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A long hot summer is time for a break, right? Not necessarily!
PRACE Summer of HPC 2022 reports by participants are here.

Hybrid 2022!
Leon Kos

Summer of HPC 2022 started hybrid (online and onsite) with 30 participants and their
mentors at 11 PRACE HPC sites working on 21 projects.

S
Summer of HPC is a PRACE programme that

offers summer placements at HPC centres across
Europe to late-stage undergraduate and master’s
students. Total of 30 top applicants from across
Europe were selected to participate in pairs or
onsite on 21 projects supported and mentored

from 11 PRACE hosting sites.

Participants spent two months working on projects re-
lated to PRACE technical or industrial work and produce a
report and video of their results. A kick-off online training
week (see photo) was organised by University of Ljubljana.

At the end of the summer videos were created and are
available on Youtube as PRACE Summer of HPC 2022 pre-
sentations playlist. Together with the following articles inter-
esting code and results are available. Dozens of blog posts
were created as well.
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Leveraging HPC to test quality and scalability of a
genetic analysis tool

Genome
data, its loss
and HPC
Victor Njenga Muya

JLOH is a tool that analyzes DNA to
identify regions that have lost some
information through loss of heterozygosity.
This project aims to optimize the
performance of JLOH and make it fast,
efficient and scalable on an HPC cluster.

Heterozygous regions are in white, while homozygous
blocks of at least 5 kb are in grey.4

When two divergent organ-
isms - belonging to dif-
ferent species, subspecies,
etc - interbreed, their off-

spring are said to be hybrid. Hybrids
possess copies of genetic material from
both parents in their genomes, and are
therefore heterozygous,2 see figure 1.
Common examples of hybrids today are
wheat, quinoa, cabbage, and tobacco
among others which are prominent in
the agricultural sector. Fish, fungi, and
some higher eukaryotes for example
yeasts, and donkeys are hybrids too.

Heterozygosity may come as an ad-
vantage to these organisms since they
have alternative alleles for some genes
and either of these alleles could be
picked during their evolution where nat-
ural selection is stringent. However, this
is not always the case. The fact that
they carry different alleles in their sub-
genomes also creates imbalances in the
organism’s cell dynamics as the two sub-
genomes cannot easily pair during cell
division. Consequently, throughout its
lifetime, the hybrid genome undergoes
rapid changes called rearrangements
that may result in the damage, loss, or

doubling of DNA in some regions of
the genome. The process through which
one of the alleles in a heterozygous site
of a genome is lost and replaced with a
copy of the other, or simply just deleted
is known as loss of heterozygosity.

Usually, most of these changes are
deleterious and could decrease the hy-
brid’s overall fitness. For instance, loss
of heterozygosity in human tumor sup-
pressor genes increases the risk of can-
cer development. On the other hand,
LOH events could also be beneficial
where the hybrid grows faster and
adapts to its environment better than
its parents. For example, hybrid yeast
species used in alcohol fermentation
tend to produce more ethanol and fer-
ment alcohol faster than their parents
under the same conditions. Interest in
LOH has grown considerably both in
academia and industry since it is a
marker for the evolution and adapta-
tion of hybrid species. However, little
to no software exists for the extrac-
tion of LOH data from DNA sequenc-
ing data. To fill this gap, the Compar-
ative Genomics Lab at the Barcelona
Supercomputing Center has developed

JLOH, a genetic analysis toolkit, that ex-
tracts blocks from LOH from sequencing
data, which is the subject of this project.
Starting with single nucleotide polymor-
phism (SNP) data, JLOH identifies re-
gions in a genome where stretches of
the differences between two genomes
have been lost through LOH. The core of
the JLOH algorithm is written in Python,
but the tool also has a Nextflow pipeline
that enables it to scale on a cluster.

JLOH Input

A DNA strand is a double-stranded se-
quence of the molecules: Adenine (A),
Thymine (T), Guanine (G), and Cyto-
sine(C), which are paired in a double
helix as AT and GC and are collectively
called nucleotides. Just like the order of
letters in a word determines its mean-
ing, the order of these bases encodes
instructions for the cell machinery to
build proteins, and is what we call a
“gene”. Genes make up a chromosome,
and several chromosomes constitute a
genome (eukaryotes). When analyzing
a genome, its exact genome sequence is
established through DNA sequencing. In
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Figure 1: Evolution of Hybrid species from parents of different species2

Figure 2: The SAM format3

this project, we are working with paired-
end Illumina sequencing reads of the hy-
brid yeast of the species Saccharomyces
cerevisiae and Saccharomyces uvarum.
JLOH uses the following genomic file
formats as inputs

• FASTQ - The raw sequencing
reads come as a pair of FASTQ
files. FASTQ is a text format con-
taining the information related to
each sequencing read organized
in four lines: 1) an identifier, 2)
the actual sequence, 3) a separa-
tor “+” sign, and 4) an ASCII en-
coded quality score for each se-
quenced nucleotide.

• FASTA - A text-based format that,
just like FASTQ, stores reference
sequences using the letters A, T, C,
and G to represent the individual
bases. Unlike FASTQ, they don’t
come with any quality score, only
an identifier and the sequence it-
self.

• Binary Alignment Map (BAM)
- This is the compressed binary
version of the Sequence Align-
ment Map (SAM),3 that is lighter
to access and process despite
not being human readable. The
text-based SAM format, figure 2,
stores the locations of the indi-
vidual sequencing reads within
the genome and tends to be enor-
mous.

• Variant Call Format (VCF) - This
is a tab-delimited text format that

holds the variants and where they
occur within the genome. .

In hybrid mode, the JLOH algorithm
needs three inputs:

1. Two FASTA files - storing the ref-
erence sequences of the parent
species of the hybrid.

2. Two BAM files mapping the
records of the hybrid reads onto
the parental genomes

3. Two VCF files containing the SNPs
representing the variants found
between the hybrid and the two
parental genomes

The raw FASTQ files can be passed
to the Nexflow pipeline and JLOH
would work and give the desired output.
Armed with these input files, JLOH out-
puts the blocks in the parental genomes
where some alleles have been lost or
deleted through LOH as several output
files.

The JLOH Algorithm

JLOH performs its analysis in several
steps. It:

• Separates homozygous and het-
erozygous SNPs and writes them
in two separate VCF files.

• Calculates the homozygous and
heterozygous SNP densities in
both parental genomes, and clus-
ters the regions of high heterozy-
gosity and homozygosity together.

• Identifies the heterozygous and
homozygous regions of low SNP
density, labeling them REF and
ALT blocks. This is where LOH has
occurred as these sites were het-
erozygous initially.

• The REF and ALT blocks are then
compared to the heterozygous
SNP clusters and the overlaps
trimmed

• Creates coverage profiles for the
REF and ALT blocks by analyz-
ing these blocks for read cover-
age, and trimming any uncovered
regions. Blocks whose coverage
is above a set threshold are dis-
carded. These profiles are used
to determine each block’s zygos-
ity (whether hemi or homo). Ho-
mozygous regions display a uni-
form read coverage, while hemizy-
gous blocks show a reduced cov-
erage as compared to neighboring
regions.4

JLOH then outputs a table of all the
LOH blocks found, their zygosity (homo
or hemi), their allele type (ALT or REF),
mean coverage per position, and cover-
age ratios as the main output file. To-
gether with the input BAM files, these
output files can be viewed in a genomics
viewer, figure 3.

Profiling for efficiency

My work in this project was to estab-
lish how efficient each of the functions
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Figure 3: JLOH output viewed in a Genomics Viewer1

within JLOH is. Using different Python
tools, I conducted profiling tests where
I tested how JLOH performs by measur-
ing how much time and memory each of
the functions within the program takes
to run relative to the total run time and
memory consumption. With this infor-
mation, we were able to identify the
functions that consume the most time
and we tried to optimize them where it
was possible.

Scalability: Computational Time

Figure 4: Size of the data sets in MB and
number of chromosomes in each data set

JLOH makes extensive use of paral-
lelization within its functions to per-
form its analysis. Using Python’s multi-
processing module, JLOH leverages the
power of multiple CPU cores to run its
functions in parallel using multiple pro-
cesses and considerably cut down the
run time. To test whether JLOH compu-
tational time is scalable, I ran it as job
scripts using the data subsets of incre-
mental size, see figure 4, with a fixed
amount of memory, and CPU cores, and
observed how much time was spent to
complete the analysis each time.

Figure 5: User and real time recorded from
running JLOH with increasing data

In figure 5, real time (red) is the
time it takes from when the job script
starts running until the analysis has run
and we have output as if timed using a
stopwatch. User time (blue) is the cumu-
lative time taken by the CPUs to run the
program. This is the amount of time it
would take had JLOH been running seri-
ally (on a single CPU), clearly showing
that JLOH is running in parallel. More-
over, the computational time increases
linearly as the size of the input data in-
creases. JLOH’s computational time is
scalable!

Scalability: CPU Cores

Using a fixed amount of memory and
a single data set, I tested how scal-
able JLOH using by varying the num-
ber of CPU cores. The user time (red)
remained constant but the real-time
(blue) decreased as the number of CPU
cores increased eventually flattening
out at 4 cores, for this data set ,see fig-
ure 6.

Figure 6: The time taken by JLOH to analyse
the 12 chromosome data set with a varied
number of CPU cores

When tested with 10 CPUs, a fixed
data set, and a varying amount of mem-
ory per CPU, the user and real times re-
main steady indicating that increasing
the amount of memory did not decrease
the run time of the program. JLOH is
parallelized to take advantage of CPUs
and consumes little memory to run its
analysis.

Conclusion

Overall, JLOH performed well across
the different tests that we conducted,
proving to be scalable based on com-
putational time, CPU cores, and light
on memory consumption. The toolkit’s
parallelization strategy proved effective
hence the difference between the real
and user times.
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Molecular Dynamics Investigations of Thermal
Properties of Irradiated Tungsten

Tungsten
Simulations
for Nuclear
Fusion
Arda Erbasan, Dominik Freinberger

Fusion is considered to be one of the most
promising energy sources of the future. It
is known that the plasma inside the fusion
reactor must reach a temperature of
millions of degrees. Moreover, the
radiation levels around the plasma are
incredibly high. What kind of reactor
should be designed to obtain energy from
such an environment so that it can
withstand these harsh conditions?

Cover Figure: a) An Illustration of the Fusion Reac-
tion, b) Defected simulation box: red, blue, and purple
balls represent interstitials, vacancies, and undamaged
Tungsten atoms, respectively.

Nuclear Fusion is a promis-
ing candidate for a safe, sus-
tainable, and carbon-free fu-
ture energy source. However,

what our sun and stars have been doing
for billions of years is far more challeng-
ing to realize here on Earth. Under ter-
restrial conditions, the most promising
process for generating usable net en-
ergy is the fusion of deuterium-tritium,
two isotopes of hydrogen. Figure a) on
the cover illustrates this reaction, with
a helium nucleus and a neutron as the
fusion output and a lot of energy re-
leased, most of which comes as kinetic
energy of the two reaction products.
To start and sustain the fusion process,
the fusion fuel, deuterium, and tritium,
must be heated to several million Kelvin,

causing the electrons to separate from
the atomic nuclei and the fuel to enter
the plasma state. Although the plasma
in a fusion reactor is magnetically con-
fined in a vacuum and suspended, there
are high demands on so-called plasma-
facing components (PFC). These reac-
tor materials are directly exposed to
high radiation, immense heat load, and
neutron bombardment. Needless to say,
materials intended to withstand these
harsh conditions must exhibit unique
properties, such as a high melting point,
high thermal conductivity, and a long
lifespan, for economic and safety rea-
sons. Good thermal conductivity is es-
sential to dissipate a high amount of
heat quickly and effectively to a coolant.
One such material possessing the de-

sired properties and already used in fu-
sion reactors is Tungsten, whose ther-
mal conductivity after irradiation is the
primary research subject in our SoHPC
project.

Methods

Molecular Dynamics
This work uses Classical Molecular Dy-
namics, a computer simulation tech-
nique to simulate atoms’ and molecules’
movements and thermodynamic prop-
erties. In molecular dynamics, the inter-
acting pieces are atoms, and they are
modeled as point particles. The interac-
tion of the atoms is described with inter-
atomic potentials, which are functions
of the atomic environment. The forces
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acting on each atom and the (poten-
tial) energy of the system can be derived
from the potentials. Once the forces are
known, the time evolution and hence
the trajectory of the particles can be cal-
culated based on Newton’s Second Law,
F⃗ = ma⃗. From known quantities such
as positions, forces, and momentum,
physical properties can be deduced by
computing temporal/spatial averages
and other correlations. There are three
main statistical thermodynamic ensem-
bles we use in this study, and these are:

• Isothermal-Isobaric Ensemble
(NPT): In this thermodynamical
ensemble the number of particles
(N), pressure (P), and tempera-
ture (T) are kept constant.

• Canonical Ensemble (NVT): The
number of particles (N), volume
(V), and temperature (T) are con-
stant.

• Microcanonical Ensemble (NVE):
In this step, the number of par-
ticles (N), volume (V), and total
energy of the system (E) are held
constant.

The software we are using to run the
molecular dynamics simulations is
called Large-scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS)
which is an open-source code.

Thermal Conductivity
The thermal conductivity of a material
is a measure of its ability to conduct
heat. For a given material, it can be
computed with the aid of Fourier’s law
q⃗ = −κ∇T where q⃗ is the heat flux and
∇T describes a spatial temperature gra-
dient. Thus, knowing q⃗ and ∇T enables
us to calculate the thermal conductiv-
ity κ. One possible way of doing so is
to define two distinct regions in the
simulation box and add/subtract the
same amount of energy to/from the
two regions, respectively establishing a
known heat flux q⃗ and a temperature
gradient ∇T between the resulting hot
and cold region.1,2

Creation Relaxation Algorithm
We use the Creation Relaxation Al-

gorithm3 (CRA) to simulate radiation
damage inside the metal at a rela-
tively low computational cost. This
method first displaces a random atom
in the crystal to a new random po-
sition. The displaced atom creates a
vacancy in the initial position and a self-
interstitial atom in the new position.
These vacancy-interstitial pairs are also

called Frenkel pairs. Then, energy and
force minimizations are performed, and
the atoms settle to their new energeti-
cally favorable positions. Finally, these
steps are repeated until a desired level
of damage is reached, as measured by
the number of displaced atoms. In the
course of thermal equilibration to reach
the desired temperature under the dif-
ferent thermodynamic ensembles, the
recombination of vacancies and inter-
stitials produced by CRA takes place
to some extent. This leads to a smaller
number of final defects as compared to
the created initial defects. An example
of such defects is given in Figure b) on
the cover page.

Simulation Setup
A simulation box of rectangular prism
shape and dimensions of 158 x 15.8 x
15.8 nm consisting of 2.5 Million indi-
vidual atoms is created, see Figure 1.
The damage is introduced to the mid-
dle 10% of the simulation box with
CRA. Then, the system’s temperature
is increased to the desired value while
keeping the pressure constant. While
this happens, the volume of the simu-
lation box changes until it converges
to a value for a given pressure and
temperature. After obtaining the well-
converged system, we put the system
into the canonical ensemble. The main
reason we apply this step after ther-
mally equilibrating the system is to ob-
tain a statistically probable state of the
system under given conditions. Later,
we construct an equidistant heat source
(hot region) and heat sink (cold re-
gion) to the center of the simulation
box. This is achieved by withdrawing
kinetic energy from the heat sink and
supplying the same amount of kinetic
energy to the heat source. To obtain a
steady state temperature gradient be-
tween “hot” and “cold” regions, we dis-
tribute the energy along the simulation
box in a microcanonical ensemble. Be-
fore computing the thermal conductiv-
ity, the system was brought to a desired
temperature using the thermodynami-
cal ensembles described above, starting
with NPT then NVT and finally NVE.

Figure 1: Sketch of the system with the heat source, heat sink and damaged central region.

Results

Figures 2 and 3 show the temperature
profile of a 300 K Tungsten system with-
out defects versus with 1038 displaced
atoms after recombination, respectively.
The highlighted part in the center of
the graph corresponds to the middle
section of the simulation box. In the un-
damaged system, the temperature pro-
file is smooth in the area of interest.
In contrast, the temperature profile in
the damaged system exhibits a sudden
change in slope, indicating a change in
thermal conductivity. For the perfect sys-
tem, we computed a thermal conductiv-
ity of 18.59 W/mK, and for the dam-
aged system, we obtained 10.70 W/mK.
To better quantify this behavior, we an-
alyzed the trend in thermal conductiv-
ity with respect to the overall damage
of the system as measured by the final
number of defects. As can be seen in
Figure 4 (a), an increase in the num-
ber of defects comes with a decrease in
thermal conductivity. We also observed
some deviations from the main trend -
possibly due to the statistical nature of
the simulations. The numerical data can
be found in the following Table, sorted
by the final number of defects.

Table 1: Thermal conductivity at 300 K

Defects

Initial Final κ(W/mK)

0 0 18.59
36590 405 12.33
32794 802 12.42
7022 933 11.17
8758 1038 10.70
9461 1137 10.92
29039 1142 10.86

Next, we advanced the investigation to
600 Kelvin. Although 600 K is not a high
temperature for a metal whose melting
point is above 3500 K, the procedure
has to be slightly different compared
to lower temperatures. As mentioned
above, the thermal equilibration process
includes constant pressure & tempera-
ture steps for which the volume changes
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Figure 2: Temperature profile of perfect sys-
tem

Figure 3: Temperature profile of damaged
system

accordingly. Suppose we start the sys-
tem directly from 600 K at the first steps
of the simulation. In that case, the vol-
ume changes drastically, leading to un-
realistic stress and tension in the sim-
ulation box. To avoid these outcomes,
we slowly heat the system to the de-
sired temperature, bringing the pres-
sure fluctuations under control. Apart
from these, the NVE step also requires
longer times for the temperature to con-
verge. Under these circumstances, the
thermal conductivity of Tungsten at 600
K is calculated for several different dam-
age levels. The results are tabulated in
Table 2 and plotted, as shown in Fig-
ure 4 (b). Even though one can see that
the thermal conductivity of the undam-
aged system is higher than the others, a
general correlation between thermal

Figure 4: Thermal conductivity for different numbers of defects at 300 K (a) and 600 K
(b).

conductivity and the number of defects
after recombination cannot be estab-
lished. Nevertheless, the deviations in
thermal conductivity for damaged sys-
tems are minor. Therefore, they show
an approximate value for damaged sys-
tems, around 5.80 W/mK.

Table 2: Thermal conductivity at 600 K

Defects

Initial Final κ(W/mK)

0 0 6.91
6960 1248 5.32
8692 1612 5.89
28976 1622 6.09
31667 1723 5.57
26189 1962 6.03
9239 2130 5.87
9900 2130 5.81
10422 2222 5.96
30478 2708 6.00

Conclusions

The first thing interpreted is that the
thermal conductivity of Tungsten de-
creases after radiation damage. Like-
wise, we observed a decrease in ther-
mal conductivity as the temperature
increased. It is also observed that due
to the randomness involved in creat-
ing damage and recombinations of
defects back into perfect regions during
thermal equilibration processes, the
correlation between applied damage
and thermal conductivity cannot be
established. Thus, the interpretation
of the results for materials design is
quite limited. To expand this study, the
simulations can be repeated several
times to generate a statistical result for
individual temperatures. Moreover, spe-
cific analysis methods can be designed
to identify how the applied damage
changes the total energy of the system.
As a result, the nature of recombination
can be understood, and significant con-

clusions can be drawn. Once these
relations are established, the thermal
conductivity of irradiated Tungsten can
be investigated at higher temperatures.
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Discovering new drugs with the advanced
computational tools

ANNs to
search for
potential
drugs for
COVID-19
Gabriel Cathoud & Tanya Kushwahaa

Presently, developing new drugs to act against COVID-19 is of utmost importance.
The main objective of this project is to apply artificial neural networks (ANNs) models
to evaluate which chemical compounds could be used as medicinal drugs to treat this
disease. This is done by computing docking scores which represent the strength of a
drug-target interaction (DTI). The potential drugs will open new pathways towards the
future search for methods to combat coronaviruses and would help in preventing any
future outbreaks.

Developing new drugs to cure
diseases is a long and com-
plex process. The goal is not
only to find an effective new

medicine but to also guarantee that the
product is safe. To assure that, a series
of rules and protocols have been devel-
oped over the years, such as the guide-
lines from the International Council for
Harmonization (ICH) and the regula-
tions from the Food and Drug Adminis-
tration (FDA).

