with 16 cores per node and 2
NVIDIA Tesla K40m GPUs. We used
GROMACS 2020.3 simulation package,
compiled with either the foss or the
intel toolchain. The simulated systems
were as follows: an all-atom representa-
tion of the main protease of SARS-CoV-2
(COVID protease) bound to a peptide,

Figure 3: Comparison of foss and intel toolchains. A. Coarse-grained algorithm and B.
all-atom algorithm on "Haswell" nodes. C. Coarse-grained algorithm and D. all-atom

algorithm on "Broadwell" nodes.

with 98632 atoms, and coarse-grained
representations of DPPC and POPE
vesicles, with 72076 and 72953 pseudo-
atoms respectively. These systems were
chosen as their sizes are representative
of the systems an average HPC user
simulates. The performance was mea-
sured in nanoseconds per day (ns/day)
we could simulate. The scalability was
assessed by calculating R2.

Results & Discussion

We compared scalability of all-atom
and coarse-grained algorithms on CPU
and GPU nodes. Additionally, we bench-
marked two different versions of GRO-
MACS, built with either the foss or the
intel toolchain.

In general, all three systems show
good scaling on all benchmarked node
types. When comparing CPU nodes, the
nodes of type "Haswell" seem to offer
more reliable performance, as shown
in Figure 3. However, as the number
of cores increases, the scaling becomes
suboptimal. The cutoff point seems to
be >300 cores across all systems. The
foss toolchain performs better in terms
of both the ns/day achieved and the
scalability. It only seems to perform
worse for the all-atom algorithm on
"Broadwell" nodes (Figure 3D). There
is a significant drop in performance if
the simulation is run on more than 12
nodes, for example, it drops from ~320
ns/day for 12 nodes to ~140 ns/day
for 15 nodes. The intel toolchain seems
to perform slightly better on the GPU
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Figure 4: Comparison of foss and intel toolchains on GPU nodes. A. Coarse-grained algorithm and B. all-atom algorithm.

nodes, as shown in Figure 4. The drop
in the performance on 7 nodes for the
coarse-grain algorithm is due to sub-
optimal domain decomposition in the
coarse-grained systems for this node
configuration. The overall better perfor-
mance of the foss toolchain could be
partly explained by using different li-
braries for fast Fourier transform. The
foss toolchain comes with FFTW, which
specifically for GROMACS is often faster
than Intel MKL.

In general, the all-atom algorithm
scales better than the coarse-grained
algorithm but does not achieve as
good of a performance, which is ex-
pected. There is some difference in
the performance between the two
coarse-grained systems, which can
be explained by the difference in the
number of atoms and the way they
are distributed in the simulation box.

Figure 5: Performance of all-atom algorithm on "Haswell" nodes depending on the
number of OpenMP threads per MPI used. Toolchain: foss.

There is also variation in the per-
formance depending on how the sim-
ulation box was decomposed and how
many OpenMP threads were assigned
per MPI rank. As we can see in Fig-
ure 5, the best performing setup for the
all-atom algorithm on "Haswell" nodes
and GROMACS compiled with the foss
toolchain is 1 OpenMP thread per MPI
rank in most cases. However, it is often
that 2 OpenMP threads per MPI rank
perform just as well or better. The vari-
ation in performance increases with the
increasing number of nodes, with the
difference between the best and worst
performing option reaching almost 180
ns/day on 16 nodes.
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Storage assessment when handling data from a
virtual research workspace in the cloud

Data Storage
in Cloud
computing
Maria Li López Bautista
João Quintiliano Sério Guerreiro

The innovation of cloud has become a
convenient method to store data online
and, faced with many storage services
providers, there is interest in maximizing
its data processing efficiency.

Nowadays, the use of the cloud
to conduct scientific research
when working with large
amounts of data is becoming

the norm since it provides an easy way
to adapt the system resources to our
needs. So, therefore serving as a cost-
saving and a sustainable approach.

However, data handling can be a
very demanding task given that is de-
pendent not only on the system re-
sources, but also on the type and size
of data that is being dealt with. Here
is when Cloud storage comes in handy
because it allows researchers to store
all the large information that want to
work with without compromising any
disk storage. Thus, it is of great im-
portance to study how distinct storage
types cope with assorted datasets and
how different implementations can lead
to substantial performance boosts of
the data processing tasks. In our case,
performance is how fast executes a
problem with the data stored in a deter-
minate storage service.

With this idea in mind, the main
goal of the project is to study and imple-
ment real life cases in different services
and applications, and compile advice of
the best practices of the different stor-
age systems so that, ultimately, the best
option can be picked. In other words,
the major objective is the creation of

a catalogue with a collection of refer-
ence implementations of pipelines for
real life cases, using different storage
services.

SURF Research Cloud

In order to set up the programming
environment we used SURF Research
Cloud,1 which is a collaboration por-
tal for research used to build virtual
research workspaces. A workspace is
a research environment where a user
can select an application along with the
data that want to work on, and with
that deploy a virtual lab in the cloud
for the user and their colleagues to work
in. In fact, one can use preconfigured
workspaces and datasets or add its own.
Furthermore, institutions, research com-
munities and service providers can con-
tribute to the service functionality by
integrating compute and storage re-
sources.

Other advantages of using SURF Re-
search cloud is that we can:

• Create reproducible research en-
vironments.

• Use the best resources for our re-
search.

• Work together securely.

In our case, we deployed JupyterLab
virtual machines of different flavours

(different number of cores and memory
capacity) since we were working with
Python.

Storage services

For the purpose of comparing and con-
trasting the impact of different storage
systems on performance, also known
as benchmarking, the SURF organisa-
tion provided us with several storage
services in addition to the local memory
of the virtual machine. So far, we have
attempted to work with the following
ones:
SURF Research Drive
SURF Research Drive2 is a cloud-based
shared environment that is specifically
designed for requirements like large
storage quotas and collaborative work
with educational and governmental in-
stitutions or external private parties.

In summary, it provides a straightfor-
ward way to securely and easily store
and share research data.
dCache
dCache3 is a distributed storage for

scientific data. Roughly speaking, it is
capable of managing the storage and
exchange of several hundreds of ter-
abytes of data, transparently distributed
among dozens of disk storage nodes.

84



Methods

Given the objective in assessing how dif-
ferent storage types affect the perfor-
mance of data processing first, it was
necessary to have some data and to
know how to handle it in a Jupyter Note-
book environment in Research Cloud.
After that, some examples on how to
process the data were sketched consti-
tuting the use cases to be tested. Af-
ter having implemented the solutions
for all the sketched sample problems,
these were tested on the same data that
was stored in the local storage of the
created VM’s (Virtual Machines) in Re-
search Cloud, Research Drive, dCache
and iRODs. The latter three storage
systems were made connected to our
workspaces by webDAV communication
protocol thus, the information could be
easily accessed. To be able to compare
all of these, the solutions were executed
several times for each storage system,
and the execution times were registered.
Lastly, a benchmark analysis provided
insight over the efficiency of each stor-
age.

Dataset

In this project we have worked with
climate data from the ERA5 dataset,
provided by ECMWF (European Centre
for Medium-Range Weather Forecasts).5

ERA5 provides hourly estimates of a
large number of atmospheric, land and
oceanic climate variables (from 1979 to
present). The data covers the Earth on a
30 km grid and resolves the atmosphere
using 137 levels from the surface up to
a height of 80 km. ERA5 also provides
information about uncertainties for all
variables at reduced spatial and tempo-
ral resolutions.

This data is downloaded either from
the Climate Data Store (CDS) website
or from API requests, the latter hav-
ing been used for downloading directly
to the storage service in the cloud. It
allows for specifying a desired time
range, region and spatial resolution and
the data is stored in NetCDF files with
hourly values for all the desired weather
variables that one wants to work with.
In this project we have selected the 2
meter surface temperature to be our
working variable. As for the working
region, we have downloaded data cor-
respondent to central Europe but have
only chosen the region of Italy to be an-
alyzed. With regards to time range, data
from 1979 to 2020 was considered.

Use cases - Sample problems

Typically there are two modes of doing
data processing which are sequential
reading of data and targeted access of
data. The sequential reading of data
consists in accessing all of the data’s
information, sequentially, and filtering
it if it is wanted for processing or not.
The targeted access of data requires
some pre-processing which is responsi-
ble for determining the location of the
information of interest in the data. Af-
terwards, the accessing and processing
of information is only made for those
specific locations in the data. In order
to approach both of these modes, three
separate problems were considered:

• Problem 1 - Calculating the aver-
age of a parameter for the whole
history (sequential reading).