Most drug development processes
are very time consuming and cost de-
manding. It takes on an average 13
years to discover a new drug, and de-
liver it to the market (Nag et al., 2022).
Since, this is a very expensive and ex-

haustive pipeline, screening wrong can-
didates to advance steps can result in
enormous loss of capital and time. For
this reason, the pharmaceutical indus-
tries have put strong efforts to develop
better pre-clinical techniques, and there-
fore, ensure that appropriate drug can-
didates are selected for the next phases.

After identifying a target that is re-
lated to the disease, the next step is to
find chemical compounds that could be
used as drugs. This is a very challeng-
ing task, since the number of potential
drug-like compounds is estimated to be
between 1023 - 1060, while the number
of all compounds that have been synthe-
sized so far is on the order of 108 (Nag
et al., 2022).

In the early stages of the pharma-
ceutical industry, the drug development
was carried out by the fundamental trial
and error method through a series of
testing, validations, and synthetic pro-
cedures. With the advent of computa-
tional tools such as artificial intelligence
(AI) and Deep Learning (DL), most of
these practices have evolved.

How modern computational tools can
accelerate drug development?

AI is a branch of computer science
that deals with the development of al-
gorithms and techniques to solve com-
plex problems which typically require
human intelligence. Over the years,
AI has been advancing, and used in
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many fields including finance, trans-
portation, manufacturing, health care,
education, etc. Although AI was intro-
duced much earlier to solve biomedi-
cal problems, its limitations had pre-
vented widespread acceptance and ap-
plication in drug development. After
the arrival of DL, many of these limita-
tions were overcome (Kaul et al., 2020).
AI-based techniques are now used to
screen and predict properties of candi-
date compounds. Apart from property
predictions, AI can also been used in
other areas of drug discovery like de
novo designing of chemical compounds
and proteins (Nag et al., 2022).

Although AI is a very broad field,
and modern approaches are focused
more on machine learning (ML). In sim-
ple words, ML is defined as the capa-
bility of a machine to identify patterns
from the available databases. The ma-
chine tries to recognize underlying rela-
tionships from data in a so called "learn-
ing" phase, and apply that information
to a similar problem. An advanced ver-
sion of ML is DL which consist of devel-
oping algorithms to create an artificial
neural network (ANN) that can learn
and make its own decisions, just like
neurons in the human brain.

ANNs (hereafter, NNs) are a group
of artificial neurons that takes the avail-
able data as input, passes it through
one or more hidden layers, and direct
it through an output layer. Each neu-
ron corresponds to an activation func-
tion. These activation functions can per-
form non-linear transformations on the
inputs and send the predictions to the
next layer. The process is repeated until
a certain number of epochs is achieved.
The predictions obtained are compared
with the expected values of the prob-
lem. In regression problems, typically
a mean squared error (MSE) is used as
the loss function to evaluate the perfor-
mance of the model. The training proce-
dure depends on different parameters

namely, number of neurons, number of
hidden layers, learning rate, types of ac-
tivation functions, optimizers, bias and
weighting functions.

When it comes to selecting candi-
date compounds, an important param-
eter in drug development is the dock-
ing score. The docking score estimates
how good a drug-like compound inter-
acts with a given target, and is there-
fore, a measurement of the Drug-Target
Interaction (DTI). The docking score is
very useful for virtual screening because
drug candidates can be ranked based
on their affinity with the desired target.
The docking score is mostly computed

using a technique called
docking. Docking re-
quires a lot of informa-
tion about the target
and the ligand, which
every so often is not
available or can also be
computationally costly.
Another alternative to
study the DTI is to
use molecular dynam-
ics (MD). However, it
is well known that MD

simulations require huge amount of
computational resources. To overcome
these challenges, recent approaches us-
ing ML has been adapted leading to fast
development of this field.

Although there are vaccines, already
developed by the pharmaceutical com-
panies (for e.g., Pfizer by BioNTech),
which provide substantial protection
from the virus. There is still a lack of
effective medicines that can be used to
treat already infected patients. This is
because a vaccine is effective for the pre-
vention of a virus, whereas a medicine
is used to treat a person who is already
infected. For this reason, there is a need
to develop new medicines as a curative
treatment.

With AI and ML, the process of drug
development could be accelerated. AI,
NNs, and ML have been persistently ap-
plied to predict the outbreak (Niazkar
& Niazkar, 2020), and also to calculate
the molecular docking scores in search

of COVID-19 inhibitors (Cheke, 2020;
Gerçek et al., 2021). In this study, ANNs
are used to search for candidate com-
pounds for the Severe Acute Respira-
tory Syndrome Coronaviruses 2 (SARS-
CoV-2), also called COVID-19. The tar-
get selected was the 3CLproSARS-CoV-2
(6WQF) protease, which is a protein re-
sponsible for the virus replication. The
goal is to create a predictive model for
training using a data set of molecu-
lar compounds. After obtaining a good
model, this could be used to predict the
docking score of new molecules that
are promising candidates to act against
COVID-19. Based on the docking scores
predicted with the ANN models, the ac-
tual compounds which can act as in-
hibitor for covid-19 can be selected.

The importance of molecule descriptors

When using NNs for drug develop-
ment, a large number of molecules are
given as input to train the network.
There are different ways to represent
a molecule, such as using graphs, in
which each edge is a chemical bond,
and each node is an atom. One such ex-
ample is a molecular descriptor which
transforms a molecular structure into a
mathematical representation.

When dealing with AI-based tech-
niques the representation needs to be
carefully chosen, since it can have a
huge impact on the model predictive
performance. To improve accuracy and
speed of the models, the descriptors
must satisfy some requirements. For ex-
ample, they need to be invariant to
transformations that does not change
the properties of a molecule, such as
changes in atom indexing, translations,
rotations, and reflections. Other require-
ments are continuity and differentiabil-
ity with respect to atomic coordinates,
and suitability for regression. A descrip-
tor should also be general, i.e., it should
be able to encode any atomistic system.
Finally, the descriptor should be simple
and fast to compute.

There are essentially two types of
descriptors: local descriptors and global
descriptors. The former set of descrip-
tors include smooth overlap of atomic
positions (SOAP) and atom-centered
symmetry functions (ACSF) suitable for
describing a local environment such as
forces and chemical shifts around the
atoms of a molecule. Coulomb matrix
(CM), bag of bonds (BoB), many body
tensor representation (MBTR) all comes
in the later category preferable for pre-
dicting global properties of a molecule.
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Table 1: Best optimization obtained for the following hyperparameters of the different molecular descriptors.

Descriptor NN Topology MSE
No. of neurons No. of layers Activation function Optimizer

Coulomb matrix [200, 200, 100, 10] 4 Adam Softplus 0.03
Many body tensor representation [100, 50, 5] 3 Adam Softplus 0.50
Atom-centered symmetry functions [50, 50, 50, 50] 4 Adam ReLu 1.04

As an example, the Coulomb matrix
mimics the electrostatic interaction be

tween the nuclei and the atoms of a
molecule following the equations given
below:

Mi,j =

{
0.5Z2.4

i , fori = j
ZiZj

|Ri−Rj | , fori ̸= j

The Coulomb matrix is a square ma-
trix in which the diagonal elements rep-
resent the interaction of an atom with
itself whereas the off-diagonal elements
represent the Coulomb repulsion be-
tween nuclei i and j. On the other hand,
descriptors like ACSF can be used to
represent the local environment near an
atom by using a fingerprint composed
of the output of multiple two- and three-
body functions that can be customized
to detect specific structural features.

Methods

The inputs for the NNs were created
using a Python package called DScribe
(Himanen et al., 2020) which con-
tain several molecular descriptors. In
the project, both local and global de-
scriptors were utilized from the pack-
age namely, CM, MBTR, SOAP, and
ACSF. Moreover, Python libraries specif-
ically built for machine learning and
deep learning, TensorFlow (Abadi et al.,
2015) and Keras (Chollet et al., 2015)
were constantly used to develop NN
models during the project. TensorBoard,
a tool for providing the measurements
and visualizations during the machine
learning workflow, was also used. The

NN training is done using the COVID-19
data set of Bucinsky et al. (2022).

To fasten the pro-
cesses of creating
molecular descriptors
and NN training, the
computer cluster of
Slovak Academy of
Sciences (SAS) and
the HPCFS cluster of
Slovenia was utilized.
The computing centre
of SAS has 128 CPUs
containing 1 core per
socket. The HPCFS clus-

ter has a total of 64 CPUs containing 16
cores per socket.

Tuning the parameters of the descrip-
tors

Each molecular descriptor has its
own set of parameters. Hence, the
parameters of the descriptors were
tuned to obtain mathematical arrays,
which best describes the investigating
molecules. These parameters could also

affect the size of the descriptors vector
and, therefore, impact the input layer
of the NNs. In the case of ACSF, for in-
stance, the type of symmetric function
and the cutting radius are examples of

parameters that can be modified.

Tuning the hyperparameters of the NN
models

In the study, feed-forward neural
network (FFNN) was used. Even though
the topology of FFNNs is simple, they
still have numerous hyperparameters to
tune in order to obtain the finest model
suitable for the COVID-19 data. The effi-
ciency of the training depends strongly
on the tuning of the hyperparameters.
These hyperparameters are the number
of hidden layers and their number of
neurons, activation function (AF), types
of optimizers for the back propagation,
batch size, and the method to initialize
the weights and biases of the AFs.

Each one of them was tuned sepa-
rately, keeping the parameters of the
descriptors fixed. The tuning was done
for a set of values of each parameter. To
ease the process, for loops were run in
TensorBoard which provides an interac-
tive visualization of the results from all
the runs. The final training was done
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Figure 1: The training process of the data of the can-
didate molecules against COVID-19. The expected and
predicted energy values are shown in red and green,
respectively.

with the model hav-
ing best hyperparame-
ters for both the descrip-
tors and the neural net-
works.

Results

The best hyperparame-
ters obtained from the
tuning of the neural net-
works is provided in Ta-
ble 1. Three or four
number of hidden lay-
ers, and the optimizers
Softplus and ReLu, seem
to return the best op-
timization for the data
set used in this study.
Furthermore, the acti-
vation function Adam
seems to be the best
activation function for
all the descriptors. The

least MSE is obtained for Coulomb Ma-
trix (0.03), followed by MBTR (0.50)
and ACSF (1.04). Considering the
simplicity and the lowest MSE, the
Coulomb matrix appears to be the best
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Figure 2: The speed-up curve for molecular descriptors: Coulomb matrix (red), many body tensor representation (blue),
smooth overlapping of atomic positions (yellow), and atom-centered symmetry functions (green).

molecular descriptor to describe candi-
date compounds to be used as drugs for
COVID-19.

Final training was carried out af-
ter tuning all the hyperparameters
i.e., of the descriptors and of the
NNs. In Figure 1, the predicted val-
ues obtained from the final training in
which molecules were represented us-
ing Coulomb descriptor is plotted with
the expected values. The values ob-
tained for the R2 and MSE were 0.997
and 0.03, respectively. Clearly, there is
some spread in the data points, and the
final model obtained is not perfect.

The speed up of the creation of the
molecular descriptors was also investi-
gated. The speed up is defined as the
ratio of the time required by a program
when run sequentially (i.e., using one
processor) to the time required by a pro-
gram when run parallelly using ‘n’ pro-
cessors, Speed up = TSerial

TParallel
. Different

number of processors (n=1, 2, 4, 8, 16,
32) were used for the creation of the de-
scriptors. Figure 2 shows the plot of the
speed up curve with speed up computed
for the CM, MBTR, SOAP, and ACSF de-
scriptors. The parallelization works well
for the complex descriptors ACSF and
MBTR, and their creation can be speed
up by ×2.

Conclusions

Even though the final models obtained
from the CM, MBTR, and ACSF de-
scriptors does not show the best per-
formance compared to other studies.
They still reasonably predicts the dock-
ing score of the candidate compounds.
Coulomb Matrix which is the simplest
molecular descriptor produced satisfac-

tory results in the training. All in all,
its non-complexity and effective results
makes it a good candidate among other
molecular descriptors to produce ad-
equate preliminary results during the
drug development process using AI. The
speed-up curve of the complex descrip-
tors (e.g., ACSF and MBTR) occurs to
be less parallelizable as expected which
is maybe due to a problem in the archi-
tecture of the IBM HPC server and the
implementation of the DScribe library.

Due to lack of time, all the hyperpa-
rameters could not be tuned thoroughly
and, therefore, the parameters obtained
from tuning were not optimal. Addi-
tional work is required to study all the
descriptors and their hyperparameters
in detail, and to obtain better models
for drug development.

Given so many parameters, it is un-
likely that with a small number of train-
ings, and a simple grid search one can
obtain the optimal NN architecture and
the best parameters for molecular de-
scriptors. Moreover, huge amount of
time and energy will be required to com-
pute all the possible solutions. Evolu-
tionary computation may work as a so-
lution for this which could be explored
in the future.
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Automated Extraction of Satellite
Bathymetric data by Artificial Intelligence
strategies

Satellite images
and Machine
Learning for
extracting
bathymetry
Román Alarcia Pérez

Estimating bathymetry data from
satellite reflectance imagery using
two algorithms, Machine Learning
and a band ratio algorithm. Study of
how different features can be used
to approach the problem.

The sea depth data is called
bathymetry and it has sev-
eral and useful application in
many fields such as navigation,

dredging planning, environmental man-
agement or aquaculture. Currently less
than 20 % of the ocean´s seabed has
been mapped, and the scientific com-
munity is doing a big effort to complete
and increase the resolution of these
maps. Traditionally, the water depth is
measured by using in situ sensors like
vessel-based multibeam sonar or active
non-imaging airborne lidar bathymetry
(ALB). However, these methods are con-
strained by access, speed, deployment
cost and efficiency in shallow waters.

Bathymetry can also be extracted
by satellite techniques, and although
it does not have the accuracy of sonar
or lidar it can provide wide swaths,
lowcost repeated coverage, and easy
access to remote areas. There are many
satellite techniques for extracting bathy-
metric data, most of them are still very
experimental, and in this project, we

will study the use of machine learning
(ML) and Caballero´s algorithm (ref. 1).

Material

Satellite reflectance L3 with a of 60 m
resolution images of the shallow wa-
ters of the Ionian Sea in the south of
Italy will be used to train the ML and
generate results. A multitemporal set of
reflectance images from 2020 to 2022
obtained from satellites Sentinel 2A
and 2B will be processed using python
and the cluster of CINECA Marconi 100
(ref 2.).

We have studied more than 80 km of
coastline from Le Castella up to Torreta,
in Calabria, at the south of Italy. Results
will be compared with real bathymetry
data from the European Marine Obser-
vation and Data Network (EMODnet).
We limited the study to shallow waters
up to 20 m depth.

Caballero´s algorithm

In the visible range of wavelength,
colours red and green are more ad-
sorbed in the water than blue. Caballero
et al. proposed a magnitude, combin-
ing the reflectance of these colours,
called pseudo-depth (pSDB) which in-
creases proportionally to the depth
(SDB). pSDB is defined as the coeffi-
cient, between the logarithm of the re-
flectance blue over green or blue over
red (See eq. 1)

SDB = m1 pSDB −m0 (1)

where pSDB =
ln (nπRrs (λi))

ln (nπRrs (λj))
(2)

Here, n is just a positive constant that
we add to be sure that the logarithms
are always positive, in our case we
used 106. mo and m1 are regression
constants to estimate the SDB from the
pSDB. λi is the blue band and λj the
green or red band. With our data we
had 2 blue bands one red and another
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At the left bathymetric maps obtained for each one of the 4 pSDB usign Caballero´s algrithm. At the top right corner, a map of the
absolute error per pixel of the estimated bathymetry using Caballero algorithm. At the bottom right corner, a map of the absolute error
per pixel of the estimated bathymetry using RF.

green, so we could do 4 pSDB combina-
tions.

In total, more than 100 satellite im-
ages of the same area have been con-
sidered to solve the problem. Images
with few points or low accuracy have
been removed. For each one of the rest
of images we have calculated the SDB
doing a linear regression with the pSDB.
Using the more accurate images we did
an average getting the final SDB. We
repeated this process for each one of
the 4 pSDB combinations that we had
obtaining the results.

Machine learning

The same problem has been studied
with a random forest regressor of 200
decision trees. Random Forest (RF) has
been used because it can give us the
importance of each input, called per-
mutation importance. It is calculated
by changing the weight that RF gives
to each feature and checking how this
affects the final result. When the fea-
ture weight change, the more its impor-
tance, the more it affects to the final re-
sult. 20 different estimators have been
compared with this method, 8 colour
reflectance bands, and 12 ratios (pSDB)
calculated as the equation 2 between
the blue bands and the rest of the bands
(See table 1). For training the ML we
used the 80 % of the data of only one
image, then we tested the method with
other images.

The most important colour bands
for RF are blue, green, red and near
infrared. Regarding the ratios, the most
important are ratios between blue and
red, blue and green and blue and near
infrared. Using only these features give
as good results as using the 20 inputs.
So, the rest of inputs can be removed
without deteriorating the final result
and saving computational time.

Notice, that for RF near infrared
is an important band, but Caballero´s
algorithm doesn´t consider this band.
Near infrared just penetrates a few mil-
limetres into the water, so it can´t be
used to estimate depth. However, this
band is used to do noise surface cor-
rections such as light reflections. This
fact proves that when working in a new
problem, ML can gives us information
of which variables are more useful to
solve it, so we can understand better
new problems.

Maps of the absolute error per pixel
have been done to compare the results
using Caballero´s algorithm and ML. In
general RF gives us better results with
a lower error.

Conclusions

Two methods have been tested to mea-
sure the depth in shallow waters, RF
and Caballero´s algorithm. We have
proven that both methods are useful

and generate acceptable results, be-
ing RF the best one in terms of accu-
racy. RF importance of 20 features have
been studied for the problem. We have
proven that ML can be a good first ap-
proach for new problems since it gives
us what variables are more useful.
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Román Alarcia Pérez, UBFC, France.

PRACE SoHPCMentor
Silvia Ceramicola, TS, Italy Román Alarcia Pérez

PRACE SoHPCContact
Román, Alarcia Pérez, UBFC
Phone: +34 633 226 871
E-mail: romanalarciaperez@hotmail.com

PRACE SoHPCSoftware applied
AI techniques in python.

PRACE SoHPCMore Information
https://summerofhpc.prace-ri.eu/automated-
extraction-of-satellite-bathymetric-data-by-artificial-
intelligence-strategies/

PRACE SoHPCProject ID
2204

14



A dashboard for on-line assessment of jobs
execution efficiency

Job
execution
dashboard
for HPC
Pierre POLLET

Combining a low level acquisition program
with a database to create a beautiful
dashboard monitoring jobs runtime. In
other word, visualize in real time execution
of parallelized program.

Applications (called Jobs) used
in supercomputers consume a
lot of energy which is a lim-
iting factor for scalability of

these computers. These programs paral-
lelize the computations across multiple
“nodes” each distributed across multi-
ples cores of CPUs. And they need to
be synchronized during their compu-
tations to coordinate with each other.
However, such parallelized applications
often waste CPUs power during syn-
chronization of the processes. This is
where COUNTDOWN comes in! It is a
tool which reduces the CPUs frequency
(therefore reducing energy consump-
tion) during idle / synchronisation time
while trying to be as impact less as pos-
sible.

The Countdown library

Parallelized jobs use MPI functions to
communicate with each other during
runtime. In order to access those data
/ metrics we need a profiler to collect
data about MPI. MPI Profilers already
exists from IBM or Intel for instance,
but they come at a cost: They lead to
considerable perturbations of the per-
formance of the program and they only
report the data collected at the end of
the job and not during runtime.

While Countdown is a library used
to reduces energy consumption, it is
also an MPI Profiler. This library de-
veloped and used in CINECA, can also
produces timeseries report, report some
data each second while the job is run-
ning.

Figure 1: Countdown shared library logical
view

This is the library I used to collect
all the required information I needed
for the dashboard.

Countdown with the Examon DB

Examon is a distributed and scal-
able monitoring infrastructure with
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a database. By using Countdown with
Examon it is possible to send MPI Profil-
ing information during runtime to the
Examon database. Then it became only
a matter of design to create a beautiful
dashboard using the open source, state
of the art, interactive data visualization,
web application: Grafana.

But Countdown wasn’t fully
equipped at first to send all the data
that it collected. After a good under-
standing of how it works, I was able
to extend it functionality to send to
Examon (via the MQTT protocol) the
data collected at the prologue, during
runtime, and at the epilogue.

Count
-down

Galileo 100

MQTT : Average frequency… Examon
databases

Grafana data 
visualization

Q
u

ery

ExaTwin

Figure 2: Overview of the architecture

In order to helps users, understand
how their programs are running with
COUNTDOWN and how much energy
they use, my goal is to design a dash-
board to monitor programs which are
using Countdown and extend Count-
down to send all the necessary infor-
mation about the job.

Design of the Grafana dash-
board

Top
At the top of the Grafana dashboard,

the user is able to select the Job Id of the
job currently running. Then with a little
bit of javascript, the Time Range Reset
panel set the time range of the entire
dashboard to match the job start time
and end time (if the job has finished).

Then the dashboard is split into
three different section:
Summary

The first part is the summary where
all the general information are such as
the job name, the partition on which
the job is running, the number of cpus,
gpus, nodes... And this is also where is
the data about MPI function calls. It al-
lows the user to control which MPI calls
slow down the program.
Timeseries

Then comes the timeseries part of
the dashboard that contains informa-
tion that Countdown send at each time
sample (usually each second).
Gpu

At the end of the dashboard are the
GPU timeseries data (if enabled).

Conclusion

I am really glad of what I did during this
summer and the results I provided. The
Countdown library was a challenging
code to encounter, and I think the dash-
board is quite nice for a user. I did not
struggle much during the whole project

except at the beginning when it was
hard to understand the architecture of
the project and how the countdown li-
brary work with other tools.
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Assessment of the parallel performances of
permaFoam up to the tens of thousands of cores
and new architectures.

Permafrost
on parallel
Dimou Stavros, Teber Doğukan

The goals of this project are to build a tool to decompose a mesh in parallel and to
analyze the performance of permaFoam in an MPI environment.

Permafrost modeling is a con-
cerning issue that has resur-
faced in the main media re-
cently due to global climate

change, as it expands both in cold areas
and on a general global basis.

Based on the occurrence of numer-
ous non-linearities encountered in the
underlying physics, there is a strong
need to run experiments on parallel.
One of the solvers available regarding
the issue is permaFoam, which is built
under the OpenFOAM framework. It has
been extensively tested, and used for
multiple projects like studying a per-
mafrost dominated watershed in Cen-
tral Siberia, the Kulingdakan water-
shed (Orgogozo et al., Permafrost and
Periglacial Processes 20191) with 500
cores. Apart from that, it has also been
tested and analyzed with the use of up
to 4000 cores to investigate it’s HPC
scalability (e.g.: Orgogozo et al., Inter-
Pore 20202). Due to the large scales to
be dealt with in different projects, it is
anticipated that the use of permaFoam
with at least tens of thousands of cores
simultaneously will be needed.

The goals set during this internship
were the following:

Build a pre-processing utility that de-
composes a mesh and fields of a case
for parallel execution faster than decom-
posePar.

Make a performance analysis of the
permaFoam code, while analyzing criti-
cal metrics like execution-time and test-
ing it on supercomputing infrastruc-
tures.

The main test case used for
the permaFoam analysis, was the
3D OpenFOAM® case which sim-
ulates the permafrost dynamics in
the Kulingdakan watershed under cur-
rent climatic conditions (Xavier et
al., in prep). As for the supercom-
puting infrastructures, Olympe Super-
computer (https://www.calmip.univ-
toulouse.fr/) was used.

A lifecycle of an OpenFOAM
problem

A typical OpenFOAM user goes through
three stages to solve their prob-
lem: pre-processing, solving, and post-
processing. Pre-processing involves cre-
ating and organizing the mesh. And,
post-processing involves visualizing and
examining the result. Let’s zoom in on
the pre-processing part.

Geometry discretization, meshing, is
handled by blockMesh utility so that
the created mesh can be read by the
different solver for a serial applica-
tion. For large-scale problems, however,
blockMesh alone is not sufficient. Par-
allel programming for faster computa-
tion is required. In order to use parallel
programming, the mesh needs to be de-
composed into sub-parts for each MPI
process. Before a mesh case can be run
in parallel though, it has to be decom-
posed and that operation is done by de-
composePar.

decomposePar in a nutshell

decomposePar is a serial pre-processing
utility that sets up the mesh for parallel
execution. Its job is to split the mesh
among processes.

As the mesh gets bigger and bigger,
the execution time of decomposePar is
increasing. It can be problematic for big-
size meshes. The problem we were fac-
ing at HiPerBorea was too long execu-
tion time of decomposePar. Our solver,
permaFoam was designed to be run in
parallel. Therefore, we needed a tool
that decomposes a mesh of a case for
parallel execution faster than decom-
posePar.

Faster way to decompose

By looking at the source code of decom-
posePar, it can be seen that the same
operations are done for each directory
that will be created. For instance, there
is a method called writeDecomposition
which creates necessary directories and
files. In this method, there is a for-loop
that loops through each process and
does some operations:

for (label proci = 0; proci <
nProcs_; proci++)

{
// do stuff

}

That for-loop contains more than
800 lines of a code block in braces and
executes that code block as the num-
ber of processes. The source code con-
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tains similar types of for-loops in many
places.

Adjusting to parallel program-
ming paradigm

Due to the serial nature of decom-
posePar, as it is mentioned above, some
for-loops can be eliminated by parallel
programming. Let’s start investigating
the source code to have an idea of how
to replace for-loops with parallel pro-
gramming.

When we run decomposePar, it cre-
ates an object called domainDecomposi-
tion. This object has all the information
about undecomposed mesh and how to
decompose it. It also has two main pub-
lic methods: decomposeMesh and writ-
eDecomposition. The first one decom-
poses the mesh and sets up the member
fields of the object and the second one
creates processor directories and writes
the necessary information to files.

The object of domainDecomposition
class has members that are used later
in the code. Most of these members are
initialized in decomposeMesh method.
The interesting part about these mem-
bers is that they hold all the information
regarding all processes.

For instance, there is member called
procPointAddressing. Its data type is
labelListList which is a 2D list of inte-
gers. This member holds labels of points
for each process. Since decomposePar
is running on one process, there is no
other way to hold this information sepa-
rately. But in our case, we are exploiting
parallel programming with distributed
memory. Because of that, each process
can have its domain and members.

The rise of parallelDecompose

If each process is going to have its do-
main, creating one object is not enough.
The number of objects has to be equal
to the number of processes. Besides,
domainDecomposition class cannot be
used anymore. A new, lighter class has
to be created. In addition to that, re-
peated for-loops have to be removed
and decomposePar has to be paral-
lelized as much as possible. To satisfy
these needs, we have built parallelDe-
compose utility. It decomposes a mesh
and fields of a case for parallel execu-
tion in parallel.

We have tested parallelDecom-
pose against 850K cells (100x100x85).
For parallelDecompose, 324 cores

(18x18x1) have been used on 9 com-
putational nodes. In this mesh case, de-
composePar took 1 minute and 8 sec-
onds while parallelDecompose took 32
seconds. By looking at this test result,
we can see that parallelDecompose re-
duced the computation time by at least
50%.

For the total memory usage, de-
composePar’s MaxRSS value is 1572K
while parallelDecompose’s MaxRSS
is 2779948K. parallelDecompose con-
sumed way too much memory com-
pared to decomposePar. The main rea-
son is that there is a part in the program
where we had to gather all the infor-
mation in one process and scatter that
information into all processes. That in-
formation is a class member called cell-
ToProc. Every process has this member
and its size is proportional to the size
of a mesh. Since every process has this
member and we are using distributed
memory rather than shared memory,
the total usage of memory of the individ-
ual process is multiplied by the number
of processes. That is the root cause of
bloated memory.

Performance Analysis

For the performance analysis as men-
tioned above, the supercomputing in-
frastructure Olympe was used in order
to test the permaFoam behavior while
making good use of multiple cores. The
performance analysis was conducted
for both the demoCase and demoCas-
eSinusoidalClimateForcing test cases
provided by the hydrology repository,
where the first case is a simulation of
rain water infiltration into a soil layer
while the second one illustrates the han-
dling of seasonal variabilities in the
boundary conditions.

To conduct this study, the per-
maFoam source code was edited as mul-
tiple time counters and function coun-
ters were introduced in order to detect
the most time consuming parts of the
code. The permaFoam code consists of
multiple equations, with the two most
important and time consuming being
Richard’s equation and Heat Transfer
equation. Apart from that the code was
profiled using VTune profiler as well
as LWP : Bull MPI Lightweight Pro-
filer. Both profilers are supported by the
Olympe Supercomputer.

Execution Time Analysis

For the first part of the performance
analysis, the main goal was to observe
how the execution time evolves as the
number of cores increase, to evaluate
the performance of each equation un-
der these circumstances and to exploit
permaFoam’s efficiency on different en-
vironments. The demoCaseSinusoidal-
ClimateForcing case was tested, while
using different number of cores for the
time of one whole year (simulation).
The tests were conducted while using
1, 36 and 72 cores, corresponding to
a serial version of permafoam, and the
utilization of 1 and 2 nodes of Olympe.

Figure 1: Execution time.

As shown on Figure 1, we can see
that the execution time when using 36
cores compared to 1 is much smaller,
and specifically the completion of all
operations is 2.54 times (154%) faster
with 36 cores, showing this way the su-
periority of using multiple cores. Apart
from that we tested the code with 72
cores, dividing the mesh only on the
X axis. The mesh we worked on was
50x85, so the domain was over - de-
composed quite quickly. As a result, the
overall execution time increases radi-
cally with the serial version being 2.84
times (184%) faster than the version
with 72 cores. Further analysis would
have to be made on a bigger mesh.

Concerning the time spent on each
equation for different number of pro-
cesses, the Heat Transfer Equation is
the most time - consuming on all cases,
in comparison to Richards equation.
Specifically with one core, Richard’s
equation is 1.9 times (92%) faster, while
with 36 cores it is 2.2 times (122%)
faster. Apart from that the number of
iterations conducted by each core is the
same as in the sequential version as ex-
pected.

Analysis of Linear Solver

Another important part of the per-
maFoam code is the Linear solver. The
Linear solver contains a few iterative
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operations, and the purpose of this anal-
ysis is to observe how those iterative op-
erations evolve depending on the num-
ber of cores, as it is suspected that it ef-
fects the overall performance. The tests
taken were for multiple different num-
ber of cores, and were also run for dif-
ferent period lengths, to get a complete
understanding of the behavior of the
iterative operations.

Figure 2: Frequency of iteration values.

It is observed that the total iterative
operations are the same independent of
the number of cores. However, it is clear
from Figure 2, that the number of cores
affects the number of iterations occur-
ring on different operations. There is
high frequency of bigger number of iter-
ations and low frequency of small num-
ber of iterations as the number of cores
increases. On the other hand for a small
number of cores, the opposite happens
with the small number of iterations hav-
ing a higher frequency. However, for the
value of zero iterations the frequency
stays consistent and the same, indepen-
dent of the number of cores used.

Profiling

For the last part of the analysis, we
aimed to obtain in depth knowledge on
the behavior of the code, and find the
most time - consuming parts of it. In
order to achieve this goal, we profiled
the permaFoam code and the two pro-
filers used for this purpose were VTune
and LWP, both supported by Olympe.
The profiling was conducted for the du-
ration of a whole year with multiple
different cores.

Figure 3: Elapsed MPI time

As expected, Figure 3 depicts that
the duration of the Total MPI environ-
ment utilized as well as the MPI compo-
nent overhead that occurs, is increased
as the number of cores used increases.
In detail, using 2 cores the total MPI en-
vironment utilization time was 30% less
than that of the 36 cores, and the time
caused by the MPI component overhead
was 3.01 times less as well. This is more
than expected, as the communication
between a bigger number of MPI pro-
cesses will cause greater overhead, and
will be more time consuming.

Figure 4: Function Analysis

As shown in Figure 4, the profil-
ing of the code also assisted us in
discovering the most time consuming
MPI functions and their development
as the number of cores increases. The
most time consuming functions were
MPI_Allreduce and MPI_Recv, both of
which dedicate a lot of time for commu-
nication with other processes. Specifi-
cally MPI_Allreduce spends around 3.6
seconds of total work, while MPI_Recv
spends 1.3 seconds respectively, while
working with 36 core. All the other func-
tions had a fairly small execution time.

Conclusions and Future Work

parallelDecompose is decomposing a
mesh and fields correctly and fast.
The tool is ready to use for small
and medium-sized meshes. As reported
above, it can perform decomposition
twice as fast as decomposePar. Before
it can be used for big mesh sizes, like
hundreds of millions of cells, we need
to divide cellToProc class member to
each process so that it can only hold its
current process’ data.

The reason cellToProc could not be
divided in this version is that the work
performed to assign cellToProc cannot
be easily split between the MPI pro-
cesses because of its intrinsic construc-
tion. Making it parallel would involve
a complete re-writing of the algorithm,
which would need further development.

Concerning the performance analy-
sis, the behavior of permaFoam could
be exploited with the use of even more
active cores and with bigger meshes to
avoid over-decomposition effects. Apart
from that it would also be interesting to
to experiment on other supercomputing
infrastructures.
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Optimization of neural networks to predict results
of mechanical models

Mechanical
Models with
Neural
Networks
Ahmed Senior Ismail

The concept of neural networks is proving to be a game
changer in many research fields, providing answers to
complicated problems. This project aimed at approxi-
mating results of mechanical models leveraging neural
networks and improved performance in term of preci-
sion was achieved.

Machine learning has a sig-
nificant field of applicabil-
ity and attractive theoreti-
cal formalism. It employs

clever formulations and use robust opti-
mization algorithms.
Deep learning is a subset of machine
learning that uses neural networks
with many layers. Neural networks,
for instance, have multiple advantages
in terms of performance and flexibil-
ity [1],[2]. However, building good
performant neural networks requires
lots of data and lots of computational
resources for training, as a result of in-
tensive computation. Thus, this makes
HPC a necessity in order to unravel
these caveats.

What is a neural network?
Neural network is one of the most
prominent and important machine
learning applications. It is a process
inspired by the functioning of the neu-
ron in the human brain[3]. A typical
neural network is known as input and
output system with layered structure. It
consists of nodes known as neurons and
the connections between them called
synapses[4]. It has been demonstrated
that neural networks are universal
approximators [5]-[8]. Besides, the
universal approximation theorem states
that neural networks can be used to
approximate any kind of continuous
function. Besides, the universal approx-
imation theorem states that neural
networks can be used to approximate

any kind of continuous function

The driving forces
Prior to moving ahead, I would like
to highlight the motivation for this
project. Modern industrial projects in-
volve various technical stages before
production. For instance, the design,
the sizing and the certification stage.
These stages require building models
and running heavy calculations such as
finite or discrete elements based on spe-
cialized software. However, oftentimes
the studied components share similar
parameters that makes it possible to
group them into various parametric
classes. Hence, this makes it possible to
handle them using machine learning.
The concept of neural networks was
proposed in place of the conventional
approaches for solving problems re-
lated to physical models due to its of
its flexibility and universal character of
approximation.
Besides, the optimization of this concept
sums up as the process of improving
the performance of neural networks.
This study focuses on building neural
networks to predict the resistant effort
or reserve factor of mechanical models.
Also, to improve the precision relative
to the lowest possible error threshold.
The objectives are; to study the pre-
cision of a single perceptron. And to
study the precision of neural networks
relative to the lowest possible error
thresholds for two different mechanical
models.

Use Cases
The two mechanical cases considered
are linear and nonlinear components.
Synthetic datasets have been generated
for each case, which means that we
had both the size and the quality of the
datasets controlled.
The features of these datasets include
parameters of the geometry, material
properties, and applied forces while the
target is a maximum resistance.

Model Building
Artificial neural networks performs bet-
ter for regression analysis because it has
the ability to learn complex relationship
between the features and target due to
the presence of activation function in
each layer.
The models have been built leverag-
ing keras module of tensorflow python
package. The training uses dense layer
architecture. In addition, the mixed
precision policy of tensorflow module
was incorporated. To get the most suit-
able parameters for model training,
hyperparameter tuning was carried out
using kerastuner module. Lastly, the
post process analysis was carried out
on best model configurations saved
during training, thanks to the callbacks
modules.

Models Analysis and Results
As earlier discussed, the purpose is to
build and improve the precision of our
networks relatively to the lowest possi-
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ble error thresholds. Here the accuracy
is defined as the ratio of errors under a
threshold and the total number of sam-
ples. While the precision of the models
corresponds to the smallest threshold
with a perfect accuracy. Below is the
mathematical expression of the accu-
racy.

Acc =
Card{i ∈ [1, n]||∆yi| < e}

n

Application on a linear case: a set of
parallel beams which have only the
widths as variables and other parame-
ters are constants. The resistant effort
can be written as a linear combina-
tion of these quantities. For instance,
NRd = c1b1 + c2b2 + c3b3.
Where b1, b2 and b3 are the widths of the
beams and c1, c2 and c3 are constants.

Figure 1: A set of parallel beams that
define a linear problem where bi are vari-
ables and ci are constants.

The first priority here is to explore for
maximum precision obtainable for a
single perceptron. The major factors
that influence precision are optimizer,
learning rate, number of iteration and
precision. Errors in this case are limited
to just training and numerical error be-

cause a single perceptron is sufficient to
predict results of a linear problem. Also,
the datasets used here are synthetic and
they are free of noise. After taking a few
measures like data preprocessing, tuned
learning rate and conducted more cal-
culations, improved results have been
obtained.
The accuracy is perfect for relative er-
ror threshold down until 10−6 which
coincides with the single numerical
precision. Thus, seeing that has hinted
to try double precision. Hence, training
with mixed precision, that is, setting
different precision for the training and
the variables produced improved re-
sults. Training with double precision
produced better accuracy for low er-
ror thresholds, whereas half precision
produced very low performance (see
figure 3).

Leveraging these measures on multi-
layer perceptron though produced a
similar performance compared with the
single perceptron but evaluating the
overall performance in term of mean
shows that single perceptron better
represents the data. The issue could be
that increasing the network capacity
tends to overwhelm the linear case,
which brings about capacity error. Thus,
achieving global minimum in this state
might be difficult due to many local
minima (see figure 4).

Application on nonlinear components:
The problem in consideration here is
a single bar with more variables such

geometrical and material properties.
The major factors that influence preci-
sion here is architecture of the neural
network, optimizer, learning rate, num-
ber of iterations and numerical stability.
The errors include training, numerical
and capacity errors. Here, the resistance
effort is written as, NRd = b · h · fy.
Where b and h are respectively
width and height of the beam
and fy is the limit of elasticity.

Figure 2: A beam under tension with all
parameters as variables. It represents a
simplified nonlinear problem.
Networks of single layer but of different
widths are examined. The precision
achieved is good but bounded around
1% error threshold. Although numerical
error seems less significant compared
to the other two errors. As expected,
bigger architectures yield higher preci-
sions (see figure 5).

Lastly, exploring multi-layered networks
appear to yield no real significant im-
provement to the previously achieved
precision around 1% (see figure 6). In-
crease of capacity can sometimes result
in lower performance [9], [10], as more
local minima may appear.

Figures

Figure 3: Comparison of different numerical precisions. Figure 4: Overall mean performance of MLP versus single percep-
tron on the linear components
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Figure 5: Comparison of the best performant models
Figure 6: Comparison of the performance of models of fixed widths
and different depths.

Conclusion
This project buttresses the use of neural
networks as universal approximators
to solve mechanical models. In general,
other studies for which the components
share similar parameters can leverage
the concept too. It tends to be more use-
ful when the components to be studied
require various levels of complexity, as
there is no need for significant modifi-
cations.
Although the precision of a prediction
appears to be bounded but still good
for lots of applications. Finally, high per-
formance computing has been used for
the computational demands required
of this study. Parallelization using MPI
has been implemented to better man-
age processing ressources and realize
statistical approaches.
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Implementation of an Advanced Stability
Condition of High-Order Spectral Element
Method for Seismic Wave Propagation

Stable
Earthquake
Simulations: a
Crash Course
Sara Sandh

High Performance Computing has opened new doors to understanding seis-
mic wave propagation. Numerical solvers can predict complex earthquake
scenarios, but performance is limited by the stability of the numerical meth-
ods. The implementation of an advanced stability condition can reduce the
computation times drastically.

When a volcano erupts or an
earthquake occurs, a large
burst of energy gets re-
leased. The low-frequency

energy that propagates through the
earth, causing the ground to vibrate, is
known as seismic waves. Unless you live
in a seismic hazard zone, you probably
don’t spend many hours of your day con-
templating how seismic waves propa-
gate throughout the earth. Nevertheless,
the interest in understanding seismic
wave propagation is simple: by under-
standing how seismic waves propagate,
we can predict the effects on buildings
and infrastructure around the source,
and therefore minimize or prevent the
inflicted damage.