• Problem 2 - Calculating the aver-
age of a parameter for a specific
moment in time (targeted access).

• Problem 3 - Calculating the av-
erage of a parameter per each of
the 4 seasons (sequential reading
and/or targeted access).

For the calculation of the average three
different approaches were implemented
to see which of these would result in the
most efficient method for the different
storage types and problems considered.
One of the methods includes resorting
to an Online Algorithm - one that can
process its input piece-by-piece in a se-
rial fashion, i.e, in the order that the in-
put is fed to the algorithm. In addition,
python’s multiprocessing package
was explored, bringing parallelization
into the picture which allowed us to
work with multiple data files simultane-
ously.

Benchmark Analysis

Benchmarking is the process of deter-
mining the best processes, strategies
and techniques to achieve the busi-
ness goals. In this project’s case, it is
to choose the best compute and stor-
age infrastructures for the research. For
that, we’ve tested the storage systems by
running several times all of the imple-
mented approaches for each problem
over the same data stored in the dif-
ferent storage services explained before.
Then, the respective mean and standard
deviation of the running times are calcu-
lated and plotted, allowing a compara-
tive analysis. Furthermore, when work-

ing with multiple data files simultane-
ously (introducing parallelization), the
number of processes was changed and
its running times analyzed.

Preliminary results

The end product of the benchmark anal-
ysis is that all three algorithms based on
the calculation of the average per cell
work faster when data is stored locally
than in dCache or Research Drive, as
shown in Figure 2. Likewise, it has to
be noted that all the results showed are
from Problem 1 since the behaviour of
time with total number of processes was
always the same regardless the problem
treated.

On the other hand, in the following
figure it is noticeable how the increase
of the number of processes leads to a
decrease in the run time of all three al-
gorithms.

Figure 1: Graphical representations of the
resulting mean time values with their corre-
sponding errors for each storage system.

Notwithstanding that, we can also note
that the decrease of time when im-
plementing the "for loop" and "On-
line mean" algorithms is deeper than
when using the "NumPy mean" method.
The reason because the paralleliza-
tion/multiprocessing approach (when
working with several files simultane-
ously) has a major effect in the first ones
is probably due to a RAM issue.

Meanwhile from Figure 2 we can see
that the standard deviations are within
a reasonable margin for all three stor-
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Figure 2: Graphical representations of the resulting mean time values and standard deviations for each storage system while changing
the total number of processes.

Table 1: Mean time values and errors, in seconds, of each algorithm applied to data in three different storage types while changing the
total number of processes.

Alg./Proc. 1 2 4 8 16

Local
for loop 63.77 ± 0.07 32.81 ± 0.08 18.30 ± 0.40 9.51 ± 0.24 6.41 ± 0.39
NumPy mean 2.73 ± 0.003 1.66 ± 0.04 1.07 ± 0.03 0.84 ± 0.08 0.63 ± 0.003
Online mean 68.24 ± 0.20 35.11 ± 0.06 19.58 ± 0.08 10.15 ± 0.11 6.88 ± 0.05

dCache
for loop 77.38 ± 4.66 42.47 ± 1.19 23.23 ± 0.57 14.71 ± 1.82 9.97 ± 0.63
NumPy mean 9.61 ± 0.35 9.93 ± 1.91 11.50 ± 2.00 9.51 ± 1.29 6.99 ± 0.98
Online mean 74.26 ± 0.56 40.34 ± 0.50 23.06 ± 1.46 13.95 ± 1.07 10.15 ± 0.78

Research
Drive

for loop 444.40 ± 26.48 403.77 ± 27.30 375.41 ± 26.70 355.46 ± 22.37 343.97 ± 21.94
NumPy mean 421.64 ± 17.94 410.22 ± 24.00 395.57 ± 22.63 384.59 ± 17.23 382.79 ± 20.75
Online mean 449.11 ± 16.59 417.14 ± 18.60 399.40 ± 16.30 377.19 ± 18.42 371.19 ± 20.05

age services. Only in the case of Re-
search Drive are they slightly larger due
to the unstable internet connection.

Conclusions

In this study we have tested three differ-
ent storage systems under three differ-
ent problems where we have shown that
Research Drive stands as the slowest
choice for handling stored data. By look-
ing at the information in Table 1 one
can see that, considering the "for loop"
and "Online mean" algorithms, Research
Drive is 7 times slower than the local
storage when considering 1 process and
about 50 times slower when consider-
ing 16 processes. For the "NumPy mean"
algorithm, Research Drive shows to be
150 times slower to 600 times slower
when compared to local storage consid-
ering 1 process and 16 processes, re-
spectively. As for dCache, it has shown
for the "for loop" and "Online mean" al-
gorithms to be 1.2 times slower to 1.6
times slower when compared to local
storage whereas for the "NumPy mean"
algorithm it was 3.5 to 11 times slower
considering 1 process and 16 processes,
respectively.

Summing up, we conclude that
when local storage (by our definition
of it) does not have limitations of mem-
ory it is preferable for data processing.

On the other hand, when dealing with
large datasets, where the system’s lo-
cal memory is limited and the data is
being shared with many users, dCache
stands out as a strong candidate pre-
senting very close results to the local
storage.

For the final considerations, we have
found that working with climate data is
of great importance since allows peo-
ple to trace models and make previ-
sions about the future, but this can be
a very demanding and resourceful task.
By working with this kind of data and
exploring which storage type allows to
maximize the efficiency and speed of
data processing, we are contributing to
make this task less laborious and less
expensive.

With regards to future work, it
would be of interest to explore other
datasets and extend this analysis to
more storage services used in research
such as iRODS, Ceph, CVMFS and Open-
Stack Swift.
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Spur Gear Generation Software For Transient
Finite Element Contact Analyses

Spur Gear
Generation and
Contact
Analyses
Bartu Yaman, Ceren Tamkoç

Development of software that allows the
user to easily produce a gear pair for finite
element analysis and study the stress
distribution of the contact region.

Spur gears are a type of cylindri-
cal gears, having teeth that are
parallel to the shafts. Spur gears
are the easiest gear type to man-

ufacture and use since they don’t pro-
duce axial forces. Also they can work
regardless of the number of teeth of
the gear pairs and provide constant
drive speed. Because of these traits,
spur gears are the most commonly used
gear type in various industries and this
makes them valuable for analysis and
studies.
Hence we are aiming to create a soft-
ware to facilitate the analysis process of
this type of gear by allowing researchers
to automatically draw gears using their
parameters.

How Do You Generate A Gear?

To generate a gear, we first need to cal-
culate some points that will create the
necessary curves once interpolated.
For this, we use the following equation
of basic rack profile for spur gears to
obtain the addendum part of the gear:

yi = ap.m.(1− (1− xi/m)n) (1)

After that, we calculate the points that
are on the pitch circle and that will con-
nect the pitch circle body of the gear to
the gear teeth with the following equa-
tions:

xG = rGsinϕG (2)

yG = rGcosϕG − rG (3)

Figure 1: Spur gear geometry example.

These calculated points are
then checked for validity
and rearranged if they are
good to proceed with the
drawing part of the proce-
dure. Later, straight lines
are drawn between the cal-
culated points to join them
together and obtain a com-
pleted gear profile on a
2D plane. This profile is
then extruded by the user
specified amount, thus gen-

erating a 3D gear model.

The same procedure is repeated for
the second gear, which will complete
the gear pair. The second gear is then
translated in 2D into the correct orien-
tation for analysis, producing the geom-
etry shown above.

For this task, Python has been used
to perform the necessary point/curve
calculations and create a user friendly
interface for the input values. For the
drawing part, Python scripting for the
SALOME software has been used.

Figure 2: 2D geometry before ex-
trusion into 3D.
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Flowchart showing the function calls of the developed software

Software Design Choices

Our software consists of three sepa-
rate files for user interface initialization,
gear geometry calculation and drawing
of the calculated points.
Parallel Computing?
Anytime HPC usage is mentioned, the

first thing that comes to mind is parallel
computing! However, parallelization
in this context was not so simple. SA-
LOME, the drawing software we used
refused to work in parallel which forced
us to split the procedure into two parts
to at least parallelize where we can.
Thus, we chose to parallelize the point
calculations and engineered it in such
a way that one thread calculates only
one gear. This choice can also allow the
software to scale better and easier in
the future if it’s development continues.

Not All Parameters Are Valid
The user may enter invalid gear pa-
rameters, which means that we need
to handle the necessary errors. By de-
sign, we preferred to handle all the
errors and carrying out all the neces-

sary checks outside SALOME to save
user time and effort. All of the checks
are done during the point calculation
process, allowing the user to imme-
diately see the that there are invalid
parameters and correct them before
loading the parameters into SALOME.
Invalid parameters are the only way this
software can fail, therefore letting the
user know about the errors outside SA-
LOME makes the software very reliable
and easier to use for the user since it
takes some time for SALOME to reload
the script which can be frustrating.