The behavior of seismic waves is dif-
ficult to predict due to the irregular ge-
ometry and varying material properties
of the earth. The application of good nu-
merical methods and High Performance
Computing (HPC) offers a competitive
solution to overcome such issues.3

A good example of this is SEM3D,

an HPC wave propagation solver based
on the spectral element method (SEM)
and a Newmark time-stepping scheme.
The spectral element method, unlike
the better-known finite element method
(FEM), offers properties that are partic-
ularly beneficial for HPC implementa-
tions of seismic applications.2 The time-
stepping scheme propagates the solu-
tion over time using known solutions
of previous time steps to calculate the
solution at the next time step.

An ordinary differential equation is
obtained when applying SEM to the
spatial variables of the wave equation,
where the solution to our problem u is a
pressure or displacement field depend-
ing on the media of the domain (fluid
or solid):

Mü+Ku = F ext

Due to properties of the spectral ele-
ment formulation, the mass matrix M is
exactly diagonal. In addition to the low
memory requirements that follow, it re-

duces the complexity of the algorithm
and simplifies the parallel implementa-
tion.

Figure 1: Example of sparsity pattern of a)
mass matrix M and b) stiffness matrix K of
a spectral element formulation.

Stability - the Performance Bot-
tleneck

The stability of a time-stepping scheme
is essential for the reliability of the
solver. For intuition, the concept of sta-
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bility can be compared to a simple real-
life scenario: imagine a friend asks you
what you will do the next day. Know-
ing your current occupation, hobbies,
and social situation, you can probably
give a good, educated guess of what the
next day will look like. If your friend
instead asks what you will do a year
from now, the chance that you can give
a good answer decreases. Stability in
a numerical time-stepping scheme acts
similarly: if the time step ∆t is too large,
the estimated solution will be poor. As
the numerical scheme utilizes the inac-
curate data to calculate the solution at
the next time step, the error grows with
each step and causes instabilities.

The choice of time step ∆t is a deli-
cate task - a sufficiently small ∆t is re-
quired to ensure stability, on the other
hand, redundant computations are per-
formed if ∆t is smaller than required.
To maximize the efficiency of the solver,
∆t should be chosen as closely to the
stability limit as possible. The classical
Courant Friedrichs Lewy (CFL) stabil-
ity condition can be derived for homo-
geneous domains and gives an upper
bound to the stable ∆t based on the
wave speed, element size, and order of
the SEM. Challenges occur when trans-
lating the CFL condition to heteroge-
neous media - large instabilities are ob-
served when applying the lowest local
velocity.1 In SEM3D, the current solu-
tion to the heterogeneous stability prob-
lem is to multiply the potentially unsta-
ble ∆t by a user-defined safety factor,
often resulting in a very small time step
and a great loss of performance.

A more advanced stability condition
that extends to the heterogeneous case
is based on the maximum eigenvalue
of the matrix-matrix product M−1K
(matrices obtained in the SEM formu-
lation).1 Consequently, the eigenvalue-
based stability condition computes the
optimal ∆t for the heterogeneous prob-
lem.

The Problem with Matrix Repre-
sentation...

Similar to large-scale finite element for-
mulations, the spectral element method
yields large and sparse mass and stiff-
ness matrices. As memory usage plays a
critical part in the performance of any
HPC code, alternative data structures
are commonly used to store and repre-
sent the sparse matrices. For this rea-
son, SEM3D stores the inverse of the

diagonal mass matrix M−1 as a vector,
whereas the stiffness matrix is imple-
mented as a function that calculates a
vector of internal forces based on a dis-
placement vector (F int = Ku).

Although such matrix representa-
tion is highly optimized in terms of
storage and performance, it poses a
problem as most existing eigenvalue li-
braries require an explicitly represented
matrix to be passed to the eigenvalue
solver. Due to the scale and complexity
of the existing code, it is not relevant
to adapt the matrix representations for
this purpose. SEM3D furthermore sup-
port parallel execution on distributed ar-
chitectures. The matrices may therefore
be divided and distributed over multi-
ple processes according to the adapted
input mesh (a full mesh split into N
smaller meshes, where N is the num-
ber of processes used to solve the prob-
lem). The distributed data introduces
further challenges as no process holds
all the necessary data to calculate the
maximum eigenvalue of M−1K.

Figure 2: Decomposition of mesh for run-
ning SEM3D on 4 processes.

ARPACK: the Matrix-Free Eigen-
value Solver

The numerical software library ARPACK
is specifically developed to solve large-
scale eigenvalue problems for sparse
matrices without directly acting on the
matrix. ARPACK implements the Implic-
itly Restarted Arnoldi Method (IRAM)
which, like many other iterative eigen-
value methods, uses the matrix-vector
product Av = w to approximate the de-
sired eigenvalue or eigenvector of ma-
trix A.

The most important aspect of the
ARPACK library is the reverse communi-
cation interface, an alternative to pass-
ing the matrix to a solver. The solver

only requires the user to implement
a function that performs the matrix-
vector multiplication Av = w, which
is called between each iteration (see
pseudocode).

1 ! Normal s o l v e r tha t r equ i r e
2 ! e x p l i c i t matr ix r e p r e s en ta t i on
3 c a l l E igenva lueSo lver (A)
4

5 ! Reverse communication i n t e r f a c e
6 do
7 c a l l ARPACKIteration (v , w)
8 i f ( convergence . or . e r ro r )
9 e x i t

10 e l s e
11 c a l l Matr ixVectorProduct (v , w)
12 end i f
13 end do

Listing 1: Pseudocode to demonstrate the re-
verse communication interface of ARPACK.

The decoupling of the matrix from
the solver allows for alternative ma-
trix representations, making the library
suitable for HPC applications such as
SEM3D, for which the representation of
matrices often deviates from standards
such as 2D arrays, coordinate lists, or
compressed row storage.

The parallel version of ARPACK,
PARPACK, supports distributed memory
implementations and is particularly suit-
able when handling a parallel decom-
position of matrices, such as in SEM3D.
Extra care must be taken to the dupli-
cated data on shared faces.

Implementing the Matrix-Vector
Product

The matrix-vector product Av = w in-
directly lets the matrix A work on the
data used in IRAM. For stability of the
wave propagation problem, the matrix
in question is M−1K. For the sequential
case, the implementation is straightfor-
ward: as K is not explicitly represented,
the input vector is passed as a displace-
ment to calculate the internal forces, i.e.
F int = Kv. The internal forces are mul-
tiplied by the vector M−1, to obtain the
output vector w =M−1F int.

When running the code in parallel,
several nodes are shared at the inter-
faces of the partitioned meshes. Apply-
ing the sequential implementation re-
sult in duplicated data and incomplete
calculation of the internal forces. Code
to efficiently communicate the global
contributions of the local internal forces
is already implemented in SEM3D, but
attention must be given to the handling
of duplicated nodes.
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Figure 3: Simple example of two processes
and two 2D elements to demonstrate node-
sharing of parallel implementation.

In the simple example demonstrated
in Figure 3, two processes share two
nodes between their adjacent elements.
Data such as mass matrix coefficients
and internal forces are stored for each
local element. This results in data re-
lated to the shared nodes, i.e. node 2
and node 5 in Figure 3, to be duplicated
on both processes, storing the same val-
ues. The full local matrices must be used
to calculate the internal forces and cor-
rect matrix-vector product of the system
as a whole:

Process 0 computes:




M1

M2

M5

M6




−1

·




F int
1

F int
2

F int
5

F int
6


 =




w1

w2

w5

w6




Process 1 computes:




M2

M3

M4

M5




−1

·




F int
2

F int
3

F int
4

F int
5


 =




w2

w3

w4

w5




PARPACK requires a partitioning of
the input and output vectors that don’t
contain duplicated elements, therefore
only the process of the lowest rank
will pass its shared nodes to the out-
put vector. The remaining processes
will pass a vector of size #local nodes −
#shared nodes. In the example in Fig-
ure 3, this would mean that process
0 passes a vector containing elements
w1, w2, w5 and w6 whereas process 1
passes a vector only containing ele-
ments w3 and w4. The shared data from
the input vector is communicated from
the lowest ranked process to the higher
ranked processes, for the higher ranked
processes to reconstruct their full local
input vector necessary to calculate the

correct matrix-vector product for the
next iteration step.

Advanced Stability Condition - is
it Worth the Trouble?

The motivation to use an advanced sta-
bility criterion lies in the increased per-
formance obtained when fewer itera-
tions of the time-stepping scheme are
required. This purpose is defeated if the
computation time of the advanced sta-
bility condition exceeds the time saved
on the reduced number of time-stepping
iterations.

The efficiency of applying an ad-
vanced stability condition must be dis-
cussed keeping in mind two key aspects:
firstly, the number of iterations depends
not only on ∆t, but also on the total
simulation time, meaning that the addi-
tional overhead from solving the eigen-
value problem will not be as beneficial
for very short simulations as for longer
simulations. Secondly, as the initially
used safety factor is set by the user
for each simulation, the gained perfor-
mance is highly dependent on the user’s
ability to select a suitable safety factor
(a tricky task, one should add).

Despite the above-mentioned as-
pects, the advanced stability approach
showed very promising results. The cal-
culated ∆t would typically be around
twice the magnitude of other ∆t’s cal-
culated using the CFL-condition and
an appropriately selected safety factor.
The advanced stability condition would
therefore typically result in improved
simulations that require roughly half
the number of time-stepping iterations
to obtain the same result as the CFL-
condition with applied safety factor.

The observed computation time for
the eigenvalue problem was signifi-
cantly smaller than that of the remain-
ing solver - in many cases even negli-
gible. Considering the typically conser-
vatively chosen safety factors, the ad-
vanced stability condition showed very
promising results in terms of overall per-
formance.
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Implementation of efficient post-processing
routines for plasma simulations.

Post-processing
optimization
Julen Expósito

We can model interaction between solar
wind and space objects, but at the cost of
producing large dataset of physical
quantities. This project aims to implement
post-processing routines for those
quantities directly in the simulation code.

When running large simula-
tions, it is not uncommon
to have to shop a large
amount of data. Usually

this data is post-processed to get only
the information relevant to a particu-
lar study, but this post-processing can
be costly and storing the original raw
data can be a problem. Why not do the
post-processing directly in the simula-
tion, using the power of parallel com-
puting and supercomputers for optimi-
sation and only storing the information
you really need?

That is what I’m doing in this project
with global simulations of interaction
between the solar wind and planetary
magnetospheres. This system is defined
by the value of the electric and magnetic
field in the whole space, as well as the
position, velocity, mass and charge of all
the particles interacting in it. The code I
have worked with, iPIC3D,1 has already
implemented some routines that pro-
vide information of interest, such as the
current or the pressure tensor in space,
but this is insufficient, and researchers
are forced to work with the large files
resulting from the simulation to calcu-
late what they really need. In this work I
have focused on implementing two new
routines within the same code, so that
they are performed efficiently and in
parallel without the need to store much
heavier data that would later be used

to get the desired information: one to
calculate the tensor of temperatures in
the whole space, in a coordinate system
relative to the magnetic field, and an-
other to calculate the energy spectrum
of the particles in the simulation.

With this, future researchers who
will use our code to study the interac-
tion between solar wind and planetary
magnetospheres will have access to rele-
vant results much faster then before and
without having to deal with the huge
files that the current code outputs re-
gardless of which specific study you are
doing.

The Temperature Tensor

One of the relevant quantities when an-
alyzing a plasma system is the temper-
ature at each point in space. This tem-
perature is related in a straightforward
manner under reasonable assumptions
to the pressure, which, in general, does
not have to be isotropic: that is, it is
not, as we are used to, a unique value
associated with each spatial point, but
a mathematic object representing the
forces exerted on a on a differential el-
ement of area of the fluid. This is the
pressure tensor:

P̄ =



Pxx Pxy Pxz

Pxy Pyy Pyz

Pxz Pyz Pzz


 . (1)

This tensor is what the code gave
before this work, creating 6 different
files (note that the tensor is symmetric)
with the value of each component of
the tensor in all the cells of the plasma
simulation box. Now, there is a catch
here. You want to calculate the temper-
ature tensor from here, but not in the
code’s cartesian coordinates, but in co-
ordinates relative to the magnetic field
in each point of space. This means that
you have to take the 6 components of
the tensor and realize a change of basis
to the matrix to define the tensor in a
coordinate system where the principal
axis are one parallel to the magnetic
field and two perpendicular to it. Note
that this coordinates are dependent of
the point in space where they are calcu-
lated, because the magnetic field is not
going to be uniform in general.

Also, it is interesting to have the
diagonal components of the tensor in
what is called gyrontropic form, where
the two pressure diagonal pressure com-
ponents corresponding to the perpendic-
ular directions are equal. This facilitates
the measure of gyrotropy. In the end,
you have the following tensor:

P̄ =



T|| Ta Tb
Ta T⊥ Tc
Tb Tc T⊥


 . (2)

This change is computationally ex-
pensive, so it is interesting to do it
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Figure 1: Temperature file opened with Paraview. Below left, the 6 components can be seen as an option for the visualization of their
spatial distribution in a 2D slice of the simulation cube. On the right, a table with the component values in each cell of the simulation box.

within the code itself, without having to
do it in a later post-processing (which,
at the time this project started, only ex-
isted serially, which implied a lot of com-
putation time for realistic simulations).

The code works iteratively from
given initial conditions, and you can ask
it what information you want it to write
to files in which cycles. So, I have im-
plemented a new routine that calculates
the temperature tensor in the cycles you
ask for. In addition, this routine doesn’t
create 6 different files for each compo-
nent, but a single file with all the infor-
mation of the tensor for each point and
a format adequate for visualization.

This final result can be seen in Fig-
ure 1. Using the data visualization pro-
gram Paraview, the single file allows ac-
cess to all data at once for comparisons
and calculations of all kinds. Each cell
in the simulation box has the 6 temper-
ature tensor values associated with it.

The Energy Spectra

Observationally, if we want to study
plasma particles in space, what we do is
count the number of particles that are
in different energy ranges, moving in
a particular direction. This means that
we are not interested in knowing the
positions and velocities of all the par-
ticles, but only in knowing the energy
spectrum at each point: that is, the prob-
ability that a particle has one energy or
another.

This information is much less bur-
densome than the complete information
of all particles in a simulation. In the cy-
cles of interest, we could simply calcu-
late how many particles are in each cell
of the simulation box and place them in
different energy bins. In that way, what
used to be hundreds of particles per cell,
each with its velocity vector, is now sim-
ply a series of numbers indicating the
number of particles that fall between
different energy ranges chosen by the
user. A substantial improvement worth
implementing directly in the code for
parallel calculation.

This is more complicated than the
previous example. Let’s think about
how the code is designed: the differ-
ent processes running in parallel have
an associated region of space, in which
they perform all their computations and
which contains certain specific cells.
Those cells, in turn, have a certain num-
ber of particles inside them.

Each process thus has its own set of
particles, and I can make each of them
perform a cycle by going through all
its particles and putting them in "their
place". Let’s get down to work.

Suppose we want a power spectrum
that goes from, in arbitrary units for
the example, energy 1 to energy 5, in
bins of 0.5. This means that we want to
count the number of particles that have
an energy between 1 and 1.5, between
1.5 and 2...

We take particle 1. This particle has
a position associated with it in the form

of three values: x, y and z. Its position
tells us in which cell it is located. Once
that cell is found, we take its velocity
values in each direction: vx, vy, and vz.
Now we have to redo the coordinate
change we did with the temperature to
take v||, v⊥1 and v⊥2, because we want
the spectra also in coordinates relative
to the magnetic field, and then we use
those velocities to calculate the cinetic
energy in each direction: E||, E⊥1 and
E⊥2. Finally, we count that particle in
the energy bin where it belongs. For ex-
ample, if E|| is 2.36, you sum 1 particle
to the bin corresponding to energies be-
tween 2 and 2.5 in the cell where that
particles is for the file corresponding
to the energy spectra in the direction
parallel to the magnetic field.

You do this with all particles and you
end with a complete 3D matrix, which
each space element having an array of
N integer values, where N is the num-
ber of established energy bins, and the
values correspond to the number of par-
ticles in these bins. If you want to count
total charge instead of number of parti-
cles, just sum the charge of each particle
each time instead of 1.

These files are much lighter than
the files with all the particle informa-
tion! And they are much easier to work
with. In Figure 2 we can see the en-
ergy spectra in the three directions for
a certain cell in the simulation box,
the total energy spectra and a fit to a
Maxwell–Boltzmann distribution, which
is the distribution corresponding to par-
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Figure 2: Energy spectra of a random cell of the simulation box for a simulation with uniform magnetic field and uniformly distributed
particles with three times initialization velocity parallel to the magnetic field in comparison to the perpendicular directions.

ticles moving freely in a ideal gas, an
appropriate approximation of the sim-
ulation for which these results were
calculated. In this case, the thermal
velocity of the particles at initializa-
tion in the direction parallel to a uni-
form magnetic field was three times the
velocity in the other two perpendicu-
lar directions, and, as it should be ex-
pected, we see a more energetic spec-
tra. The Maxwell–Boltzmann distribu-
tion fits very well with the total energy,
indicating that the spectra is correctly
calculated.

The user can select the energy bins
and the volume of the cells where the
particles are counted, which allows a
free selection of the spectrum resolu-
tion.

Documentation

When working on collaborative code,
never forget that what you write and
modify will be part of a titanic project
on which many people have worked and
will work. Everything you do should be
properly commented and documented
in a common style that is easy for those
who come after you to understand. This
is also part of the work.

Both routines are properly com-
mented and tested. Any potential prob-
lems are documented, as well as the en-
tire internal process and methodology.

As much as it works, it is just as impor-
tant that people can use it, understand
it and modify it in the future without
your help!

Conclusions and future work

If we want to make the best possible use
of the resources we have, we cannot be
storing information that we do not want
to use directly. Space is expensive, and
working with large files causes many
problems. In addition, post-processing
of files is usually done with programs
and codes that are much less efficient
than those that perform the simulations
in the first place, which have been devel-
oped for years seeking the highest pos-
sible efficiency when running on high-
performance computers.

These two new routines will allow
anyone using the code for the study of
plasma in space to have access to rele-
vant information that can be compared
almost directly with observational data
without having to deal with inefficient
post-processing and space problems.
The code itself directly provides the rel-
evance information and calculates it by
making full use of its parallel design.

In the future, of course, more post-
processing routines can be implemented
that continue to speed up and facilitate
data analysis and make more optimal
use of available resources. The more

researchers are able to quickly and ef-
ficiently access physically interpretable
data, the more and better work will be
done using the code.
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Fundamentals of quantum algorithms and their
implementation

Fundamentals
of quantum
algorithms
Monika Das, Léo Lassalle

Quantum computing is no longer science
fiction. It is already here and evolving
quickly. The objective of this project is to
understand the main aspects of this
growing science. See why a quantum
computer is much more efficient than a
classical computer on specific problems.
We will show it in a concrete way by
studying an algorithm called Grover
algorithm.

Everyone has heard of quan-
tum computing but in reality
few people really know what
it means. It is known that quan-

tum computers can solve complex prob-
lems quickly. So you must be wondering
how it works, or on what kind of prob-
lems it is useful?

In this paper we will present and
explain the central principles of quan-
tum computing, then we will see sev-
eral quantum algorithms such as the
Bernstein-Vazirani algorithm or the
Grover algorithm and finally present a
concrete example of quantum algorithm
using the Grover algorithm.

Let’s start by explaining what dif-
ferentiates a classical computer from a

quantum computer. The power of quan-
tum computing lies in two central prin-
ciples of quantum mechanics, superpo-
sition and entanglement.

Superposition is the ability of a
quantum object, like an electron or pho-
ton, to be simultaneously in multiple
states. Therefore A quantum computer
consisting of n qubits can exist in a su-
perposition of 2n states: from |000...0⟩
to |111...1⟩.

Quantum entanglement is another
central idea in quantum physics. It says
that multiple qubits can be linked in
such a way that the measurement out-
come of one qubit’s state is correlated
with the measurement of other qubit
state. The most astonishing thing is that

such connection doesn’t depend on the
distance of the entangled qubits.

Now, let’s see some basic concepts
of quantum computing.

Bit vs Qubit

A classical computer works with bits, a
bit can take the value 0 or 1. It is by
creating strings of bits (strings of 0 and
1) that a standard computer communi-
cates.

A quantum computer does not use
bits but quantum bits (Qubit), this is
what makes all the difference. A quan-
tum bit is not limited to 2 values, the
0 and the 1, but it can also enter in
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phase of quantum superposition where
it combines the 2 states. This is why we
represent the quantum bit as a sphere
as we can see with figure 1 :

Figure 1: Representation of a qubit by a
Bloch sphere.

Here we can see on the z axis the
values |0⟩ and |1⟩. All possible points on
the surface of the sphere are possible
states of the qubit. On the image, the
qubit is in the state |Ψ⟩, whose mathe-
matical representation is

|Ψ⟩ = α |0⟩+ β |1⟩

where alpha and beta are complex
coefficients with the limitation

|α|2 + |β|2 = 1

Quantum Gate

To make a qubit change state, we
use quantum gates. Explained visually,
these gates allow us to move |Ψ⟩ on the
surface of the sphere.
Mathematically, these gates are repre-
sented by unitary matrices. Among the
most used gates we have the Hadamard
gate, as well as the gates allowing to
make rotations around the x,y and z
axes respectively the X, Y, Z gates.

Figure 2: Representation of the Hadamard
gate.

The matrice associated with this
gate, the Hadamard gate, is

H =
1√
2

[
1 1
1 −1

]

By using the different gates together,
we can create circuits.

Quantum circuit

A circuit is the equivalent of a computer
program for a quantum computer. It is
read from left to right. Let’s take a sim-
ple example with the circuit in figure
3:

Figure 3: Quantum circuit representing a
qubit passing through the Hadamard gate.

This circuit has only one qubit q[0]
in the |0⟩state at the beginning. Thanks
to Hadamard’s gate, we make our qubit
go from the |0⟩ state to the |+⟩ state.
graphically, this means :

Figure 4: Qubit going from the |0⟩ state
(left) to the |+⟩ state (right).

Mathematically, at the end of the circuit
our qubit is in the state:
|+⟩ = 1√

2
|0⟩+ 1√

2
|1⟩

So in calculating the result, we
have a 50% chance of getting 0
or 1. The result of this circuit is
given by the histogram in Figure 5.

Figure 5: Results of the previous circuit on
a 32 qubit simulator with 1000 shots.

When we calculate the result of the cir-
cuit, the qubit which is in quantum su-
perposition until then takes the value 0
or 1. This is why when we use a quan-
tum circuit we have to execute it several
times, to observe a tendency which will
be our result. Here, the state |+⟩ has a
50% chance to tend towards the state
|0⟩ or |1⟩.

Quantum algorithms

In this section, we will talk about the
quantum superiority on some problems.
That is to say the superiority of quan-
tum computers to solve certain type of
problems compared to classical comput-
ers.

Bernstein–Vazirani algorithm

The Bernstein-Vazirani algorithm is a
quantum algorithm to solve Bernstein-
Vazirani problem in a faster and efficient
way than classical computer. Let us first
look into the problem description.

Bernstein-Vazirani problem: Given
a function f that maps an input string
into 0 or 1,

f : {0, 1}n → {0, 1}
The function f(x) can be expressed as
a bit-wise product of an input string x
with an unknown string s

f(x) = s · x(mod 2)

. The problem is to find the secret string
s.

Classical approach: Classical solu-
tion needs to call the function f(x) n
times to reveal the full bit string s.

Quantum approach: Using the
Bernstein-Vazirani algorithm, we can
solve this problem in only one call

Figure 6: Circuit representation of
Bernstein-Vazirani algorithm.

1. First, we create a circuit of n
qubits, all in state |0⟩.

2. We apply a Hadamard gate to our
n qubits. This allows to create a
superposition state.

|ψ1⟩ =
1√
2n

2n−1∑

x=0

|x⟩

All our qubits are now in the |+⟩
state.

3. Then, we use an oracle, Uf , that
change |x⟩ into (−1)f(x)|x⟩ the su-
perposition state is now

|ψ1⟩ =
1√
2n

2n−1∑

x=0

(−1)f(x)|x⟩
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this means that each qubit tries a
string x. If the string corresponds
to the searched string s, the qubit
changes its state to |−⟩. Otherwise
the qubit stays in |+⟩ state.

4. Finally, We apply again Hadamard
gate to all qubits. The qubits in
|+⟩ state go to |0⟩ state. The
qubits in |−⟩ state go to |1⟩ state.
Thus we have found the secret
string s in a single call.

Grover’s Algorithm

Grover’s algorithm, also known as quan-
tum search algorithm is a quantum al-
gorithm which can perform a search
for unstructured database quadratically
faster than any existing classical algo-
rithms.

Figure 7: Quantum circuit to implement Grover’s algorithm..

Problem statement: Our problem
is to locate a unique member w from a
list of unsorted database with size N .
Let’s see how we can do it classically
and with quantum computers.

Classical approach: The classical
way of searching in such an unstruc-
tured database is to look for w in a
random manner. Think of looking for
a number w in a list of N numbers.
If you are lucky enough, you will get
this number with N/2 attempts. How-
ever, in worst scenario, you will need N
searches.

Quantum approach: Using the
quantum search algorithm, the esti-
mated search needed to find w is

√
N .

That is why this algorithm is known
to have a quadratic speed-up. Let’s go
through the step-by-step implementa-
tion of Grover’s algorithm.

1. The first step is to create a uni-
form superposition state,

|s⟩ = 1√
N

N−1∑

x=0

|x⟩.

It can be obtained using
Hadamard gate H⊗n on input
state |0⟩n.

2. Apply the oracle operator Uw that
introduces a phase flip to the so-
lution state |w⟩.

Uw |x⟩ =
{
|x⟩ if x ̸= w

− |x⟩ if x = w

3. Apply the Grover diffusion opera-
tor Us to the state |s⟩ to execute
the transformation,

Us = 2 |s⟩ ⟨s| − I.

The Grover diffusion operator in
figure 7 does this in 3 steps. First
it transform the state |u⟩ = Uw |s⟩
to |0 · 0⟩ by applying Hadamard
gate H⊗n. Then it applies the op-
erator Us and finally it applies

the Hadamard gate H⊗n again
to transform back to the state |u⟩
from |0 · 0⟩.

Figure 8: A 4-qubit implementation of Grover search algorithm in IBM’s quantum lab for 1
iteration.

4. Repeat the oracle and diffusion
operator of steps 2 & 3 for nit
times. Number of repetition is ex-
pressed as,

nit =
π

4 arcsin (1/
√
N)

,

where N = 2n is the number of
possible input combinations.

5. Measure the qubit states.

The quantum circuit to implement
the algorithm is presented in figure 7.

In this work, we implemented
Grover’s algorithm to search for num-
ber 13. We will present the quantum
circuit and obtained results in the next
sections.

Grover’s algorithm to search for
number 13

It is clear that a 4-qubit quantum cir-
cuit would be required to implement
the Grover’s search for number 13 or
1101 in binary.

Figure 10: Quantum circuit for Grover’s or-
acle to search for number 13.

Figure 11: Quantum circuit for Grover’s dif-
fusion operator.

The implementation works in two
steps. The first step is to build the ora-
cle that maps 1101 into 4-qubit by using
a controlled X gate and H gate. The Or-
acle circuit is quite simple and we only
need CNOT and CZ gate for this. De-
pending on the binary version of the
number to search, we need to use con-
trolled X gates where there is a 0 in the
binary combination. The target qubit of
the CZ gate can be any of the qubits in
the circuit. Our oracle circuit in figure
10 uses two Hadamard gates and one
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Figure 9: 4-qubit implementation of Grover search algorithm using ibmq_qasm_simulator representing 1 iteration(left) and 3 itera-
tions(right).

X gate to implement the Z gate. Also
it uses the last qubit q[3] as the target
qubit.

The next step is to build the Diffu-
sion operator as described in step 3. The
quantum circuit requires the application
of Hadamard gate twice, first at the be-
ginning of the circuit and then at the
end. The operator Us is implemented
in between these two applications of H-
gates. The circuit is presented in figure
11.

The final step is to combine the ora-
cle and the diffusion operator to con-
struct the full circuit. In some litera-
ture, the oracle and diffuser together is
named as the Grover’s operator. When
implemented together, the successive
application of two H-gates on q[3] can
be omitted as it is equivalent to identity
operation.

The quantum circuit in figure 8 con-
tains only 1 iteration of Grover’s opera-
tor. However, the number of repetition
needed for a 4-qubit implementation is
3. In our work, we repeated the ora-
cle and diffuser for 3 times and tested
the circuit with both simulator and real
quantum computer. We will present and
discuss the findings in next section.

Results & discussion

The probability of expected outcome
would be highest when the Grover’s op-
erator is repeated 3 times. As it can be
seen in figure 9, there are still some
probabilities for other numbers in the
case of only 1 iteration. But for 3 iter-
ations, the expected outcome(number
13) has the highest probability with the
other outcomes having nearly zero prob-
ability. Therefore, we have obtained the
expected result with ibmq_qasm simu-
lator

The circuit has also been tested
in IBM’s real quantum computer

ibmq_quito for 1, 2 and 3 iterations.
However, expected outcome is only ob-
tained for 1 iteration (figure 12.

Figure 12: 4-qubit implementation of Grover search algorithm using real quantum com-
puter ibmq_quito for 1 iteration.

As you can see, although 1101 has
the highest probability, the numbers
also have some probabilities. It is be-
cause the real quantum computers are
not yet accurate and contain errors. In
case of 2 and 3 iterations, the noise am-
plitude becomes large enough and very
random outcomes have been seen.

Conclusion

Throughout the project we have been
introduced to many exciting features
of quantum computing specially about
quantum algorithms. We have also gone
through a rigorous exposure to IBM’s
quantum lab as well as qiskit. Such
an exposure enabled us to successfully
implement Grover’s algorithm. We can
safely say that quantum computing is
going to provide efficient solutions to
future computing problems.

However, we also realized that many
of the advancements in quantum com-
puting are yet to come. To solve com-
plex research problems, we need quan-
tum computers with larger number of
qubits. The noise in the quantum hard-
ware is also a big issue for accuracy
in obtained results. If such limitations

are overcome, quantum computing will
surely triumph over other computing
schemes in upcoming future.
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Density Functional Theory (DFT) calculations for
Uranium and Thorium sesquicarbide using IT4I
supercomputing center

First principle
calculations
for nuclear
fission
Mattia Iannetti, Luigi Camerano Spelta Rapini

Nuclear reactions provide a large amount of
energy that can be used to face up the growing
energy demand around the world. However,
novel fuels are needed for faster and efficient
transfer of heat/energy in generation IV
reactors. DFT and HPC are the perfect tools to
investigate materials properties under extreme
conditions.

We all experience the rising
need of a reliable, cheap
and green energy source
which can satisfy all the

standards of the modern society. Nu-
clear fission can achieve these goals pro-
vided that some improvements are ap-
plied.
Density functional theory is the tool we
use in the project to investigate elec-
tronic structure, phonon dispersion and
thermal properties of the materials that
could be highly efficient novel nuclear
fuels. We was very fascinated when for
the first time we played with DFT code
to understand the electronic properties
of Molybdenum and Palladium: given
the crystal structure and number of va-
lence electrons in a few second one ob-
tains the equilibrium distance among
atoms and all the electrons available

states which determine the main prop-
erties of the materials, isn’t it amazing?
With the output of a DFT code one can
predict exactly the result of an experi-
ment or one can say if your material is
a metal or an insulator, it is opaque or
transparent without getting your hands
dirty.
Furthermore you can say if your mate-
rial is a suitable fuel for nuclear fission
or not, and this is the main issue of this
project. The idea is to investigate Tho-
rium and Uranium carbide and to ana-
lyze how the presence of Carbon atoms
affects the thermal conductivity and so
the efficiency of the fuel.
In particular we want to understand
how the heat transfer depends on the
phonon dispersion, the heat capacity of
single mode, and the relaxation time.
To do so we first have to understand

how electrons behaves in these com-
pounds.
Our project uses VASP1 (Vienna Ab ini-
tio Simulation Package) and Phonopy2

to implement lattice vibration.
This work aims to clarify some of the as-
pects involved in novel fission reactors.

Density Functional Theory

Density Functional Theory (DFT) is
a computational quantum mechanical
modelling method used to solve the
microscopic problem starting from the
charge density of our system. Given a
trial electron charge density, for exam-
ple a combination of atomic orbitals, the
self consistent algorithm starts to solve
a Schrodinger-like equation to evaluate
a new charge density as shown in Fig-
ure 1. Once the difference between the
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starting charge density and the calcu-
lated one is small enough, the algorithm
converges and the total energy of the
system is determined.

Figure 1: Figure explaining the self consis-
tency algorithm of DFT method.

Methods

Our DFT calculations were carried out
using the Vienna Ab initio Simulation
Package (VASP)1 with a particular com-
putational technique: the projector aug-
mented wave scheme (PAW)9.10 One
of the main problems in DFT is the
electron-electron correlation. To deal
with it we use the generalized gradient
approximation parametrized by Perdew-
Burke-Ernzerhof.11

To calculate vibrational properties
(phonons), we used supercell method
of small displacements as implemented
in PHONOPY.2

First approach to DFT calcula-
tions

As mentioned before we first started to
become acquainted with VASP codes
with simple materials: BBC molybde-
num and FCC palladium.
On these two crystals we first cal-
culated the equilibrium parameters
such as the lattice parameter and the

bulk modulus. Then, knowing the dis-
tance among atoms, Density Of States
(DOS) and band structure were cal-
culated. These properties describe
the electronic energies and the elec-
tronic available states. Then, based on
elastic constants (calculated by VASP
and code AELAS3) we determined
mechanical stability of these crystals.

Figure 2: Density of states for Molybdenum and Palladium determined. The DOS is the
number of available electron states per unit energy. The red dots are from literature DFT
calculations.457

Since electrons are fermions (identical
electrons cannot stay in the same state
for the Pauli exclusion principle), it can
be defined an energy (Fermi energy)
such that all the states below it are
filled while the above ones are empty
(at T=0K). The number of states near
this energy determine the main prop-
erties of the material. For example in
the Figure 2 one can see that palla-
dium has more electrons than molyb-
denum near the Fermi energy.This
fact influences the thermal properties
related to the electrons and will be-
come important at higher temperatures.

Figure 3: Heat capacity at constant pressure is shown for both Palladium and Molybdenum.
The red dots are experimental points.68

But wait a moment: to determine the
thermal properties we need to consider
also the movement of the ions (the
so called phonons)! The lattice vibra-
tions that guide the ions movements
are determined by so-called Hellman-
Feynman forces of all atoms. Then the
thermal properties are given by both
the electronic and ionic contribution.
It is worth noting that electronic con-

tribution in molybdenum is negligible
since the number of the electron near
the Fermi energy is very small. Instead
for palladium electrons matter! (Figure
3). Another study we did is on the rock
salt (NaCl) to understand the phonon
behavior for a heteropolar compound.
Electronic calculations were done to
determine the equilibrium lattice

parameter and then atomic vibrations
were investigated (Figure 4). Since
the NaCl is an heteropolar compound
of two atoms, it contains optical as
well as three acoustic modes, modes
(a,b,c), that goes to zero at Γ (center of
Brillouin zone). The transversal optical
modes (d,f) have the same energy along
certain direction while the longitudinal
one (e) has an higher energy. And now
you could ask: why are you telling me
all of this?
The answer is that we have to do ex-
periments. More specifically, when we
want to study a certain compound, we

have to be sure that our sample has the
same characteristics that we studied on
the computer. To do so there are two
main techniques: Raman and Infra-Red
spectroscopy. These two experiments
consist in sampling our material with
light. The reflection of the incident
beam is strictly related to the motion of
the ions in the crystal! That’s why we
need to know how nuclei moves.
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Figure 4: Some examples of displacements of nuclei in NaCl crystal.

Thorium and uranium sesquicar-
bides

Now that we know how to deal with
a new compound we begin looking
into these two candidates as novel
nuclear fuel, Th2C3 and U2C3. As for
other compounds we need to study the
material stability, look for the equilib-
rium lattice constant and then start
calculating electronic properties. But
problems never stop! Uranium and
Thorium have a very high atomic num-
ber(large mass) and so the inner elec-
trons move very fast! Therefore rela-
tivistic effects may be not negligible.

Figure 5: Band structure for both Uranium (up) and Thorium (down) compounds. The
black lines correspond to the calculation without SOC the red ones are with SOC

In VASP code there is a second varia-
tional implementation of the so called
Spin-Orbit Coupling (SOC) that is just
the relativistic correction we were talk-
ing about. This takes into account the
coupling between the famous spin de-
gree of freedom and the orbital moment
of the electrons. Without going into the
details, let’s see some result.

Results and further develop-
ments

In this section we report our study
on Th2C3 and U2C3. As said before,
once the equilibrium lattice parameter
is found, electronic calculations can be
done. In the figure 5 it is reported the
electronic band structure with and with-

out the Spin-Orbit Coupling (SOC) for
both uranium and thorium sesquicar-
bide. But wait a minute, what are
these bands? Since we are solving a
Schrodinger-like equation, we will even-
tually get quantized energies. But more
importantly, just from the fact that our
system is periodic, a new quantum num-
ber, related with the momenta of elec-
trons, come up. The dependence of the
energy on this sort of momenta is called
band structure, a dispersion diagram if
you like. As you can see, the relativis-
tic correction is visibly not negligible in
U2C3 since the bands differ a lot, while
in Th2C3 the SOC is negligible.

Further investigations should be done
on phonon structure and thermal prop-
erties of these compounds to see if and
how much the presence of carbon atoms
affect the heat transport.
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Leveraging HPC for doing LQCD simulations and
benchmarking LQCD applications

High
Performance
Quantum
Fields
Apostolos Giannousas
Christopher Kirwan

Lattice QCD can produce experimentally
verifiable results at low energies.
Observables will be extracted from
numerical simulations and software built
for the exascale-era will be benchmarked.

Lattice QCD - Introduction

Qunatum Chromodynamics is
the ruling theory behind the
strong interaction. It is for-
mulated in terms of quarks

and gluons, with physical quanti-
ties/observables calculated using the
Path Integral. Calculating these infinite
dimensional integrals with analytical
tools is an impossibility. Pertubative
techniques do exist, but these fail at the
energy scale necessary to describe nu-
clear interactions.

Lattice QCD provides a non-
pertubative approach to these calcula-
tions by discretizing our 4-dimensional
spacetime such that coordinates take
integer values (aka. a lattice). This
naturally provides methods to simu-
late QCD on a computer. A quark field
ψ is defined at each point ψ(n), with
a gauge link variable Uµ connecting
neighbouring lattice points.

Extracting Hadron Masses with
LQCD

As mentioned earlier, one of the main
goals in LQCD problems is the calcu-
lation of various quantities. A fairly
common task is to perform the so-
called hadron spectroscopy calculation.
That means determining a hadron mass
based on some specific input parame-
ters. One of those input parameters is
the gauge field configuration, which di-
rects us to an essential step towards
approximating the theoretical solution
of the Path Integral. Specifically, to ob-
tain a solution that converges with the
Path Integral’s solution, we carry out
the same experiment with different con-
figurations and take the average output
over all of them.

In addition, another parameter that
defines the preciseness of the calcu-
lation is the input quark mass. This
project’s motivation was to perform
hadron spectroscopy for a pion and find

the target quark mass resulting in a pion
mass value close to the experimental
one. This goal was tackled efficiently by
leveraging HPC resources.

Methods

To make the aforementioned LQCD
simulations, I utilized a tool called
chromaform and tried to optimize it
for Hawk and Juwels supercomputers,
where I performed all those simulations.
The parameters that need to be consid-
ered in order to highly parallelize the ex-
ecution of chromaform are actually the
dimensions of the lattice. Since there
were fixed lattice dimensions for the
following experiments, I made a num-
ber of scripts that issued chromaform
jobs with those dimensions but used
different number of MPI processes and
OpenMP threads. Upon finding the op-
timal configuration for my needs, I pro-
ceeded with the essence of the project.
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(a) Graph with exponential fitting of the 4 average correlators

(b) Graph with the line representing the relation of the pion mass square and quark mass. The horizontal
blue line is at the desired pion mass square

Initially, I did a lot of simulations us-
ing the same quark mass of −0.01 but a
different gauge configuration each time.
Note that the quark mass here is nega-
tive due to an additive mass shift intro-
duced during discretization. Afterward,
I extracted the pion correlators of those
simulations and calculated their aver-
age and standard error. Those statistical
observables were used to perform expo-
nential fitting and to acquire the pion
mass.