Save The Parameters
All of the necessary parameters and
points needed to generate the gears
are saved as compressed files inside the
code directory. Which allows the user
to redraw the last calculated gear pair
without having to enter inputs again.

These choices add up to a reliable
procedure for easy and fast gear pair
generation, which can be used for con-
tact analyses later on.

Finite Element Method

Finite element calculation method is
in the form of processing the solution
matrices transferred to the computer
processor by transforming complex ge-
ometry and parts into a finite number
of calculation cells called elements. The
frequency of these calculation points af-
fects the accuracy and precision of the
solution. Demonstrating this sensitivity
in studies is at least as important as val-
idation. The general logic in this study
is based on the determination of the
values to which different element sizes
converge, and the evaluation of work-
ing with the optimum element size in-
dependently of this element size. Since
the finite element calculation method
includes many sub-analyses such as dif-
ferent element sizes and different sce-
narios, the study using this method actu-
ally brings along many sub-studies. En-
suring all of these processes is possible
with high-performance computers. The
high number of processors and mem-
ory capacity (RAM) in these computers
enable a wide range of analyzes to be
performed quickly and effectively.
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Meshing

Creating the Model Solid modeling is
used to create the finite element mesh
of gear. In order to control the geomet-
ric shape, number and density of the
elements, the solid model is established
as a collection of many regions.The
points are used to define the lines and
finally the surfaces are created by the
appropriate combination of the lines.
The parameters that determine the
element number and density are ap-
plied to the edges of the regions. After
these processes are completed, the gear
finite element model is established
with the meshing command. In the
regions where the stress in the struc-
ture changes rapidly, element density
is kept high, and in the regions where
the stress changes more slowly, the
element density is kept low. As a result,
the finite element model of the gear
obtained for the finite element stress
analysis is shown in Figure 3.

Figure 3: Meshing of Gear.

NETGEN 2D and 3D hypotheses
were used to manage the NETGENPLU-
GIN parameters.
2D group allows defining the size of 2D
elements
• Length from edges if checked in, size
of 2D mesh elements is defined as an
average mesh segment length for a
given wire, else
• Max. Element Area specifies expected
maximum element area for each 2D
element.
• Allow Quadrangles - allows to gen-
erate quadrangle elements wherever
possible.
3D groups allows defining the size of
3D elements.
• Length from faces if checked in, the
area of sides of volumetric elements
will be equal to an average area of 2D
elements, else
• Max. Element Volume specifies ex-
pected maximum element volume of
3D elements.

Figure 4: The algorithm and hy-
pothesis .

The total element values created for
element type and geometry are shown
in figure 5.
1D egde : 8488 B32
2D faces: 163110 S6
3D volume: 1004492 C3D10

Figure 5: Element Types

1 Results and Discussion

As a result of the analysis by applying
the boundary conditions, the physical
behavior of the real structure is simu-
lated.In order to determine the bound-
ary conditions correctly, a subgroup has
been formed in gear geometry.(Fig.6)

Figure 6: Groups from geometry

Boundary conditions are defined to
specify the torque, rotation and sup-
ports which allow gear pair rota-
tion about the Z-axis in the counter-
clockwise direction. Therefore, the
torque of 0.9 Nm is applied at the gear
shaft at Z-axis in that direction.The con-
tact region of the gear is shown in Fig7.
pinion is slave and gear is the master.
Pinion material is POM; gear material
is PA66.

Figure 7: Groups from geometry

In the project, a static analysis was car-
ried out to observe the stress distribu-
tion of the contact region of two spur
gears. First, the geometry boundary con-
dition was divided into groups in the Sa-
lome program, and then a mesh was cre-
ated on the surface. After the mesh re-
moval process was completed, after the
boundary conditions were determined
in the CalculiX, the solver was run and
the results were obtained. According to
the results of the study in the literature,
the highest stress values were measured
in the contact areas of the gear.

Figure 8: Maximum stress point
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Big data management for better electricity
consumption prediction

Big data
Management
for SoHPC
Irem Zeynep Dundar & Omar Patricio Pérez
Znakar

Predicting energy consumption accurately
is an important task for energy production.
Therefore, the computation time is
essential, since it will allow us to be able to
produce the necessary energy for each
section of the day and, therefore, not
waste this essential element.

This project has been raised with
the idea of testing how an ex-
isting code related to the pre-
diction of energy consumption

scales from a local server to a supercom-
puter.

This code has been developed with
Python and R and performs the follow-
ing actions: retrieve data, store it in
MongoDB and reload it when necessary.
In addition, based on historical data, we
have developed scripts that build pre-
diction models.

Therefore, the main objective of this
project is to test how we can adapt the
existing R and Python scripts so that
we can build 10,000 models and predic-
tions within the time limit of approx. 1
hour using a supercomputer with state-
of-the-art storage and compute nodes.

1. Introduction.

This project will be oriented to verify
how a code related to the forecast of
energy consumption is scaled from a
local server to a supercomputer. This

process will be implemented through
Python and R in order to perform differ-
ent actions required to fulfill the objec-
tive of the project.

2. Data supplied.

The data used for the project has been
provided by the professor in charge, we
must clarify that this data is private, and
therefore, the ID of the consumers has
been encoded in such a way that it can-
not be revealed who each consumer is.
However, these data provide us with the
necessary information for the prediction
of energy consumption.

A. Test data.

To carry out the test, the data from one
of the project files was required, so a
small fragment of all the data was used
for this. En concreto, tenemos 8*2=16
data files for 8 consumers, one file con-
taining full historical data and one file
containing data needed for prediction.

B. Final data.

Regarding the final data, we must clar-
ify that this data has been collected
through an external database (Mon-
goDB) for this, the script provided has
been modified to accept the integration
online, resulting in all the data obtained
throughout the project.To access this
data a docker container running on one
partition of the cluster was used (more
information in the section 4).

3. Script used.

The sequential script used in this project
was provided by the mentor, thus allow-
ing the prediction of energy consump-
tion. This process was possible thanks
to small apprenticeships, constituting
two categories: supervised learning and
unsupervised learning.

A. Parallelization libraries.

To carry out this project, we have had
to parallelize the code using various ex-
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Figure 1: Comparison using test data.

Figure 2: Comparison using end data (MongoDB).
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isting libraries. For this reason, some of
the most important libraries have been
chosen and incorporated into the code
in order to later make a comparison and
select the most appropriate one. The li-
braries used can be seen below:

• DoParrallel, foreach and Parral-
lel[4]: these three libraries allow
us to be able to parallelize a code
without doing much configura-
tion.

• Mcapply [1,2,3]: It is one of the
simplest ways to parallelize the
code and, therefore, one of the
most commonly used.

• ParSapply [1,2,3]: It is a parallel
function to the "sapply" method,
allowing to create a cluster from
where the code can be executed.

• ParLapply [1,2,3]: It is a func-
tion that allows us to use the "lap-
ply" method in parallel. In adition,
it allows us to execute the code in
a cluster (previously created).

4. Server used.

The main objective of the experimen-
tation has been to be able to measure
times through the various ways of par-
allelizing the code to select the most
suitable library for this purpose.

A. Server used to run the
scripts.

To carry out the project, the mentor
in charge provided us with a server,
which already had the R program in-
corporated, which in turn expedited the
work by not having to require installa-
tion and maintenance tasks. In addition,
this server has a number of 48 cores,
which opens the way to a much more in-
depth comparison, since a greater num-
ber of cores does not always imply less
task execution time.

B. Server used for MongoDB
container.

For this section, a MongoDB container
has been created (via a Docker con-
tainer) that has the final project data
stored. Likewise, a REST API has been
made to be able to contact this database.
This REST API has been created using
Python (using the Flash library). This
procedure is used to interact more eas-
ily and to facilitate access to external
data.

5. Experimental results of the
performance of each library.

The main objective of the experimen-
tation has been to be able to measure-
times through the various ways of paral-
lelizing the code, to selectthe most suit-
able library for this pur-pose.

A. Local Computer with test
data.

For the development of a first com-
parison locally, we have used the test
data inside a conventional computer (3
cores) using the modified code with the
libraries that allow us to parallelize. We
can see the result obtained in Figure 1.

As we can see in the previous Figure
1, the highest execution time obtained
is the sequential version (of course).
Similarly, it should be noted that the
times obtained in each parallel version
are more or less similar, therefore, we
should not opt for any, at least for now.

B. Server with final data.

For the development of the compari-
son, the server provided by the research
mentor has been used. By having 48
cores, the code has been executed us-
ing 48, 24 and 12 cores to obtain more
complete results. It should also be noted
that the code has been modified by
adding a new variable called "Nmax".
This allows us to configure the size of
the problem and, therefore, through
logic, the smaller it is, we should ob-
tain a shorter execution time.

After carrying out the comparison
(Figure 2), we have detected that for a
medium problem size (Nmax 10), the
most optimal is to use 12 cores since
they provide us with less execution time
and we can leave the other 26 cores
available for another execution, how-
ever, for a larger problem size (Nmax
50), we can see that using 48 cores is
the optimum option.

Finally, we can say that ParSappply
obtains a shorter execution time, how-
ever, it should be noted that ParLap-
ply has a higher time but quite similar,
therefore, the most logical thing would
be to use either of these two options.

6. Conclusions.

To explain the conclusions, we will take
into account the following points:

• First step to take: one of the
most important steps is to fully
understand the data and what is
required with it.

• Technology comparison: there
are several technologies to paral-
lelize the code, however we need
to do some research to see which
one best suits our problem.

• Number of cores: not always, a
greater number of cores gives us
a higher processing speed. This is
because the joining time of these
can be greater than the advantage
that having more cores gives us.

• Fundamentals of power con-
sumption measurement: for a
smaller problem, it is better to
use 12 cores; however, for a large
problem, the best option would
be to use 48 cores.

• Best technology: With a large
amount of data, all technologies
give us the same results.
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İstanbul], Omar Patricio Pérez Znakar
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Optimization of TopOpt using multiple GPUs, an
application used for topology optimalization

Making
TopOpt run
faster using
GPUs
Martin Stodůlka, Theodoros Aslanidis

Lately, GPUs have become ubiquitous in
HPC computing and used as accelerators
for numerous applications. Therefore, it is
only logical that scientific applications can
take advantage of their speed and
versatility too. Our project aims to reduce
the execution time of the Topology
Optimization problem while leaving the
accuracy of the results intact.

The Topology Optimization prob-
lem is a mathematical method
which spatially optimizes the
distribution of material within

a defined domain, by fulfilling given
constraints previously established and
minimizing a predefined cost function.
When we want to apply Topology Op-
timization to an object or an element
we can separate the process into three
stages. At first, we define a material
block and we discretize it in elementary
blocks. According to a list of objectives,
topology optimization determines if we
need or not this elementary block. The
sum of these elementary results gives
us a proposal of the shape. The scope
of this application can be aerospace,
mechanical, biochemical, and civil engi-
neering. It can lead to better performing
solutions in drastically shorter amount

of time and, hence, reduced costs. A
topology optimization problem can be
written in the general form of an opti-
mization problem as:

minimize
ρ

F = F (u(ρ), ρ)

=

∫

Ω

f(u(ρ), ρ)dV

subject to G0(ρ) =

∫

Ω

ρdV − V0 ≤ 0

Gj(u(ρ), ρ ≤ 0 with j = 1, . . . ,m

Original Implementation

The original TopOpt1 code given to us as
a starting point is a console application
used for large-scale topology optimiza-
tion on structured grids. It’s written
in C++ and makes use of the PETSc2

library that is responsible for all the
calculations. Moreover, there are some
python scripts used for converting out-
put .bin files to the .vtu file format that
ParaView takes as an input to illustrate
the final result.

Thanks to the PETSc library, TopOpt
is inherently able to run on multiple
CPUs on multiple nodes. It mainly uses
solvers for the system of linear equa-
tions (KSP) from PETSc for its com-
putation. The console application it-
self is flexible, allowing anyone skilled
enough in programming to alter the op-
timization or write their own using their
classes like TopOpt, Physics, Filter, etc.

The base implementation without
any changes outputs a cantilever beam
which can be used to test any changes.
Our main task was to change the
TopOpt code to work on GPUs in hopes
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of achieving better performance than
the original CPU implementation due
to the inherent massive parallelism of
GPUs. All measurements and tests were
done on the ULHPC supercomputer Iris.

TopOpt Output Examples

Figure 1 depicts six optimized cantilever
beams on a 2 × 1 × 1 domain allow-
ing 12% material discretized by 27.6
million elements. The design problems
differ through the filter radius. The fig-
ure also illustrates the internal holes
generated for the smaller filter radius.
Through the above image, one can with-
out difficulty notice that the result given
by the TopOpt application is not some-
thing fixed but can vary greatly depend-
ing on the parameters set. The parame-
ters usually are influenced by the goal
we want to achieve, which is different
from field to field.

Figure 1: Different cantilever beam TopOpt
solutions

PETSc

PETSc is a library specially designed for
mathematical operations modeled by
differential equations. It supports MPI
for parallelism across multiple nodes as
well as CUDA/OpenCL for GPUs and
hybrid CUDA/MPI for GPUs across mul-
tiple nodes.

It consists of multiple mod-
ules/classes. Each class is used for
one type of operation/data structure
such as: Matrices, KSP, SNES etc. We
will be focusing on KSP, because of

the results from profiling of the code
mentioned further down below.

KSP is a package for linear system
solvers using Krylov subspace method
and a preconditioner. Krylov subspace
method is used for solving linear sys-
tems using vector multiplied by matrix
instead of matrix-matrix multiplication.
Preconditioning is used to speed up the
convergence of Krylov methods.

Profiling

The first step before attempting any sort
of optimization was to identify slowest
parts of code and setup a baseline for
speeds and scaling of current implemen-
tation. We used VTune to get a complete
picture of where most of the time is
spent.

After running the original implemen-
tation of TopOpt on 4 nodes we have
generated and inspected the profiler
output. As we can see in the Fig. 2 be-
low, KSPSolver is taking up 80% of com-
putational time. KSPSolve is a function
from the PETSc library that solves linear
system of equations.

Figure 2: Profiling of the TopOpt applica-
tion on a single node using the VTune tool

From our results TopOpt scaled only
up to 4 nodes after which there was
minimal benefit to adding more com-
pute nodes. The main reason for that is
because the critical parameter was the
MPI processes that the program uses.
Beyond a certain level, no matter how
many nodes we add, the execution time
will not decrease unless we increase the
MPI processes. But this is something we
can not increase as much as we want,
because it depends on how strong (how
many cores and therefore threads) each
node has. From 1 to 4 nodes when we
increase the MPI processes, the applica-
tion seems to be able to take advantage
of the resources given to it to the fullest,
but from then on, this is something that
does not apply. The table 1 contains all
the times we measured during our ex-
periments.

CPU variant of TopOpt

Number of Nodes Time(s)

1 270
2 199
4 171

Table 1: TopOpt scaling with nodes

Using GPUs with PETSc

PETSc has an easy way to port exist-
ing code over to using GPUs. There are
no special GPU functions for already
existing CPU functions or any other ad-
ditional functions that need to be called
to manage memory on GPUs. Instead,
all matrices and vectors must be of a
special CUDA type, and then PETSc will
automatically execute any operations
using CUDA variants of arguments (if
they are supported) on GPU. To be more
specific, let V and M be a vector and a
matrix respectively, then the following
functions should be used:

VecSetType(V, VECCUDA)
MatSetType(M, MATAIJCUSPARSE)

This way, any operation related to the
above will be done on the GPU and the
result will then be transferred to the
CPU.
However, the existing implementation
of TopOpt did not work by simply
switching types of matrices and vectors
to CUDA type. It turns out that certain
combinations of KSP solvers and
preconditioners do not work with GPUs.
The preconditioner method that the
original CPU implementation was using
is called PCMG (Multigrid
Preconditioning). This specific method
had not an immediate GPU support, so
we had to try different preconditioners.
We tested all combinations of two
solvers and three preconditioners for
GPUs that we have found based on our
research through similar libraries that
use GPUs with PETSc, to solve a linear
system of equations. We have chosen
GMRES and PCG as our solvers and
NONE (Incomplete LU), GAMG and MG
as our preconditioners. We also tried to
setup their parameters by reading from
documentation pages of PETSc.

Maintaining correctness

When we finally had our first successful
execution of the program using the
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GPU, our first concern was to make
sure that our implementation did not
alter the original CPU result and the
accuracy of the program remained the
same. To find out, we used ParaView to
see the output of TopOpt both in the
initial implementation and in our own.

Figure 3: CPU and GPU TopOpt output com-
parison using ParaView

As shown in the figure 3 above, the two
results were identical, so we proceeded
to the next stage which was the
comparison of the performance of the
two implementations.