The fitting procedure was executed
with the help of Gnuplot. However,
since Gnuplot does not consider the cor-
relation among configurations, its er-
ror estimate can be significantly inac-
curate. That happens because the stan-
dard error calculation of Gnuplot as-
sumes that the pion correlators are in-
dependent variables, which is of course
incorrect. In this case, the best practice
is to use either the jackknife or the boot-
strap method. I opted for the jackknife
method as it is simpler to implement.
According to it, we should exclude one
correlator at a time, calculate the aver-
age of the rest and use all those aver-
ages to find the final error. That can be
viewed as a way to construct pseudo-
independent variables(correlators are
the variables here), thus making the er-
ror calculation more precise.

After completing the above steps,
even though we ended up with a pion
mass relatively close to the experimen-
tal value and a logical error estimate,
we wanted to obtain an even better so-
lution. Consequently, I decided to ex-
ploit the approximately linear relation
between the square of the pion mass
and the quark mass. To do this, I re-

peated the simulations with a quark
mass of −0.05 and extracted a new pion
mass. Having two pairs of a quark mass
and a pion mass square, I created the
line they defined, plugged in the desired
pion mass square, and extracted the the-
oretical quark mass I should use to get
it.

Results

To begin explaining the results, I should
point out that everything is in lat-
tice units which makes the masses di-
mensionless. The experimental physi-
cal pion mass is roughly 135 MeV and
translates to a lattice mass of 0.129. By
drawing the horizontal line at its square,
as shown in figure (b), I found out
the input quark mass should be around
−0.087. Unfortunately, using such a low
mass dramatically increased the dif-
ficulty for solutions to converge and
forced us to go only as low as −0.07.
However, the result was close to the
desired one and the prediction about
the relation between the two masses ap-
peared to be correct. All these can be
observed in the figure below.

Figure 2: Table with results extracted from
experiments with 4 different quark masses

Conclusion

The experimentation on hadron spec-
troscopy with LQCD on HPC resources
yielded promising results. Although I
could not find a way to try an even
smaller mass due to time limitations,
the final pion mass was satisfactory. A
future PRACE SoHPC participant could
alter various other aspects of the chro-
maform tool and manage to extract
even more accurate solutions.

For instance, he could compromise
with a smaller requested precision or
number of max iterations of the linear
system solvers. While that would de-
crease the accuracy of the final result, it
could also significantly lower the com-
plexity of the system’s solution. Last but
not least, chromaform contains a lot of
different solvers, that should be exam-
ined one by one since in this scenario
one of them could perform better than
the others.

Benchmarking with Kokkos

Modern high performance computers
have diverse and heterogeneous ar-
chitectures. For applications to scale
and perform well on these modern ar-
chitectures, they must be re-designed
with thread scalability and performance
portability as a priority. Orchestrating
data structures and execution patterns
between these diverse architectures is a
difficult problem.

The Kokkos C++ template library
is designed to assist the programmer in
creating highly portable code, by inter-
acting with shared-memory APIs (such
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as OpenMP, CUDA, pthreads, etc..) in a
unified manner.

The primary aim of this part of
the project was to develop a series of
benchmarks, primarily reporting mem-
ory bandwidth utilization. These bench-
marks then target multiple shared-
memory backends across the resources
available at the Jülich Supercomputing
Centre (JSC). To showcase an applica-
tion to Lattice QCD, a kernel for the
Staggered Dirac Operator was devel-
oped.

Background

The most demanding computational
task in a Lattice QCD simulation is
the calculation of the quark propaga-
tor. This involves solving a very large
system of equations

D(U)ψ = χ

where ψ is called the quark propagator,
χ is the source term and D(U) is the
lattice discretized Dirac Operator. This
is generally an incredibly large (approx-
imately 108 × 108 for the latest simula-
tions), sparse matrix.

Simulating staggered fermions in-
volves a staggered transformation of the
underlying quark fields. This allows for
the Dirac indices on the 12 component
spinor ψ(n) to be dropped, and there-
fore have a 3 component vector ψ(n)
at each lattice point. Consequently, the
Dirac Operator acting locally on each
vector has the convenient form

(Dψ)(x) =
3∑

µ=0

Uµ(x)ψ(x+ µ̂)

− U†
µ(x− µ̂)ψ(x− µ̂)

where µ̂ is the unit vector associated
with the lattice direction µ. This means
that the operator is composed of many
small matrix-vector multiplications with
the 8 nearest-neighbours on a lattice
site n.

Method

The Dirac operator kernel was imple-
mented using the Kokkos library. Mul-
tiple different targets were made for
both the Juwels-Booster and Jureca
supercomputer clusters at the Jülich
Supercomputing Centre (JSC). These
included compiling with clang and
nvcc (for nVidia GPUs). Various opti-
mizations were turned on at compile

time for each specific system arthitec-
ture.

Originally, the quark and gauge
fields were represented using single di-
mensional Kokkos::Views and there-
fore I used a 1-D parallel thread-
ing policy. However, in using an 4-
dimensional threading policy, it was
found that it allowed for cache block-
ing. Thus, the Kokkos::Views that
represented the quarks and gauge
fields were themselves 4-dimensional,
which also made indexing and retriev-
ing Kokkos::subviews much more
straightforward.

The dimension of the lattice was
then varied to measure how memory
bandwidth utilization changed as a
function of the number of lattice sites.

Adding distributed memory com-
munication with MPI was a much
simpler process than anticipated. As
Kokkos is a shared memory library,
it compliments MPI quite nicely. In-
ternode communication with the CPUs
and GPUs (along with intranode com-
munication for the GPUs) was done
using the halo exchange method.
However, since Kokkos::subviews
are guaranteed to be contiguous,
Kokkos::deep_copy was used to
copy into and out of recv and send
buffers, without having to implement
custom MPI_Datatypes. Benchmarks
were performed by varying both the
problem size and number of MPI pro-
cesses.

Results

The results of the benchmarks are in-
cluded in this section. This plot shows
memory bandwidth utilisation in GB/s,
for shared memory processes on a sin-
gle node for the two clusters at the JSC,
versus lattice volume.

From the above graph, it is clear that
as the lattice volume increases, the to-
tal memory bandwidth increases, espe-
cially for the nVidia A100 GPU. For the
CPUs, a drop in memory bandwidth utli-
sation is seen. This indicates that the
memory channels have become satu-
rated. To alleviate this issue, wider reg-
isters could be used to sustain higher
bandwidth utilisation for larger lattices.

Conclusion

With small attempts at optimizing the
code base, but avoiding the inclusion of
Kokkos library extensions (such as using
Kokkos-SIMD instructions, or Kokkos
dense linear algebra kernels), it was
found that Kokkos provides a solid foun-
dation for performance portable code
bases, especially for memory bound
problems such as Lattice QCD. The Stag-
gered Dirac kernels scale well to larger
lattices

The ability to produce targets for a
wide variety of architectures is certainly
an attractive feature for anyone devel-
oping code for the newest architectures.
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Adapting the Fast Multipole Method to distributed
memory

Chitchat,
Gossip &
Chatter
Ignacio Encinas Rubio

Today’s supercomputers consist of up to several thousands of computing nodes, and
adapting sequential programs in order to leverage their computing power is no easy
feat.

Nbody simulations are funda-
mental in many areas of re-
search such as cosmology or
chemistry. Performing increas-

ingly big simulations with a very high
number of particles forces us to lever-
age the whole power of today’s super-
computing centers. This implies mov-
ing from shared memory to distributed
memory, and the difficulty of doing so
depends vastly on the workload. In this
project we have taken the first steps to-
wards having a scalable Fast Multipole
implementation. We focused on near
field scalability for light workloads as
the main use case is MD simulations
dominated by long range interactions.

Fast Multipole Method

The Fast Multipole Method is an algo-
rithm developed to speedup N-body sim-
ulations. Its importance arises from the
fact that it reduces the computational
complexity for N-body simulations from
O(n2) to O(n). This is crucial because it
allows us to perform bigger and bigger
simulations that simply would not be
possible with an O(n2) algorithm even
with the best possible resources. For this
achievement, the Fast Multipole Method
is regarded as one of the top ten algo-
rithms of the 20th century.

A natural question is to wonder how
this complexity reduction is achieved
with respect to the naive solution, so
we will give a brief explanation on how
it works.

Some interactions such as the
Coulomb and Gravitational forces de-
crease in intensity proportional to

1

r2
where r represents the distance be-
tween the two interacting particles. As
r increases, the force becomes more
and more negligible and we’re tempted
to just ignore it. It would be great if
we could just ignore far particles and
speedup the computation that way, but
the problem is that while doing so we
would be accumulating an unbounded
error over time, making our efforts to-
tally worthless.

The cleverness of FMM comes from
approximating the interaction of far par-
ticles, while making the pairwise com-
putation for close particles. This ap-
proach bounds the total error and pro-
duces usable results.

The first step is to divide space up

to depth d as illustrated in the figure.
Then, we compute an approximation
for each box that will represent every
particle in it.

Once we have set up everything, we
can proceed with the actual calculations.
These are split in different passes that
perform very specific tasks. Pass 1 to
Pass 4 work with the representation of
boxes while Pass 5 works with individ-
ual particles for the near field interac-
tions.
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Too many messages

As we have seen, these tree-like data
structures play a fundamental role in
the Fast Multipole Method. This is rela-
tively simple when dealing with shared
memory but if we want to move away
to distributed memory problems arise.

Distributing ownership of every box
on every level in a robust way that
doesn’t completely fail when the sim-
ulation isn’t homogeneous is very com-
plicated. Furthermore, in the far field
passes we have to access the tree data
structures very extensively, and this
means that we have to perform lots of
communications.

For these reasons we decided to fo-
cus on the near field pass as its adap-
tation to distributed memory does not
suffer of the problems mentioned above,
and allows for very simple implemen-
tations that yield correct results from
which we can improve gradually.

Near field

Our initial implementation for the near
field consisted on communicating every
bit of information from our principal
node and let the code work and improve
from there. We expected that the initial
distribution would be the main bottle-
neck and we discussed some complex
schemas to mitigate it, but the results
were surprising. The major slowdown
when scaling up in the number of cores
actually was in the gathering of results
on the principal node. Our main hypoth-
esis were three:

• The message size is too big

• The naive MPI_Reduce implemen-
tation chained up delays summing
up to a significant amount

• Load imbalance presents itself
when scaling up in the number
of processors

Results

We measured the maximum time that
the actual computation took in every
node in order to search for load imbal-
ance. Results showed that this could not
explain the results gathering slowdown
as the workload distribution was highly
homogeneous. On the other hand, we
added the necessary bookkeeping that
allowed us to retrieve the minimum
amount of information from each node.
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With these modifications we were
able to evaluate all three hypothesis
as we succesfully reduced the message
size, removed the naive MPI_Reduce
and discarded the possible load imbal-
ance.

The results were obtained running
a modified FMM implementation that
only performed Pass 5 as we just wanted
to study the performance on the data
distribution and result gathering.

It should be taken into account that
the communication latencies can be hid-
den in the complete version by perform-
ing the far field passes while waiting for
communication to finish.

Further work is required in order to
understand this unexpected bottleneck
and how to circumvent it.

Conclusion

Results show that our goal is not as easy
as one might think at first sight. We ex-
pected major resistance towards scala-
bility but were surprised by its fiercity.
We were not able to perform any major
breakthroughs.

On the bright side, the naive
data distribution performed surprisingly
well, and combining this with the fact
that the gathering latencies can be hid-
den by the calculations performed on
the far field passes means that we can
get some performance with a low num-
ber of nodes.
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Multi-GPU Physics Based Hamiltonian Monte
Carlo

Multi-GPU
Hamiltonian
Monte Carlo

HMC is widely used in probabilistic
programming, as part of fitting
many-parameter models. Our
implementation - created from scratch - is
scalable, portable & based on Physics.

Generating samples from a
given probability distribution
function is a surprisingly dif-
ficult task, and Hamiltonian

Monte Carlo (HMC) solves this chal-
lenge in an elegant way. HMC is widely
used in probabilistic programming pack-
ages, such as STAN1 and numpyro,2

which use the algorithm to sample pa-
rameters from posterior probability dis-
tributions, which govern the distribu-
tion of model parameters given some
data. The size and number of param-
eters of some statistical models, such
as those in epidemiology, justifies paral-
lelized HMC schemes.

There were two principal goals for
this project. First, we had to implement
from scratch in Python the HMC algo-
rithm as presented and discussed in pre-
vious works.3,4 For such a purpose, we
opted for a physics based approach, as
this allowed for a more intuitive inter-
pretation and future extension of the
method. We assumed we were given a
system with particles moving in a mul-
tidimensional space and these do not
interact with each other. In addition,
each particle had its own mass and the
system could be heated up and cooled
down by considering the temperature

as a parameter.
Secondly, we adapted our implemen-

tation with the goal of it being able to
run on multi-CPU or GPU clusters by
simply changing one line of code.

Figure 1: Proposals generated by the
Metropolis-Hastings algorithm. Note the
high rejection rate and high correlation,
even with 2 dimensions.

Theory

To begin with, let us assume that we
have a model, and some data which is

supposed to be explained by the model.
Through Bayesian inference the proba-
bility distribution of the model parame-
ters can be deduced. Generating param-
eter samples from this distribution is
difficult or impossible via inverse trans-
form sampling, but can be done via
HMC.
Bayes Rule

We recall that Bayes theorem states
that given the prior probability p(q) and
a set of observed data y whose likeli-
hood is p(y|q), then the posterior proba-
bility p(q|y) is

p(q|y) = p(q)p(y|q)
p(y)

,

where p(y) is a normalizing con-
stant, which may be ignored. Typically,
p(q|y) corresponds to the distribution
we want to sample from, which we will
call π(q) from now on. HMC samples
from this distribution for the parame-
ters, as outlined below. This is done to
calculate expectation values for the pa-
rameters of the distribution, along with
standard deviations.
Markov Chain Sampling Methods

Let us assume we are interested
in generating samples from a proba-
bility distribution function or density
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function π(q) with parameter q on a
D-dimensional space, Q. Furthermore,
π(q) is not easily invertible or is not
available in closed form.

The subset T ⊂ Q where the prod-
uct π(q)dq such that q ∈ T is non-
negligible is called the typical set. This
region, called the typical set, is where
we want to sample from. Notably the
volume of T relative to the region sur-
rounding T decreases as D increases.

There exist many sampling tech-
niques to generate points from π(q) and
one of the most widely used techniques
is a class of statistical methods called
Markov Chain Monte Carlo (MCMC).
These methods, intuitively, consist of
randomly navigating through the space
spanned by parameter q, commonly
called parameter space.

Most MCMC methods work by gen-
erating the proposals for the next sam-
ple (qn+1) in proximity to the current
sample (qn). For instance, the Guassian
Metropolis-Hastings method involves
taking a random Gaussian step in pa-
rameter space to get the next proposal,
which we denote by q′. The proposal
is then accepted or rejected with prob-
ability π(q′)/π(qn). The rejection of
samples at a lower probability density
causes the walk to “stay on track”, and
for computational resources to be fo-
cused on the typical set, where the den-
sity of the target distribution is signifi-
cant.

This simple Metropolis-Hastings
method, shown in Figure 1, strug-
gles with high-dimensional distribu-
tions, when D is large, as the volume
surrounding T is much larger than the
volume of T itself, meaning most pro-
posals are in regions of Q where π(q)dq
is negligible and are, therefore, rejected.
This is not efficient at best and totally
infeasible if D is sufficiently high.

This is where HMC steps in. Work
on the random motion of smoke parti-
cles in air (brownian motion) by Ein-
stein and others established that the
motion of particles in a gas can be mod-
eled using Markov chains. Inverting this,
some markov chains can be considered
as particles. Suppose that we are given
a particle whose position vector q is on
a D-dimensional space; keep in mind
that q is the parameter we are inter-
ested in. HMC doubles the parameter
space Q by adding an extra parame-
ter, which we refer to as momentum,
p. Then, we have a joint probability
distribution function depending on q
and p, that is, π(q,p) = π(p|q)π(q).

Notably, in physics we often sample
from the canonical distribution, which
is given by π(q,p) = exp(−H(q,p)),
where H(q,p) is the Hamiltonian or en-
ergy value at (q,p).

We notice that H(q,p) can be writ-
ten as the sum of kinetic K(p,q)
and potential energy V (q) as fol-
lows: H(q,p) = − log π(q,p) =
− log π(p|q) − log π(q) = K(p,q) +
V (q). This means that each point in
the parameter space is assigned a po-
tential energy V (q) = − lnπ(q). To il-
lustrate this, imagine a 2D Gaussian dis-
tribution π(q) = exp(−q21 − q22) (lack-
ing normalization). This has a bowl
shaped parabolic potential energy func-
tion V (q) = q21 + q22 . We set K(p,q) =
(pT ·p)/2m. Such a choice of K(p,q) is
usually implemented as discussed in.3,4

Besides, we state that the Hamiltonian
captures the "geometrical information"
of T and that K(p,q) is non-unique.

To go from one sample to the next,
we give the “particle”, whose mass is
m, a random momentum p from a
Maxwell-Boltzmann distribution, which
approximates the motion of particles in
an ideal gas. In practice this means mo-
mentum is drawn from a multivariate
normal distribution with a mean of zero
and the standard deviation for each co-
ordinate as given below.

σ2
pi

= σ2
pi+1

= ... = mkbT,

for i = 1, . . . , D − 1.
We then simulate the evolution of

the system for a certain number of time-
steps, which requires solving Hamilton’s
equations for p,q. This is done using a
sympletic integrator - which conserves
the Hamiltonian, i.e. energy - such as
the leapfrog method. We recall that the
force F acting upon the particle is the
negative of the gradient of the potential
with respect to position; that is

F = −∇V (q).

To concretize the evolution, imag-
ine a hockey puck being given a ran-
dom momentum in a large, parabolic
bowl. In an ideal world, this method of
generating proposals negates the need
for an acceptance/rejection step, for
reasons outlined in the references.3,4

However, in reality, a small number
of proposals are rejected due to nu-
merical integration errors. Nonetheless,
with a suitable time-step most propos-
als are accepted and samples have a
lower correlation than those produced
by Metropolis-Hastings.

Methods

The implementation was made using
Google’s jax, which is NumPy accel-
erated on GPU. Jax features just-in-
time compilation, automatic differenti-
ation and parallelization of evaluation
by means of vectorization via ’vmap.’
MPI was used to run the program on
multiple GPUs, where vmap was used
to run multiple particles in parallel as
illustrated in Figure 2.

Figure 2: Parallel architecture.

Numpyro played an important role
in the project, as it was used to set up
the probabilistic models and calculate
the log posterior distribution from ob-
servations. The posterior’s were then
sampled from using our HMC kernel.

Results

We achieved the initial goal of fitting
probabilistic models on multiple GPUs.
The implementation is also extremely
portable, as it can be run on CPUs or
GPUs easily, with no requirement for
all GPUs to be of the same architec-
ture. Figure 3 shows the scaling of the
implementation with the number of
particles on a single CPU, a single GPU
and two GPUs of different architectures.
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Figure 3: A GTX 1080Ti and RTX 3050 were used, inferring the bias of two coins.

The speedup of the algorithm with the
number of V100 GPUs used is plotted in
Figure 4, whilst the change in run time
on one GPU as the number of particles
increases is shown in Figure 5. The
weak scaling in both plots is a conse-
quence of the model being far too small
to fully utilize the GPUs, meaning much
of the run time is overhead. We limited
ourselves to small models which can be
solved analytically because this allowed
us to verify the correctness of the results
obtained with our implementation.

Discussion/Conclusions

Overall we are pleased with our
progress and the results so far have
been promising. In the future, we plan
to fit some larger models and explore
how tuning physical parameters can

Figure 4: Speedup vs number of V100 GPUs for various numbers of paricles.

affect our performance.

One promising avenue is simulated
annealing. Let us say we have a bi-
modal distribution function (ie a pdf
with two local maxima). To start we set
momentum’s with a high temperature,
meaning the entire potential landscape
(and hopefully each mode) is more read-
ily explored. We gradually lower the
temperature before generating samples
from the chains, so the tails of the dis-
tribution are not over represented.

Also, it is worth noting that current
results have been obtained with code
that has not yet been optimized. Profil-
ing reveals significant host-device com-
munication which, in combination with
the small models used, explains the lim-
ited scalability observed so far. Eliminat-
ing these transfers and increasing the
model size in the coming weeks should
lead to major improvements in scalabil-
ity.