Results

We tested many different parameters to
see their effect on the execution time.
Some of them are the number of nodes,
the number of MPI processes, GPUs, as
well as solvers, and preconditioner
types. We tested all combinations of
KSP solvers and preconditioners and
we observed that GMRES solver and
ILU (default) preconditioner was the
only one that outperforms the original
implementation by a small margin.
With 8 GPUs (2 nodes), the
implementation was about 15 seconds
faster or 1.11 times faster. Fig. 4 shows
the time comparison between the two
implementations.

Figure 4: Time Comparison of CPU and GPU
variants of TopOpt (in nodes and GPUs re-
spectively)

Another series of experiments that we
tested in the GPU variant, showed that
the different topology used in the
resources for the execution of the
application does not play an important
role in the execution time. More
specifically, if the number of GPUs is
the same, the execution time is similar
whether the GPUs are on the same
node or a different node. Even in the
extreme case where we tried to run the
program using a total of 4 nodes and 1
GPU per node, the execution time was
similar to the case where we used 4
GPUs in 1 node. In conclusion, the
parameter that plays the dominant role
in the program’s performance is the
number of MPI processes. As in the
case of the CPU implementation, the
GPU one also does not show any
performance improvement if we use
more than 4 GPUs. The maximum
number of MPI processes that Iris
clusters can support is 4, so that was
our limit.

Figure 5: CPU vs GPU comparison as we
change the number of MPI processes

Fig. 5 shown above shows that our
effort is outperforming the original
CPU code for 1, 2 3, and 4 MPI
processes. This result is quite
satisfactory and encouraging.

Conclusion and Future Work

In this article, we explained what
Topology Optimization is, and analyzed
the methodology we followed, to
improve its performance. This process
was not straightforward, as various
obstacles troubled us. We proved that
such an effort has positive results as
our code has less execution time than
the original. Future work could be a
further analysis of the preconditioner
methods and the attempt to properly

configure them through the PETSc
library so they can also run on GPUs.
Preconditioner methods such as
multigrid that performed well on the
CPU may improve the performance of
the GPU even further.
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Aerodynamic analysis of the DrivAer car model
developed at Technische Universität von
München

DrivAer car
aerodynam-
ics
Paolo Scuderi and Benet Eiximeno Franch

The aim of this project was learning how to
perform a CFD analysis of a car and
understand which of the most common car
geometries had the best performance from
an aerodynamic point of view.

The DrivAer is a generic car
model developed by the
Technische Universität von
München. They provide several

CAD models for different configura-
tions. All the configurations are based
on three different car geometries (Fast-
back, Notchback and Estateback) and
for each cases there are various CAD
models with increasing level of detail.
The most basic models only include the
shape of the body without wheels and
mirrors, while the most elaborated also
have the design of the internal compo-
nents such as the radiators, engine and
exhaust.

During the development of this
project, the three different geometries
have been used, always working with
the configuration that has side rear view
mirrors but not wheels nor internal com-
ponents, on account of the good accu-
racy given by analyzing the body when
comparing the drag formation mecha-
nisms of cars.

Although the comparison of the
three geometries is important, in CFD
it is also important to compare the se-
tups of the cases in order to see how
they affect the results. Therefore, be-

sides the comparison between the three
geometries a deep analysis of how the
case configuration changes (i.e. solver,
turbulence model, and geometry) affect
the result has been done.

Mesh assessment and grid sen-
sitivity

In order to find the appropriate mesh
strategy and sizes, three tests have been
conducted making use of the Fastback
geometry at Re = 9× 106 which is the
highest to be analyzed. All of them com-
bining extruded triangles in the bound-
ary layer region and tethraedra in the
rest of the domain.

The size of the domain is the one
specified in Heft et. al.1 It has remained
unchanged in all three cases. The longi-
tudinal axis of the car is parallel to the X
axis, which has the direction of the inlet
airflow. The Z axis is oriented vertically,
starting from the road plane and the Y
axis forms a positive base with the other
two.

• Version 1: 8 million elements.

• Version 2: 46 million elements.

• Version 3: 72 million elements.

It should be noted down that the
version 3 mesh had too high non-
orthogonality levels in the boundary
layer elements located in the side rear-
view mirror area due to the geometry
constraints and it was not possible to
run it during the Summer. Hence, only
mesh version 1 and 2 have been used
for this study. Figure 1 shows the second
version.

Figure 1: Mesh 2.

Figure 2 illustrates the comparison
of the CP distribution on the symme-
try plane of the car of the two meshes
with the experimental data obtained by
Heft et. al.1 at the same Reynolds num-
ber. Although in this model the wheels
have not been considered, the results
show a clear agreement between the
method and the experimental results
for the flow near the wall, however, fig-
ure 3 shows a big change in the value of
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the distribution of the upstream veloc-
ity in the wake of the car between the
two meshes. It is clear that the results
discrepancy between the two meshes
relies on the different wake resolution,
hence, the version 2 of the mesh will
be taken as it is the one which provides
more accurate results.
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Figure 2: Pressure distribution on the car
symmetry plane.
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Figure 3: Wake velocity profiles.

Case setup

Considering the time and resources
available, all of the simulations have
been performed using Reynolds Aver-
aged Navier-Stokes turbulence models
with a wall model in the boundary layer
area. This made feasible to run every
mentioned simulation mentioned simu-
lations in time getting a good accuracy
in order to understand the flow struc-
tures around a car.

The boundary conditions for veloc-
ity and pressure in the different regions
are the following:

• Inlet: fixed velocity value with
zero pressure gradient.

• Outlet: uniform velocity value and
fixed pressure value.

• Sides: slip wall with zero pressure
gradient.

• Car: no slip wall with zero pres-
sure gradient.

• Road: fixed velocity value with
zero pressure gradient.

The steady state simulations have
been computed using the simpleFoam
solver, while the transient simulations
have been performed with pimpleFoam
taking a maximum Courant number of
1 and an adjustable timestep in order to
meet the CFL stability condition.

Finally, the case has been decom-
posed in order to run it in the HPC
machine Iris of the University of Lux-
emburg. All cases have been run with
672 cores, which is a number that al-
lowed to run the cases in a reasonable
time without excessive long waits in the
queue.

The paralelization of the cases is
done by splitting the mesh in between
the available processors. This division
can be obtained using several algo-
rithms and it has a huge impact on the
scalability and performance of the com-
putation. In this project two of them
have been tested in a 46 million ele-
ments mesh:

• Simple: it splits the domain vol-
ume equally between the proces-
sors.

• Metis: optimized algorithm to as-
sign to each processor the same
amount of elements with the min-
imum amount of nodes shared be-
tween them.

The performance impact between both
algorithms is quite significant, being
Metis the fastest option taking no more
than 1.5 seconds per iteration while us-
ing the decomposition made with the
Simple algorithm it takes more than 3
seconds to do the same computation.

Results

Several simulations were run to investi-
gate the effects of the geometry in the
flow structures and the impact of the
changing in the Reynolds number and
the turbulence models. Starting from a
converged solution, the previously ex-
posed boundary conditions have been
imposed. The simpleFoam algorithm,
already implemented in OpenFOAM,
was used. The following incompressible
Navier-Stokes equations were solved.
∀i, j ∈ {1, ..., d}

∂xi
ui = 0

∂tui + uj∂xj
ui + ρ−1∂xi

p− ν∂2x2
j
ui = fi

where d is the dimension of the prob-
lem.

Effects of the geometries

To investigate the effects of geometry
in the flow structure, the following val-
ues have been imposed: U∞ = 10 m/s
and the kinematic viscosity as ν = 10−6.
These fictitious values are commonly
used in the majority of OpenFOAM tuto-
rials. The simulations were run with the
already mentioned criteria on the ULux
cluster. To post-process the results, the
attention was focused on the coefficient
of pressure and on the computation of
the Q-criterion. Starting from the defini-
tion of the CP for incompressible flows

CP = 1−
(
U

U∞

)2

where U is the local velocity magnitude,
from figure 4 is observed similar front
flow structures for all the geometries.
The rear body changes the backflow
structures.

Figure 4: Coeffients of pressure distribution
and Line Integral Convolution in the back.

In particular, for the Fastback and
the Notchback configurations, the flow
starts to decrease its velocity magnitude.
This decrement involves an increment
in the pressure value, i.e. adverse pres-
sure gradient. Therefore, these will be
areas of possible fluid separations. It is
more important in the Notchback shape,
where the presence of the rear horizon-
tal compartment implies a more signifi-
cant deceleration of the fluid flow. For
these reasons, in both the geometries,
figure 4 shows the presence of two recir-
culation bubbles, which are not present
in the Estateback configuration. These
bubbles affect the flow structure in the
wake region. For the Estateback config-
uration, the wake vortices have bigger
width than for the other two configura-
tions, as shown in figure 5.
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Figure 5: Back recirculation bubbles in XZ
plane.

Introducing the definition of the
scalar Q-value according to Hussain2

Q =
1

2

[
tr
(
ΩΩT

)
− tr

(
SST

)]

where Ω is antisymmetric and S is the
symmetric part of the decomposition
of the velocity gradient ∇u. When the
scalar Q-value is positive areas of higher
vorticity than strain rate in the flow are
being considered. Obviously, if it is null
the two values are perfectly balanced.
In particular, the Q-criterion computed
for Q = 10 in figure 6 shows the tur-
bulence structures for the N geometry.
Look at Scuderi and Eiximeno for F and
E comparisons.

Figure 6: Q-criterion. Wake structures for
Notchback.

Effects of the Reynolds number

To analyze the effects of the Reynolds
number, according to the capability of
OpenFOAM to work with the dimension-
less equations, without changing the ve-
locity boundary conditions, several val-
ues of kinematic viscosity were chosen
to have the following Reynolds number:
3 × 106, 6 × 106, 9 × 106. In particular,
having fixed the velocity U∞ = 10 m/s
and the reference length as L = 4.5 m,
respectively the following kinematic vis-
cosities have been set: ν = 1.5 × 10−5

m2/s, ν = 7.5 × 10−6 m2/s, and ν =
5 × 10−6 m2/s. All of the simulations
were run for the three geometries. The
results were computed in terms of CD

values as shown in figure 7. The three
distinct lines are typical for a blunt body
after the so-called subsonic crisis of re-
sistance. Generally speaking, cars are

blunt bodies hence the biggest contribu-
tion to the aerodynamics forces is asso-
ciated with pressure.
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Figure 7: Dimensionless drag comparison.

Effects of the turbulence models

To investigate the effects of the turbu-
lence models the Fastback configuration
has been used setting inlet boundary
conditions velocity as U∞ = 10 m/s,
kinematic viscosity as ν = 10−6 m2/s,
and the previously reported parameters.
Two equations models were used: k− ε,
k − ω, and k − ω SST . The dimension-
less drag values were computed respec-
tively, CD = 0.130, CD = 0.824, and
CD = 0.162. The most accurate is the
k − ω SST . The k − ω estimates accu-
rately the flow near the wall. In con-
trast, the k− ε predicts well the flow far
from the wall. Both the effects are taken
into account thanks to the k − ω SST .
Consequently, slicing along the X axis
the internal mesh used to compute the
wake region, we point out a lot of dis-
crepancies for the k−ω. On the contrary,
the k − ε wake results are in line with
the k-Omega SST ones.

Future works

Future works will be based on the incre-
ment of the complexity of the car and
the numerical models. More detailed
numerical results can be obtained by
using DES and LES starting again from
cars without wheels. Then the introduc-
tion of the wheels is mandatory before
going on with all the other details.

Conclusions

The work aims to investigate the exter-
nal flow over three different no-wheels
rear back models of the DrivAer car.
On our local machines the meshes for
all three configurations were prepared:
Fastback, Estateback, and Notchback.

The mesh accuracy was tested by com-
paring our numerical wake results with
the experimental one provided by Helf
et al.1 On the ULux cluster OpenFOAM
was used to compute the numerical so-
lution based on RANS. Three different
comparisons were made: the first one
purposes the effects of the geometry in
the flow structures. The second one has
been based on the study of the changing
in the Reynolds number for each geom-
etry configuration. The third one aims
to understand the effects of turbulence
models in the numerical solution for the
Fastback version. In the end, the Estate-
back configuration has the biggest CD

value, hence the most considerable tur-
bulence structures in the wake region.
No huge variations in the CD values
are present for a selected configuration.
This is typical of all the blunt body in
the fluid dynamic regime studied. The
most accurate turbulent model tested is
the k − ω SST . In the wake region, the
k − ε results are not so far from it.
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Extension of the Marching Tetrahedra Algorithm for
the Computation of Molecular Surfaces

HPC and
Molecular
Surfaces
Ulaş Mezin, Miriam Beddig

The aim of the project is to extend and
improve the implementation of the Marching
Tetrahedra algorithm. This algorithm is
currently used to determine biomolecular
surfaces based on an approximation of the
electron density.

This project deals with the com-
putation of molecular surfaces.
The goal is to continue the ef-
forts already initiated in last

year’s SoHPC project 2024, where a
novel approach based on Marching
Tetrahedra had been developed from
scratch.

The shape of a molecule can be de-
fined in various ways.1 In this project,
we are focusing on modelling the molec-
ular surface as an isosurface of the so-
called electron density. The electron den-
sity represents the probability of finding
an electron in a specific location around
the molecule. Since it decreases expo-
nentially with the distance to atomic
centres, a small enough chosen thresh-
old value can serve to mark off the over-
all shape of the molecule under investi-
gation.

Several algorithms are available to
compute isosurfaces. One approach is
the Marching Tetrahedra2 algorithm
which has been taken into account in
this project. It is possible that the re-
sulting isosurface is not a single closed
compound but rather consists of sev-
eral closed surfaces (see Fig 1). How-

ever, for virtually all physical applica-
tions that build on molecular surfaces it
is necessary to be able to differentiate al-
gorithmically between different closed
surfaces (red or blue in Fig 1).

Figure 1: Surface of Buckminster Fullerene,
C60. The surface is a composition of an inner
surface (red) and an outer surface (blue).

A very general approach — consid-
ered last year — is the computation of
the Euler characteristic.3 The Euler char-
acteristic can be used to determine if the
resulting isosurface consists of a single
layer or if it is a composition of multiple

closed surfaces. However, this approach
is computationally demanding and it is
not possible to distinguish different sur-
faces algorithmically. Consequently, one
goal of this year’s project is to tackle
this problem.

Since the program shall also work
for large molecules, one further goal of
this year was the improvement of the
efficiency of the computations.

Distinguishing different surfaces

A literature review was performed to
find possible algorithms which tackle
the mentioned problem of distinguish-
ing different surfaces.

During the review, the Voxel Sweep
algorithm was found.4 This algorithm
is an extension of the Marching Cubes
algorithm and is supposed to solve the
open problem outlined above. To begin
with, independently of the existing code,
a 2D version of the algorithm was im-
plemented. This was done with Python3
and the Jupyter Notebook (see Fig 2 ).

The implementation of the 2D Voxel
Sweep algorithm runs in strictly sequen-
tial order over the grid. We explored
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how the algorithm can be parallelized.

Figure 2: Result of 2D Voxel Sweep: The
blue dots represent grid points in the inte-
rior of some object. The dots in red, green
and yellow describe resulting surfaces. The
algorithm correctly detects three indepen-
dent surfaces and colours them differently.

For that, the grid was divided into
sub domains which don’t overlap. Then,
the Voxel Sweep algorithm was applied
on each sub domain independently (see
Fig 3). After that, an additional merge
was carried out that finalised the open
space between individual sub domains.

Figure 3: The Voxel Sweep algorithm is ap-
plied to each sub domain independently. The
remaining step is to merge the surface com-
ponents of each subgrid.

We implemented the 3D Voxel
Sweep algorithm in C and inserted it
into the existing program. The code cre-
ates for each disconnected surface a
file in PDB format (protein data bank).
With VMD (molecular visualization pro-
gram), the results can be graphically
displayed and checked for correctness.

To check if the Voxel Sweep algo-
rithm is still feasible for large input
molecules, the code was examined with
the profilers gprof and ARM/FORGE.
From the profiles, some I/O overhead
could be identified. We adapted the
code and substituted it with something
more efficient. After doing that, we
could not find any major performance
impacts by the Voxel Sweep algorithm.

For applications it is desirable if very
small surface components can be identi-
fied and sorted out automatically, since

these surfaces don’t have a physical rele-
vance. In order to achieve this, we com-
puted the volume and surface area of
every single surface component. Then,
if the volume or area of a surface falls
under the limit of a certain threshold
value, the surface can be sorted out au-
tomatically.

The computation of the surface area
and volume of a molecule was already
implemented in the existing code. How-
ever, it was only a rough approximation.
The distinction between different sur-
faces made it possible to improve these
computations.

Performance Tuning

Each of the atoms needs to compute
its contribution to the electron den-
sity at various locations on the grid. A
schematic representation of the work-
flow of last years implementation is
given in Fig 4.