Figure 5: Speedup vs Number of Particles
on one V100 GPU.
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Analyzing High Performance System Operational
Logs with Machine Learning Methods for
Anomaly Detection

HPC System
Analytics
Yağmur Akarken

What would happen if you knew what was
going on on the node you are running your
job on? In the project, it is aimed to
perform anomaly detection by analyzing
operational logs with machine learning
methods.

High performance analytics
project is a continuation of
the previous work, A Holis-
tic Analysis of Datacenter Op-

erations. In the previous study, a com-
prehensive report was prepared on sub-
jects such as resource usage, energy,
and workload characterization by exam-
ining pre- and post-Covid operational
logs. It is demonstrated that the bene-
fits of holistic analysis method by ap-
plying it to the operations of a datacen-
ter infrastructure with over 300 nodes.
Also, it is suggested that such observa-
tions can help immediately with per-
formance engineering tasks such as pre-
dicting future datacenter load, and long-
term with the design of datacenter in-
frastructure. Therefore, it is proposed to
analyze operational logs with machine
learning methods. Starting from the pre-
vious work where operational logs of
the cluster computer LISA are charac-
terized, the project proposes a contin-
uation that would bring in scope addi-
tional data sources, like Prometheus. It
is planned to evaluate an anomaly de-
tection method on this newly created
dataset.

With this project, it is desired to
produce a dataset by using the dataset
created for the previous study and ex-

panding it further. The dataset will con-
tain information from different sources.
These resources are XALT, Prometheus,
SLURM and EAR. While EAR pro-
vides information about energy usage,
SLURM provides information flow at job
level. XALT collects job level informa-
tion about the libraries and executables
that user’s access during their jobs and
Prometheus keep the information at the
node level. Our aim is to pre-process
the data we obtained with Prometheus,
train it with a machine learning method
and perform anomaly detection.

A Close Look at the Data

The data we originally used comes from
280 CPU nodes in the Lisa cluster. A
datapoint is generated every thirty sec-
onds and we can access this datapoint
through Prometheus’ API. Each data-
point has 80 different features. These
features provide information about the
node, from CPU usage to network us-
age.

There is a certain amount of normal-
ization on the accumulated data. For ex-
ample, all nodes selected as data source
are CPU nodes, data accumulated on
the same days and at the same times

are used for nodes that are desired to
be used in the dataset. But some fea-
tures are not uniform.

For example, the read pages total
feature of the data point you see in the
figure uses fs17 and fs22 file system
files. But another node can use fs21 and
fs18. There are multiple features like
this. We used some aggregation meth-
ods to make these features uniform.
Apart from that, the Surfsara power us-
age feature seen in the same figure car-
ries information about the CPU usage
of the node. In the studies conducted
with the machine learning method, the
power usage feature was primarily used
as it would be easier to predict because
it follows a certain trend. For example,
if the CPU usage is high on a node at
one data point, it will likely be high at
the next data point.

Understanding Data

Normalized data continued to be pro-
cessed with principal component anal-
ysis. PCA is an unsupervised algorithm
that is mainly used for dimensional-
ity reduction but can also be used for
visualization, noise filtering or extrac-
tion. We wanted to use PCA because
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we wanted to see if clusters are formed
in the data after data visualization. We
also wanted to use the data obtained
after dimensionality reduction.

We started PCA analysis with a
dataset containing more than four mil-
lion data points. Then we experimented
the dataset with PCA’s explained vari-
ance ratio. In these studies, we tried
to find out how many components can
cover information at the optimum level.
As a result of this study, as you can
see in the graphic, we realized that we
could cover 97.7% of the information
about data by using 15 components,
and we continued our next work by us-
ing these 15 components.

Figure 1: Variance explained by different
number of components. After these results
all experiments are made by 15 components.

Then we analyzed the features that
provide the maximum variance. As a re-
sult of this study, we found that disk’s
written bytes, node core’s temperature,
node network related features had the
most impact.

Outliers with PCA

Afterwards, we took a new step to cre-
ate our new dataset. We found some
outliers that we could detect using the
components we obtained because of
PCA, and we cleaned our dataset. While
detecting the outliers, we used the re-
verse transforms of the principal com-
ponents, which we obtained from PCA,
and measured the mean square error.
As a result of this measurement, we got
the results you see in the figures. When
we look at the distribution, most data
points have an error rate in the range of
0-5, and then these numbers are gradu-
ally decreasing. With these results, we
continued to work with data points in
the range of 0-5 error rate. This corre-
sponds to 95% of the dataset we have.

Figure 2: MSE distribution for all datapoints

Visualization of PCA

In order to provide visualization on the
data, we reduced the number of compo-
nents to 3 and performed PCA analysis
again. The image we obtained as a re-
sult of this analysis looks like a line in a
3-dimensional plane. What we hoped to
see here was actually the formation of
some clusters and continuing to work
by selecting some features from there.
While investigating why we got this lin-
ear result, we realized that we were get-
ting similar results with small subsets
of the dataset, and we started checking
the eigenvalues. In this part, we used
the Levene’s test. But the Levene’s test
assumes independent observations, in
a temporal setting, but the data we are
working on is correlated. As a result, we
did not get very successful observations
and we continued to use all the features
we had.

Figure 3: Linear PCA result by using three
components

Machine Learning Method for
Anomaly Detection: LSTM

After obtaining the dataset, we wanted
to choose a machine learning method
and train for anomaly detection using
the power usage feature. LSTM is a deep
learning architecture consisting of a cell
structure with input, output and forget

gates. While the input gate manages
the fed input, the output gate manages
the result of the cell. The forget gate
helps the cell to be used as memory and
decides what is and will not be remem-
bered. Thanks to these structures, LSTM
is a technique used for time-series data,
with which we can access long-term ob-
servations.

In LSTM, we first estimated the CPU
usage as it follows some certain trend
and easy to predict. We decided that we
could do an anomaly detection with a
model that could make accurate predic-
tions for CPU usage for the next steps.

Basically, what we did was use the
next timestamp data as the predictor for
the current input and visualize the test
data to see if LSTM could learn some-
thing. The mean square error we han-
dled with this random model is 1.29.

Figure 4: The measurement on test set with
random model which makes predictions di-
rectly using next datapoint’s power usage
data

Afterwards, we started our first work
with LSTM using information about a
single node. Since LSTMs are powerful
models, they started to overfit on such
a small dataset.

Figure 5: Initial loss curves and predictions
belongs to training and testing by using
LSTM

We also played with different param-
eters to overcome this overfitting. These
parameters include dataset size, batch
size, input sequence length, number of
epochs, hidden layer size and output
size.
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Table 1: Training dataset MSE Loss

seq length
hidden layer

2 4 8 16 32 64

4 0.054 0.177 0.021 0.018 0.017 0.016
8 0.051 0.030 0.017 0.018 0.016 0.015
16 0.043 0.034 0.031 0.016 0.016 0.016
32 0.049 0.032 0.022 0.018 0.016 0.014
64 0.034 0.024 0.022 0.018 0.016 0.016

Table 2: Test dataset MSE Loss

seq length
hidden layer

2 4 8 16 32 64

4 0.069 0.084 0.025 0.046 0.044 0.042
8 0.092 0.036 0.095 0.035 0.059 0.071
16 0.212 0.058 0.035 0.022 0.029 0.034
32 0.048 0.126 0.068 0.071 0.074 0.038
64 0.037 0.035 0.050 0.014 0.021 0.053

Final Results with LSTM

As the final model, we used a model
with a hidden layer size of 16, input
length of 64, and a batch size of 512. In
order to avoid overfitting, we have in-
creased our dataset size ten times, and
instead of using all features, we have
started using 45 features, which corre-
sponds to 64% of all features.

Figure 6: Final LSTM model loss curves for
training and testing

Figure 7: Final LSTM model’s predictions
and truth values

Conclusion & Discussion

Based on our assessments, LSTM is
promising to be good at predicting, es-
pecially in areas where data spikes. But
as always, there is room for improve-
ment. The next step is to create clusters
for normal data points by clustering the

outputs on the dense layer of LSTM, and
to consider the data points other than
this as outliers.

The study can be easily expanded
and usage areas can be found. First of
all, after clustering is done, predictions
with LSTM are planned to be made for
all features. Afterwards, it is desired to
perform visualization using these pre-
dictions in the LISA cluster. In this way,
users will be able to have information
about the node and closely monitor the
nodes they run their jobs on. Another
study that could follow this is to do
anomaly detection using hierarchical
VAE instead of LSTM. Thanks to these
kind of studies, we hope to learn more
about the use of clusters and supercom-
puters, and then expand the project at
job and system levels and turn it into a
useful software for users.
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Yağmur Akarken

46



Parallel big data analysis within R for better
electricity consumption prediction

Big data for
electricity
Lucı́a Absalom Bautista

My projects this summer involve two
different goals. On the one hand, learning
parallelisation and the use of Rmpi to
implement our code on a supercomputer,
and on the other hand, the comparative
study between ground truth clusters and
clusters generated with MSSC.

Two different projects have been
occupying my time this sum-
mer. Both have made me enjoy
and learn, forging my knowl-

edge in the areas of statistics and HPC.
In this article I will try to review them
both in the same way I have been learn-
ing about these topics.

Parallelization and open MPI
with R

This was the main goal of the intern-
ship and where I spent most of my time
doing research. Although I am very fa-
miliar with R and artificial intelligence
algorithms, this was my first time using
parallelization and using a computer
with several nodes.

The Data set

The dataset we are working on consists
of the recording of electricity consump-
tion for different consumption units col-
lected every 15 minutes. We also have
some extra data regarding the date, the
type of consumer, the day cathegory
(holiday or normal day), etc. All the
data is stored on a MongoDB Data Base
and stores on a cluster. We retrieve this

data using an API getting a json object.
A picture of how the data looks??

The Code

The goal of our code is to compute
several forecasting models to predict
electricity consumption for our dataset.
These models are the following:

• pred_model_GLM_small: a
model usign generalised linear
models.

• pred_model_clust_NN : a
model using Neural Network.

• pred_model_clust_RF: a
model using Random Forest.

We have had two main tasks con-
cerning the code:

• Parallelization

• MPI

Parallelization
Our main goal in this part is to carry out
several processes simultaneously within
a node. Firstly I had to clean up the code
from small errors related to NA process-
ing and insufficient data for model com-
putation.

After creating an fz function (see
Figure 1), which wraps the desired
code, we only had to make use of
the doParallel library, an R library
specifically created for parallelisation
tasks.

Within it we find several func-
tions such as %dopar%, mcapply,
parSapply, parLapply that (except
for some differences), take as argu-
ments the number of clusters, fz func-
tion and the vector with the IDs needed
to calculate the models.

Figure 1: Function fz

In figure 2 we can see an example
of the resulting code after the use of
the parLapply and system.time function
which will allow us to measure the time
it takes to run.
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Figure 2: Paralellization code

So this code is running perfectly
within one node, the problem is that
when we try to run more than, let’s say
50 ID’s, it’s start to get computation-
ally more expensive and consequentely
much slower to generate (for 100 ID’s
the code was taking aorund 3 horus to
run on login node). So this is where MPI
comes in.

MPI
Here we work with two different

files, a Master file and a Slave file. In
the master file we will spawn the slaves
and they will do the computations, each
one of them for a certain number of ID’s,
thus distributing the calculations. When
finishing, the slaves will return the in-
formation to the master. We can see this
work flow on Figure 3.

Figure 3: MPI Workflow

The Master file:
In order to implement MPI in

our code, we make use of Rmpi,
a specific library for this purpose.
Here we can spawn our processes
and check the size (equal to the
number of nodes used) using func-
tion Rmpi::mpi.comm.size(0)
the rank of each process,
mpi::mpi.comm.rank(0) and
the name of the processor
where each process is located
Rmpi::mpi.get.processor.name().

By defining the variable ,N we de-
cide how many ID’s each node will com-
pute, so for example, if we use 4 nodes

and N = 80, we will be calculating the
models for 320 users.

The master file calls the slave file
and its respective function, passing as
an argument the position of the ID’s to
compute: (N ∗rank+1, N ∗(rank+1)).

The Slave file:
In the Slave files is where we actu-

ally find our computing code and we
have a different slave file for each par-
allel function (in total 6: for loop,
do, dopar, mcapply, parlapply,
parsapply).

After defining some of our choice
parameters needed for the models:

Figure 4: Parameters given to the model

and loading the external files for
computing the models and retrieving
the data, our only task left is to apply
the paralellization code described on
Figure 2.

Batch
So now our code is finished we just

need to send it to compute. For this we
will use a batch file and slurm will be in
charge of allocating the computing on
the spare nodes.

Our batch file consists of 4 parts.
A first part where we say which par-
tition we are using, how much memory
we are going to use and the amount of
time we want our code to be running
for. A second part where we say how
many nodes we are going to use and
how many tasks per node (with paral-
lelization we will distribute computa-
tions across each node, that’s why we
are only having 1 task per process), a
third part where we say where our lo-
gout file is going to be sotred and the
final part where we load both mpi and R
modules and run the script using srun.

We tried computing out code for
up to 8 nodes. Because of a problem
with the cluster provider, when running
for a number of ID’s bigger than 300,
cluster broke down and we therefore
weren’t able to collect data (We had to
restart cluster on multiple occasions).
This problem with the data base is be-
ing fixed at the moment so we hope to
retrieve more data and run our code for
more users.

Results

So as I said, our main goal was to make
the code run and by the way comparing
the performance of different parallelisa-
tion functions. For that, keeping a con-
stant number of data, we can run the
code across different number of nodes:
1, 2, 3 or within the same number of
nodes we can change the value of N
and see how the functions behave.

Firstly, we will with two nodes and
vary N: in the following tables and plots
we will compare the performance of the
creation of Random Forest model.

Table 1: 2 Nodes, N = 20

Average time (seconds)
for bundle 33.032
mcapply 17.078

parSapply 3.993
parLapply 3.971

Table 2: 2 Nodes, N = 40

Average time (seconds)
for bundle 63.704
mcapply 34.887

parSapply 4.803
parLapply 5.206

Table 3: 2 Nodes, N = 80

Average time (seconds)
for bundle 117.243
mcapply 63.338

parSapply 7.256
parLapply 7.273
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Running time for N = 108 on 1, 2 and 3 nodes

In the first graphic we see, as we
previously indicated, the comparison
for two nodes. The functions that ap-
ply parallelisation scale as expected be-
cause as we take more ID’s the ratio be-
tween sequential time and parallel time
increases (11, 12, 16 respectively). On
the second graphic we are plotting, for
N = 108 the timings for different nodes.
Here we there are changes when mov-
ing from using 1 node to 2 nodes but
when we move from 2 nodes to 3 we
see that times for parallelisation remain
the same. Although it is not represented,
when we expand to four nodes the times
for these functions remain the same. We
suspect that if we increased the number
of nodes to 5, 6, 7 the same would hap-
pen although we were unable to test it
due to a problem with the cluster.

Exact clustering

I will briefly talk about this project be-

cause although it was my main goal,
it has made me learn a lot about clus-
tering algorithms. The problem was ap-
parently simple. We had an algorithm
for the solution to the MSSC clustering
problem and our approach was, with dif-
ferent datasets (artificial and real), to
apply the algorithm for different num-
bers of clusters and compare different
measures of fit expecting to obtain, for
k equal to the ground truth, the best fit.
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Computational Fluid Dynamics using FEniCSx

CFD with
FEniCSx
Konstantinos Kellaris

FEniCSx is a powerful computing platform
utilizing the Finite Element Method and has
shown excellent parallel performance. This
project uses FEniCSx to create a solver for the
incompressible Navier-Stokes equations and
validate it using experimental data.

Computational Fluid Dynamics
(CFD) is a branch of fluid me-
chanics that utilizes numerical
methods in order to solve time-

dependent partial differential equations
(PDE) that dictate fluid flows, specifi-
cally the Navier Stokes equations. The
numerical approximation of PDEs trans-
forms the continuum equations into ma-
trix equations that must be solved by di-
rect or indirect solvers. Thus, the avail-
able computational power dictates both
the speed that solutions are obtained as
well as the size of the problem one can
study.

There are several methods that CFD
utilizes for numerical approximation.
One of the most common among them is
the Finite Element Method (FEM). FEM
allows us to approximate the solution of
PDEs as a linear combination of (usually
polynomial) basis functions that inter-
polate the solution in small regions of
the computational domain (Finite Ele-
ments). The original PDE (strong form)
that defines the problem at hand and its
boundary conditions are multiplied by a
test function and integrated throughout
the whole problem domain. The result-
ing equations are called the weak form
of the problem.

Then, using calculus of variations
the final system of equations is deter-
mined and the solution to it are the co-
efficients of the basis functions that are

usually the values of the field in the
mesh nodes.

FEniCSx

In this project, the FEniCSx open-source
FEM-based computational platform was
used, as it shows great efficiency in a
parallel architecture setting. FEniCSx is
the new version of the legacy FEniCS
library. It provides both Python (which
was used in this project) and C++ inter-
faces. It supports distributed memory
systems using MPI, allowing the user
to write programs in Python which is
really user-friendly and handle the par-
allel execution in a more abstract way.
The computational mesh can be gener-
ated using the Gmsh Python API, allow-
ing for more control in mesh refinement
and the meshing of more complex ge-
ometries.

Furthermore, FEniCSx uses the Uni-
fied Form Language (UFL) that allows
the user to create variational forms re-
quired by FEM in a notation system that
resembles the actual mathematical no-
tation. The solution of the assembled
linear system can be achieved using the
PETSc linear algebra suite, which pro-
vides access to a wide variety of linear
solvers, both direct and iterative, and
preconditioners. Finally, the results can
be written in parallel to the widely sup-
ported XDMF file format and visualized

by external programs such as ParaView
or VisIt.

Navier-Stokes equations

The developed solver is able to han-
dle both steady-state and transient
3-dimensional incompressible laminar
fluid flows. The equations that describe
these problems are the incompressible
Navier-Stokes equations:

∇ · u = 0

ρ

(
∂u

∂t
+ u · ∇u

)
= ∇ · σ (u, p) + f

where ρ is the fluid density.
In the above expression, f denotes

the external forces vector, gravity for ex-
ample. In this application, no external
forces are taken into account. Addition-
ally, σ (u, p) is the stress tensor and is
defined as:

σ (u, p) = 2µϵ (u)− pI

where ϵ (u) is the strain-rate tensor:

ϵ (u) =
1

2

(
∇u+∇ (u)

T
)

and µ is the fluid dynamic viscosity.
The Navier-Stokes equations are

non-linear and these terms require spa-
tial treatment. One approach is to solve
a non-linear system of equations, and
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the other one is to utilize prediction cor-
rection methods, essentially breaking
the system of 2 equations into 3 (or
more) that are linear. This solver im-
plements a 3 step prediction-correction
scheme called IPCS (Incremental Pres-
sure Correction Scheme). Additionally,
spacial care is taken in order for
the time steps to satisfy the Courant
Friedrichs Lewy condition (CFL < 1),
ensuring solver’s stability when using
explicit time discretization schemes.

Benchmark

In order to verify the developed solver, a
common test case was selected. Specifi-
cally, the 3-dimensional laminar flow
around a cylinder that lies inside a
square channel. The problem defini-
tion, results from different solvers and
some experimental data are available.1

The geometry of the problem can be
seen in Figure 1, the channel length is
L = 2.5 m, the height and with of it are
H = 0.41 m and the cylinder’s diame-
ter is D = 0.1 m. The fluid’s density is
ρ = 1 kg/m3 and it’s kinematic viscos-
ity is ν = 10−3 m2/s.

0.16m
1.95m

2.5m

0.1m

0.15m
0.45m0.41m

0.41m

(0,0,H)(0,0,0)

(0,H,0)

Inflow plane

Outflow plane

z

U=V=W=0

U=V=W=0

U=V=W=0

0.1m y

x

Figure 1: Problem geometry.1

The problem boundary conditions
are defined as follows:

1. Inlet plane: known parabolic ve-
locity profile and zero pressure
gradient

2. Outlet plane: zero gradient veloc-
ity and fixed zero pressure value

3. Channel surfaces: zero velocity
values and zero pressure gradient,
this is known as the no-slip condi-
tion

4. Cylinder: same as above

Two different cases were defined,
one steady-state and one transient.
These cases lead to different inlet ve-
locity profiles. Specifically, the inlet ve-
locity vector is uin = (uin, 0, 0). For the

steady-state case:

uin = 16Umyz
(H − y)(H − z)

H4

where Um = 0.45 m/s. This velocity
profile corresponds to a mean veloc-
ity magnitude of U = 0.2 m/s. The
Reynolds number of the flow is defined
as:

Re =
UD

ν

The Reynolds number is a non - dimen-
sional number that represents the ratio
of inertia forces to viscous forces acting
on the fluid flow. Low Reynolds num-
bers correspond to laminar flow. For the
steady case, Re = 20.