Figure 4: Workflow of function com-
pute_density_at_grid_point()

All operations are car-
ried out in function com-
pute_density_at_grid_point(). Since
we are dealing with a 3-dimensional
grid, the number of operations will
grow with the third power of the di-
mension of the grid (i.e. number of
grid points considered along a single
axis). After specifying a particular grid
point, two device functions (to be ex-
ecuted on the GPU only) are called
in sequence i) slater_density() and ii)
densityH/C/O...(), where the former is
a kind of selector for the latter func-
tions which each handle a particular
type of chemical element. Being the key
component in terms of computational

cost, optimization studies were carried
out to identify optimal conditions for
making efficient use of modern GPU
architectures.

Optimization Details

In the course of optimization, 11 dif-
ferent code versions were prepared
and analyzed. Here version 5 refers to
last years implementation. All individ-
ual optimization steps showed continu-
ous progress towards improved runtime
conditions. Details are outlined below.

Figure 5: Performance improvements of dif-
ferent code versions for pdb structure 1GPI

Version 6
In this version the device func-
tion pointer is used to eliminate if-
statements. For this purpose, when the
PDB file is read, the atoms are in-
dexed from largest to smallest accord-
ing to the ASCII table. This made the
code much more readable. After it was
profiled, memory overhead was ob-
served. The achieved performance im-
provement was on the order of 10%
(see Fig 5, blue versus green bar). How-
ever, given the fundamental change in
code structure, version 6 was not consid-
ered further for additional optimization
steps.
Version 7
Slater densities are calculated according
to different atom types. Various param-
eters and constants are being used fol-
lowing the physical definition of orbitals
corresponding to individual chemical
elements. Here these parameters are
pre-calculated and assigned fixed val-
ues instead of being re-calculated over
and over again when calling different
density functions. A significant speedup
of approximately 3x could be achieved
from such type of processing (see pur-
ple bar in Fig 5).
Version 8
Density computations include many ex-
ponential operations and distance calcu-
lations. These processes are very costly
and may be better performed from spe-
cially tuned libraries. For this reason
substitution with Fast-Math calls was
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examined next. It was observed that re-
sults did not change for a test set of 7
different PDB files when switching to
Fast-Math calls. An additional 33% per-
formance gain could be achieved (see
dark-red bar in Fig 5).
Version 9
Profiling revealed that the number
of instructions for creating and delet-
ing local variables in each of the de-
vice functions made up the majority
of issued instructions. Thus, following
the principle of minimizing function
calls, all functions were gathered un-
der a single parent function — com-
pute_density_at_grid_point(). Moreover,
repeated access to atoms’ coordinates
(residing in global memory) was re-
placed with a single copy into local
memory and several of the re-iterated
parameter assignments were converted
into static type of numerical constants.
These changes finally led to an improve-
ment of approximately 50% over the
previous version (compare cyan to dark-
red bar in Fig 5).
Version 10
Natural occurrence of different atom
types was estimated from analyzing
a couple of pdb files. Based on these
findings the order of querying differ-
ent atom types was revised so that
the most frequent type (H-atoms) was
considered first and further types fol-
lowed according to frequency of occur-
rence. This modification provided an
additional 20% performance gain (see
red bar in Fig 5).
Version 11
All data types were converted from
double to float as 7 digits behind the
decimal point were considered suffi-
cient quality of numerical accuracy.
This way memory-bound and compute-
bound limits are implicitly optimized
for different types of GPUs and the time
spent in memory allocation is reduced
as well (about 30%, see Fig 6 and dark-
green bar in Fig 5).

Figure 6: Performance gains from data type
conversion as noticed in memory allocations

Results

The iterative optimization process has
led to a final code version (v11)
in which all computational opera-
tions were aggregated in function
compute_density_at_grid_point(). Here,
each thread performs operations in a
3-fold nested loop on a local subsec-
tion of the grid. The obtained results
show between 8x acceleration for larger
sized molecules and 13x acceleration
for smaller sized molecular structures
(see Figs 7-8). Significant improvements
could be made from converting data
types from double to float both in terms
of times spent in memory allocation as
well as relative dedication to compute-
bound versus memory-bound fractions
of the algorithm for all various types
of GPU architectures. Further benefits
were achieved with respect to a reduc-
tion in energy consumption and a short-
ening of compilation times.

Figure 7: Execution times of different code
versions applied to 7 different pdb struc-
tures.

Figure 8: Performance comparison of differ-
ent code versions for pdb structure 2B97

Discussion

Even for individual threads involved
in a sequence of loops it is possible
to perform operations efficiently based
on a maximized set of local data. Fol-
lowing our results, the most suitable
place for the storage of fixed data is
the register. From examining PDB files
a rough frequency of occurrence of dif-
ferent atom types can be derived as H:
49%, C: 32% O: 11%, N: 9%, S: 1%.
Taken this into account in the context
of SIMD, we can hypothesize the active
warp number as a maximum of 49%.
However, memory spaces available to
each of the atoms could be shared mem-
ory, constant memory or texture mem-

ory. Since we would access the same
locations in shared memory, parallel op-
eration is hampered. On the other hand,
even if we assume a broadcast structure
in constant memory, access to the same
location was proportional to the rela-
tive frequency of different atom types.
The texture engine would provide bet-
ter performance especially in the spa-
tial locality of 2D and 3D data. For this
reason, we did not use these memory
spaces as we could not benefit from any
spatial locality in the random access sce-
narios anticipated here. To this end we
preserved the for-loops and kept the val-
ues to be accessed in the register. The
number of data to be kept in the regis-
ter is the same as the number of shells
for each atom. Therefore, according to
version 5, a maximum of 3 extra regis-
ters are allocated. Thus, maximum per-
formance can be achieved by providing
minimum occupancy.
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The convergence of HPC and Big Data HPDA

Big Data
meets HPC
Rajani Kumar Pradhan, Pedro Hernandez
Gelado

Abstract Scientific research can benefit
laterally from Big Data tools developed in
the last decades for commercial data
management, such as Hadoop and
Apache Spark, by leveraging their use with
traditional High Performance Computing
resources. High degrees of automated
parallelism can be trivially achieved to
optimize read, write and simple
transformations. Nevertheless, certain
complex operations are still challenging to
perform within Spark, traditional HPC can
still fill these gaps.

1 Introduction

It is estimated that every single day
2.5 quintillion bytes of data is pro-
duced in the whole world. How
much of it can we store? And how

much of it can we analyze? Data is be-
coming increasingly commoditised and
the tool kits developed to manage it of-
fer huge potential, however they still
lack a wide adoption in an academic
context for scientific research in non-
computer science fields.

Apache Spark has become the "state-
of-the-art" framework in Big Data and it
offers huge untapped potential to aca-
demic researchers that deal with chal-
lenging to process amounts of data in
conventional systems. Scientific prob-
lems are now not only processor-bound
tasks, they are increasingly becoming
memory-bound problems. In this con-

text we studied two prototypical scien-
tific applications that could benefit from
applying Big Data techniques coupled
with traditional HPC (High Performance
Computing). Our objective: to optimize
workflows, leverage cluster resources,
increase parallelism and use distributed
data storage.

The first use case will deal with ana-
lyzing the Integrated Multi-Satellite Re-
trievals for GPM (IMERG), a satellite
precipitation product from the Global
Precipitation Measurement (GPM) mis-
sion by the National Aeronautics
and Space Administration (NASA)
and Japan Aerospace Exploration
Agency (JAXA). The IMERG precipita-
tion datasets are at a daily scale and in
NetCDF format, covering from 2000 to
2020 which has around 230 GB in to-
tal. The processing and analysis of these
datasets is a real challenge ahead of the

scientific community, especially for R
users. In this context, the main objec-
tive of this case study is to explore the
state-of-the-art of Spark architecture
and framework to analyze and process
the geospatial (e.g., IMERG) datasets in
a more efficient way.

Our second use case deals with an-
other area of research that is becoming
more and more memory-bound: post-
processing Computational Fluid Dynam-
ics (CFD) simulations. Aerodynamic re-
searchers are dealing with larger file
outputs due to several reasons, amongst
them: the improvement in mesh refine-
ment, more complex geometries, and
unsteady aerodynamic research, that
is through many evolving time-steps.
Open-source CFD tools like Open-Foam
and Paraview are able to leverage re-
sources in the researchers machine,
but how can we optimize CFD post-
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processing codes to use clusters? This
second use-case will analyze the oppor-
tunities, challenges and pit-falls of using
Apache Spark in this context.

2 Methods

In developing this project, we have de-
signed an approach for budding Spark
users who are attempting to optimize
and port their data-intensive tasks to
Spark for the first time. We identified
some crucial steps involved with port-
ing an application to an Hadoop en-
vironment and evaluated performance
improvements as well as implementa-
tion challenges in a hands-on approach.
We hope that our process will serve
as a blueprint for similar endeavours.
Benchmarks on each of these steps will
be developed in the results section of
this report. However, a rough heuris-
tic to calculate the ratio of time-savings
and performance improvements to in-
put work from the researcher when ap-
plying these steps can be summarized as
1,2,3,4. The easiest time savings can be
obtained in steps 1 and 2, whilst steps 3
and 4 require more work from the user.

2.1 Step 1: Read into Spark

Our strategy’s first step is to read, pre-
process and transform our serial scien-
tific application’s data, for example a
.csv file, into a Spark data abstraction
like RDDs, a Dataframe or parquet files.

2.2 Step 2: Apply pre-built
Spark functions

If you can, always substitute any func-
tions from the serial code you are port-
ing with native Spark functions. Trivial
functions that can be performed with
simple SQL queries, groupBy, filters or
map-reduce operations work best here.

2.3 Step 3: Optimize loops

More complex fors, whiles, recursive-
ness, loops are the next bottlenecks we
need to tackle. How can we port them
to Spark if we can’t find any native
Spark substitutes? Use and exploit user-
defined functions were you can perform
row-wise operations using lambda func-
tions. At all costs, avoid collect() and
other actions that extract and serial-
ize RDD data from Spark, slowing you
down!

2.4 Step 4: Test small, build
big

Always begin testing with very small ex-
cerpts from your large dataset. Jupyter
Notebooks is a fantastic tool to de-
velop your code as you can test these
small samples and benchmark early on
against your legacy serial version. HINT:
use the ’%%time’ function in Jupyter to
time cell execution. At any point, if you
run into trouble, try to create minimum
reproducible examples to share, many
online forums including Stack Overflow
have vibrant communities in which you
can share Spark issues and questions.
Once you are ready to build, create your
slurm files and submit to your HPC sys-
tem.

3 Results

Results are shown here for the two pro-
totypical use cases studied.

3.1 Reading and processing of
IMERG datasets

The main bottleneck of dealing with
NetCDF datasets is that the data is
stored in multiple dimensions. There-
fore, before doing any analysis the de-
tests should be stored in a more user-
friendly format such as an R data-frame
or csv (I prefer into an .RDS format).
The R script to convert Netcdf to an R
data-frame was slow, which takes ap-
proximately 220 seconds for 30 files
each with 30MB on the Little Big Data
Cluster (LBD) which has 18 nodes each
with 48 cores. That is, 864 virtual cores
and 4.5TB of RAM. However, as the
R script is designed for the single ma-
chine it does not really use the ben-
efits of multi-core clusters. Therefore,
the same R script was applied through
the spark.lapply() function, which par-
allelize and distribute the computations
among the nodes and their cores.

Figure 1: IMERG image from NASA more
info on the dataset can be found here.

The bench-mark (run for 5 times)
results show that (Table 1), compar-
atively SparkR has significantly faster
than R. For instance, on average, R
takes 220 seconds to complete the pro-
cess, whereas for SparkR it was just 26
seconds, which is approximately 8 times
as much as faster than R.

Table 1: Benchmarking R versus SparkR in
reading and extracting one month of IMERG
daily datasets (units are in seconds).

Method Minimum Mean

R 225 220
SparkR 25 26

Furthermore, the benchmarking is
also performed for one month of
datasets (30 files each with 30 MB) and
with three different write functions i.e.,
.CSV, .RDS and Parquet formats. Results
find that extracting the variable from
each datasets and writing the output
into a paraquat format is much faster
than writing into a .RDS or into CSV for-
mat. Additionally, reading the paraquat
file is relatively faster than reading a
.RDS format and CSV.

3.2 CFD Post-processing

In this use case a Gamma-1 method
code in Python that can be found here
was ported into Spark with variable
success. The Gamma-1 method is com-
puted using the following formula:

Γ1(P ) =
1

N

∑

S

(PM×UM) · z
||PM|| · ||UM||

(1)

Figure 2: Gamma-1 method, as visible re-
quires a calculation of the nearest neighbors
before computing the vector multiplication.
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3.2.1 Read Improvements

By using Spark we can obtain signifi-
cant performance upgrades from our
serial code in Pandas were it took a
mean µ= 22 minutes and 19 seconds
to perform a read operation of 18 mil-
lion records, about 500mb of data, us-
ing a for loop. Instead, in Apache Spark
we were able to parallelize this read
to leverage 72 virtual cores, optimizing
it to a mean read time of µ= 41.3s, a
3240% increase in performance. Tests
were performed five times to account
for variable cluster loads and capacity,
standard deviation is cited as σ.

Table 2: Read times measurements for 5
samples, mean µ and standard deviation σ

Method µ [s] σ [s]

Serial for loop 1339 107
Spark Dataframe 41.3s 4.0

3.2.2 Neighbours in radius

The author attempted to optimize a Eu-
clidean radius neighbours search with
Spark using a native locality-sensitive
hashing (LSH) implementation in the
Apache Spark library MLlib known as
BucketedRandomProjectionLSH. How-
ever poor performance improvements,
in fact degraded performance, was ob-
tained. This, even when accounting the
fact that the legacy function performed
an exhaustive itemized serial search of
47,000 records for each run. Instead the
LSH model built once for every query in
its vanilla implementation, and an en-
hanced LSH precomputed model (only
built once) repeatedly queried for each
point. The test results were obtained
from five runs and cited on a per point
queried for neighbours basis, the Spark
implementations used 400 cores vs one
serial core.

Table 3: Radius neighbours search perfor-
mance

Method µ [s] σ [s]

LSH vanilla 6.58 0.63
LSH precomputed 4.87 0.75
Legacy 0.484 0.0358

3.2.3 Gamma-1

Gamma-1 computation for a record
within Spark requires a cascading set
of UDFs(User-defined functions) to be
performed, first a radius nearest neigh-
bours search for each point, followed

by the computation of the gamma-1
method for it.

Unfortunately, this is not possible in
Spark, as worker nodes/executors (al-
ready performing an action) cannot call
a further action upon other executor
nodes. This is part of the basis of the
Spark architecture and a key barrier in
creating automatic parallelism for sci-
entific applications that have cascading
algorithms, were the results of one op-
eration are fed and called by another
function recursively. The author hence
struggled to completely port the code,
even after porting all the separate com-
ponents necessary to complete it.

3.2.4 Stagnation Point Loca-
tion

Finally another common CFD post-
processing operation in unsteady fluid
mechanics, when searching for areas
with high probability of a vortex core lo-
cation, is to locate stagnation points in
the flow, that is points where the veloc-
ity is approximately 0. Spark shines in
this type of single filtering and retriev-
ing operation in comparison with locat-
ing these serially in pandas or even us-
ing OpenFoam. The test input files were
used, that is 400 frames with 47,000
records each or approximately 1.8 mil-
lion records.

Table 4: Stagnation points

Method µ [s] σ [s]

Vanilla pandas 143 1.96
Spark 21.41 3.4
OpenFoam 2-5s N/A

4 Discussion & Conclusions

Spark has been shown as extremely
powerful tool in the management, wran-
gling and native function analysis of
large amounts of scientific data. In this,
it offers significant performance im-
provements in comparison with serial
Python read, write and simple transfor-
mation codes, whilst leveraging cluster
and HPC-level parallelism trivially. How-
ever, more complex operations that do
not have native Spark equivalents in
official or supported libraries, specially
those in which cascading algorithms are
computed repeatedly, are beyond the
scope of what Spark is ideally suited to
perform easily, and are challenging for
the researcher to port from Python into
the Apache Spark framework.

In the specific case of CFD post-
processing Spark, offers large potential
to a researcher in the management and
simple analysis of their CFD data, espe-
cially for unsteady flow problems with
fine meshes that are difficult to post-
process serially. Nonetheless, it is not
trivial to perform complex operations
on this data in Spark, which shines in
filtering, aggregation, and native ma-
chine learning library tools. This still
leaves room for further work into look-
ing how to transfer certain workloads
from Spark to mpi, and vice-versa, to be
able to have the "best of both worlds".

Future work could study the possi-
bility of using new Spark 3.12 UDAFs
(User defined aggregated functions),
Koalas and other tools that allow easy-
porting of python code into Spark, as
well as stragies on how to integrate
classical HPC parallelism into hybrid
Spark-HPC applications. Into this feeds
studying how to best integrate proven
highly scalable parallelism frameworks
like mpi to Big Data tools like Spark to
best aid the researcher attempting to
deal with large files in their scientific
research.
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