The inlet velocity profile for the tran-
sient case is also parabolic, but it is time-
dependent:

uin = 16Umyz
(H − y)(H − z)

H4
sin(πt/8)

where Um = 2.25 m/s. The total sim-
ulation time is T = 8 s. In this case
the Reynolds number is also time-
dependent with values in the range
0 ≤ Re(t) ≤ 100, inside the laminar
flow regime.

For these cases, several data are
available.1,2 Firstly, the drag and lift
forces applied to the cylinder are de-
fined below:

FD =

∫

S

(
µ
∂ut

∂n
ny − pnx

)
dS

FL = −
∫

S

(
µ
∂ut

∂n
nx + pny

)
dS

where S is the cylinder surface, n is the
normal surface vector, t = (ny,−nx, 0)
is the tangent vector and ut = u · t is
the tangential velocity vector on S. Con-
sequently, the drag and lift coefficients
are defined:

CD =
2FD

ρDHU
2

CL =
2FL

ρDHU
2

Additionally, a useful metric is the pres-
sure difference between a point in the
front and a point in the back of the cylin-
der. These points lie at the intersection
of 2 symmetry planes of the channel
(along the Y and Z axes) with the cylin-
der.

Mesh

After defining the test cases, the next
step was to create a mesh. The computa-
tional domain was discretized using the

Gmsh Python API, creating an unstruc-
tured computational mesh, that con-
tains only tetrahedral cells. As shown
in Figure 2, the mesh has been refined
in a region around the cylinder and the
walls near it.

Figure 2: Mesh generated with Gmsh.

In order for the simulations to run
in parallel, the mesh should be de-
composed. The way a mesh is decom-
posed and distributed to processors af-
fect the quantity of simulation time
spent in communication between pro-
cessors. Here, the MPI-based ParMETIS
library was used.

Figure 3: Mesh decomposed in 16 proces-
sors.

Results

Firstly, the steady-state case was solved
for 6 different setups. The simulations
were run on the Iris Cluster of the uni-
versity of Luxembourg using 64 up to
360 processors. Three different meshes
were investigated: 68.342, 528.253,
and 1.759.240. Furthermore, 2 different
polynomial order combinations were
used: 2nd order for velocity and 1st for
pressure (V2-P1) or 3rd order velocity
and 2nd pressure (V3-P2). Then, the re-
sults were compared to the reference
values. As is evident from Figures 4, 5,
6, the solver manages to correctly solve
the flow and its accuracy is improved as
mesh resolution is increased.
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Figure 4: CD relative errors for steady-state
case.
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Figure 6: ∆P relative errors for steady-state
case.

Furthermore, the computational
cost in core hours is presented in Fig-
ure 7, one can observe the difference
in magnitudes of cost for finer meshes
as well as simulations using different
polynomial orders.
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Figure 7: Computational cost for different
mesh sizes.

In Figures 8 and 9 the velocity con-
tours are shown in 2 channel symmetry
planes.

Figure 8: Velocity magnitude Z axis mid-
plane for steady-state case.

Figure 9: Velocity magnitude Y axis mid-
plane for steady-state case.

Then, the transient case was simu-
lated using a constant time-step ∆t =
2 · 10−4 s. Three different cases were
simulated and they are shown in Table
1.

Table 1: Transient cases setup.

# of elements pol. orders

Case 1 145.608 V2-P1
Case 2 145.608 V3-P2
Case 3 1.091.160 V2-P1

The simulations were run on the Iris
Cluster using 144 processors for Case 1
& 2 and 360 processors for Case 3.
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Figure 10: CD time series of transient cases.

-0.015

-0.01

-0.005

 0

 0.005

 0  1  2  3  4  5  6  7  8

C L

Time (s)

Benchmark
Case 1
Case 2
Case 3

Time evolution of CL

Figure 11: CL time series for transient
cases.

Figures 10 and 11 show the time
evolution of the drag and lift coeffi-
cients. All 3 cases match the reference
CD time evolution, but case 1 fails to
predict the lift. This is an interesting
behavior, showing us that the most im-
portant metric in order to improve a
solver’s accuracy is the total degrees of
freedom, the product between the num-
ber of elements and degrees of freedom
per element.

Discussion & Conclusion

In this work, a solver for 3-dimensional
laminar incompressible fluid flows us-
ing the FEM method was successfully
developed on the FEniCSx platform and
then validated with experimental data.
Furthermore, the effect of mesh size and
order of polynomial basis functions to

the solver’s accuracy was investigated.
The results are encouraging, showing
acceptable accuracy even for interme-
diate mesh density without dispropor-
tional computational costs.

These studies validated the solver
but revealed some aspects that it can be
extended and improved.

Firstly, the code can be extended in
order to use meshes generated from
more user-friendly external meshing
software, such as ANSYS Meshing.

Furthermore, the current time
marching scheme can be adjusted in or-
der to use adjustable time-step methods,
in order to save on computational costs.
This approach requires a careful selec-
tion of stability conditions, but the code
already provides interfaces for that.

Finally, the code can be extended
to handle turbulent flows using the
Reynolds Averaged Navier Stokes
(RANS) equations paired with a turbu-
lent closure model, e.g k − ϵ.
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Scalability, performance comparison and
regression of XDEM Multi-Physics simulations

Performance
report for
XDEM
software
Alexander Trujillo

Performance regression and continuous integration are crucial steps to develop a
scientific software, in this case XDEM. This project aims to compare the performance
between multiple configurations or versions, additionally with a automation process to
obtain these results in a cluster environment.

Maybe you heard this phrase
. . . “There is no free
lunch!”, and this could no
be more truer when it is ap-

plied to scientific software development,
specially taking in mind the exploita-
tion of computational resources avail-
able to the maximum to obtain the pre-
cious results. But sadly it does not end
there, it sounds like common sense that
your simulations will run faster if you
keep adding more processors to your
current resources, but believe it or not,
that could make it worse at the end of
the day.

To explain this situation, if we want
to exploit many processors, we need to
be creative and come up with a parallel
implementation and divide the work-
load. So we can imagine this as ten
people building ten houses, generally is
better idea that each people build one
house concurrently than those 10 peo-
ple working on one single house and
then to the rest, but it is likely that one
person has no task to do, or worse if

one could hinder another one work.
The aim of the project is to de-

velop R and bash scripts to point to
the changes in performance or scalabil-
ity for different configurations, problem
sizes or versions. Additionally, we move
forward to automatize this project us-
ing Aion cluster by SLURM (a software
used to manage resources and schedule
jobs), in this way we gather data from
different versions or configurations and
obtain the plots pointing the critical
changes on the performance.

XDEM Software

The XDEM software1 is a numerical sim-
ulation framework implemented using
C++, based on extended discrete ele-
ment method, a method which besides
describing the dynamics of granular
material by means of spatial and tempo-
ral information, also obtains additional
properties of the conglomerate of par-
ticles as thermodynamic state , stress,

etc. It could even be coupled with CFD
solver as OpenFOAM to account for
liquid or gaseous phases around the
particles.

This implementation follows an hybrid
parallelization approach, this means is
capable to run using multithreading on
a single compute node (OpenMP) and
across multiple nodes using MPI.2

Figure 1: Biomass furnace simulation
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XDEM can simulate complex physical
processes such as biomass furnace,3

shown in Fig 1.

Motivation of this project
The scripts will be part of XDEM Contin-
uous Integration which is important to
ensure and maintain the performance
of the software with new versions of the
code, we automate the process of per-
formance analysis and regression detec-
tion. In this way developers could check
if the changes affect the performance of
the simulation, and highlight the part
of the computation which is impacted.

How XDEM does this simula-
tions?

XDEM has many computational phases
for each simulation case but 4 are the
most important ones and usually those
take the most of the execution time in
total4.5

• Broad phase: A preliminary ap-
proximation that builds a list of
particle pairs that can potentially
interact. To make a fast calcula-
tion, particles are represented by
bounding spheres.

• Narrow phase: Now performs a
precise contact detection using
the actual shape of the particle
and calculates the actual distance
between particles.

• Apply dynamics model phase
: Related to solve the dynamics
models that is defined for each
particle (impact, bonding, rolling
,etc) and as well calculates the
contribution of the interaction to
each particle involved.

• Integration phase: Takes care of
updating the state of the particles
according to the neighbors contri-
butions.

Decomposition and communication
A important concept is domain de-

composition, which is how workload
is distributed throughout the compute
nodes, the spatial location is divided in
cell grids, then cells will be grouped in
subdomain and assigned to a certain
compute node, this last process vary
depending of the decomposition algo-
rithm but in a broad sense it converts
these cells into nodes that belongs to
a graph and performs the partitioning
according to the neighbor relationships

with the objective of balancing the
workload and minimizing the commu-
nication.

Once the decomposition is done, we
create the boundary of another compute
nodes as these need to share informa-
tion of the particles constantly in run
time, these cells are called ghosts lay-
ers. As XDEM uses a MPI paralleliza-
tion paradigm, there is a latency be-
tween these layers and communication
is bounded by the bandwidth of the net-
work.

R, a language made for this

The data loading and transformation
will be possible thanks to R, which is a
programming language mostly present
on statistics analysis and graphics.
R is very well maintained thanks to the
open-source community and contains
thousand of libraries implemented by
developers around the world that make
your life easier.
We based our work on “tidyverse” as
the most important package library, it
allow us to extract transform the data
present on our simulations, as well as
a intuitive set of commands to manipu-
late the data structure to be more suit-
able for different kind of plots. Also "gg-
plot2" which offers a great variety of
plots and graphs implementations ac-
cording to the need to convey the right
information to the viewer, as one of
the most reliable sources to select the
kind of plot suitable for our project was
https://www.data-to-viz.com/
With these scripts we can compare di-
rectly the results for different parame-
ters and can quickly notice if there is a
efficiency problem.

Automation with bash and
SLURM

Bash, a command language which main
task so to speak is to process the com-
mands you give to it, from simple things
as show “Hello world” on your termi-
nal to complex scripts which manages
several files. One example of usage is
when you want to launch an specific
executable, if you developed your own
software you for sure want to test as
soon as you finish it or in the meantime
to see if it is working as intended, you
can execute it in a bash script and make
it suitable for your needs, do you want
it to run thousand of time for different

arguments or cases? No prob!, bash as
well can manage for loops so you can
automate this process.

Bash is a UNIX shell, besides the best
known ones are Mac OS and Linux, and
guess what, more than 95% of super-
computers in the world uses Linux.

Normally a supercomputer is a
shared resource between several sci-
entists and because of that, exists cer-
tain policies, priorites or amount of
restricted resources available for each
user. This supercomputer must contain
a software that acts like a orchestra con-
ductor, organizing the submitted jobs
taking into account the priorities and
policies, then scheduling the resources
for everyone, in this case AION uses a
software called SLURM which will not
let this supercomputer fall into anarchy.
AION specifications
The current project will make use of

a supercomputer located at University
of Luxembourg, called AION which con-
sists of 318 compute nodes with 256Gb
of RAM and 128 cores each one, total-
ing 40704 compute cores, with a peak
performance of about 1,70 PetaFLOP/s.
This means it can 1.7 quadrillion arith-
metic operations per second at its best.

Results

Dataset used
The data acquired to test the per-

formance report is from a blast fur-
nace charging simulation, this in-
volves intricate physical phenom-
ena that must be modeled (and val-
idated) carefully and require the
use of High-Performance Computing
(HPC) platforms. Here in this follow-
ing https://www.youtube.com/
watch?v=7Va4ALbm9Y8 we can ob-
serve the graphical environment for this
simulation.

Figure 2: Test case: Blast furnace charging
simulation
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Strong Scalability

Shows the time execution evolution
according to the number of compute
nodes, as well as the speedup plot. The
R script loads and transform the data
generated by XDEM and once obtains
the time execution for the different
phases, it creates a speedup plot for
each category and focusing on the most
relevant (the costliest categories). A
heatmap of the efficiency accross differ-
ent categories is included as well as a
steamgraph of the proportion of execu-
tion time to observe the evolution and
change in importance of the differente
categories when more compute nodes
are added.

Figure 3: Speed-up plot for each category

Weak Scalability

The featured plots for the weak scal-
ibity report are similar for the strong
scalalibility case, but in these case it is
required by the script to explicitly state
the number of particles or size used for
each run.

Complexity characterization

The analysis done here identifies the
complexity of the measured comput-
ing time for the principal categories
as well as evolution graph of the time
execution for the categories. Besides it
creates a heatmap for the scaling factor,
checking as reference a linear increase,
if it is scaling in a higher order it reveals
a deficiency on the category.

Figure 4: Linear trend found for the blast
furnace charging simulation

Performance regression
Mainly compares the performance

change between a reference and differ-
ent software versions.
It shows the drop or rise in percentage
for total execution or for each compu-
tational phase. As well as a heatmap
pointing out the worst and better per-
formant category for each version.

Figure 5: Barplot pointing the performance
changes between multiple versions

Decomposition comparison
It creates individual evolution plots

for each decomposition compared to a
reference (in this case a ORB decom-
position), pointing out the change in
execution time for each computational
phase

Workload balance report
For the workload balance creates a

total imbalance plot for the different
compute ranks, showing if there is an
uneven distribution. Also it shows the
load imbalance factor which is the ratio
of the maximum imbalance and the
average, meaning a factor close to 1 is
a even distributed workload.

Conclusions

Now XDEM has an additional tool that
will help this software to keep track of
the improvement over time, developers
could integrate it to continuous integra-
tion in the GitHub workflows.
Even users could test with a little ver-
sion of the original work to see which
is the best decomposition or version for
their project.
For future work could be interesting to
add an extra tool to obtain the aver-
age of several runs to avoid extreme
variability on the execution time for cer-
tain simulations. As well as a database
linkage to keep track of previous perfor-
mance analysis.
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CUDA implementation of the Recursive Sparse
Blocks library

Designing
Scientific
Applications
on GPUs
Filippo Barbari

This project aims to develop a CUDA
implementation of the Recursive Sparse
Blocks library for sparse matrix
multiplications in order to further optimize
these common operations.

Abstract
The LibRSB library implements a par-

allel and cache-efficient way to deal
with sparse matrices operations through
a unique and hybrid matrix storage
format called Recursive Sparse Blocks.
Since it’s already implemented with
the shared memory parallelization of
OpenMP and it has proven its perfor-
mance in many papers, it would be re-
ally beneficial to implement a CUDA
parallel version of the algorithm.
Introduction
Around 2010, dr. Michele Martone

(from the University of Tor Vergata,
Rome, Italy) invented the Recursive
Sparse Blocks format and implemented
it in the LibRSB library. With this work,
he tried to tackle the problem of han-
dling really big sparse matrices inside
parallel algorithms.

The most common sparse matrix op-
erations, that LibRSB implements, are:

• SpVV: a multiplication between a
sparse vector and a dense vector

• SpMV: a multiplication between a

sparse matrix and a dense vector

• SpMM: a multiplication between
a sparse matrix and a dense one

• SpSV: the resolution of a linear
system represented by a sparse
matrix and a dense vector of
known terms

• SpSM: the resolution of a linear
system represented by a sparse
matrix and a dense matrix of
known terms

My work has mostly focused on the
translation of the SpMV algorithm into
a CUDA kernel.
The RSB format
Recursive Sparse Blocks1 is a hybrid

format because it uses three different
formats/data structures at three differ-
ent levels to optimize the hit/miss ratio
of the cache:

• at the root level, the highest level,
submatrices/blocks are stored by
using a Z-Morton sorting

• at the intermediate level, each sub-
matrix/block is recursively subdi-
vided in a Quad-tree fashion

• at the leaf level, the lowest
level, each submatrix/block is
stored using one of the common
COO/CSR/CSC sparse matrix
formats

The Z-Morton sorting is a sorting
method used for keeping the spatial lo-
cality of bidimensional data. Z-Morton
is a space-filling curve, like the more
famous Hilbert’s spiral, which takes its
name from the "Z" shape it has. In the
figure 1, you can see some examples of
this special sorting method used on the
blocks of a recursively subdivided ma-
trix. In particular, the four subdivisions
you can see in figure 1 are two equal
matrices (the top two and the bottom
two) that have been subdivided accord-
ing to the cache size of two different
machines (the left two belong to a 1MB-
cache machine, the right two belong to
a 2MB-cache machine).
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Figure 1: Examples of Z-Morton sorting of
blocks in a recursively subdivided matrix.

The Quad-tree is a quaternary tree
often used to recursively subdivide a
continuous bidimensional space in or-
der to optimize the bidimensional range
query. In the figure 2, we can see an
example of a Quad-tree constructed on
a continuous bidimensional space. The
RSB format uses it to look for the clos-
est non-zero elements while performing
a multiplication.

Figure 2: Example of a Quad-tree in a con-
tinuous bidimensional space.

This data structure also helps opti-
mize the memory usage since it gives
more accuracy only inside those blocks
which have more non-zero elements,
meaning that they contain more infor-
mation.

The COO format was the first sparse
matrix storage format, and also the sim-
plest, to be invented. It’s a bad acronym
for COOrdinate list because it simply
stores a sparse matrix as a list of triplets,
each one containing exactly three ele-
ments:

• the index of the row where the
element is

• the index of the column where the
element is

• the value of the element

For example, the matrix shown in figure
3 would be stored as shown in figure 4.

Figure 3: Example of a sparse matrix.

Figure 4: COO representation of the matrix
in figure 3.

The CSR and CSC formats are im-
proved versions of the COO format.
Their acronyms stand for Compressed
Sparse Rows/Columns and they further
reduce the space required to store a
sparse matrix by compressing the con-
tiguous adjacent row indices (column
indices for CSC) and, thus relying on
the column indices to precisely identify
each non-zero element. For example,
the matrix in figure 3 would be repre-
sented in CSR format as shown in figure
5 and in CSC format as shown in figure
6.

Figure 5: CSR representation of the matrix
in figure 3.

Figure 6: CSC representation of the matrix
in figure 3.

Note that we needed one less
row/column index by using these im-
proved storage formats.
Methods
As I mentioned earlier, my work has

mostly focused on the translation of
the SpMV algorithm into a CUDA ker-
nel and on the conversion of the ma-
trix allocation functions. I only man-
aged to fully convert only one of the
many allocation functions that LibRSB
offers, which is the function that con-
verts a COO-formatted matrxi into an
RSB-formatted one, into CUDA code by
using the Unified Memory.
Results
Unfortunately, at the time of this writ-

ing, there’s a memory issue in my CUDA
kernel implementation and, therefore, I
am not able to show you any results.
Conclusion
After all the work I’ve done on the Li-

bRSB library, I can safely say that it
has really great potential because of
the wide range of possible use case sce-
narios (like recommendation systems
and network/graph theory) and it has
proved its performance and efficiency.
The code is made of 400’000 lines of C,
C++ and Fortran code divided in 1000
files so extending it would require much
more time and manpower.
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Finding Antiviral Drugs Using HPC/GPUs

Designing
Antiviral
Drugs with
HPC
Ezgi SAMBUR

Here, by making use of HPC, a drug
design study is carried out to block viral
ds-DNA, which is associated with many
viruses, including HIV/AIDS and HPV.
GPUs are used to accelerate MD
simulations and MM-GBSA/MM-PBSA
calculations are performed within the
scope of HPC.

AParticular class of well toler-
ated drugs is formed by small
peptides because their build-
ing blocks are simply the 20

naturally occurring amino acids — the
most fundamental constituents of any
living cell. In order to transform such
peptidic compounds into effective medi-
cal drugs high affinity binding to the
target must be accomplished (and is
usually the outcome of a tedious and
long-lasting optimization process).

Introduction

In this project we aim to develop a pep-
tidic drug against viral ds-DNA, which
is associated with Herpes Simplex Virus,
Cytomegalovirus, Adenovirus type 5,
SV40 Polyoma virus and Vaccinia virus.
If viral DNA is blocked it cannot repli-
cate inside the cell nor express viral pro-
teins promoting the degree of infection.

We start from the well-known TAT
protein in HIV-1 for which an NMR
structure is available detailing the com-
plex geometry between nucleic acid and
TAT binding domain.1 I24 is a 9-mer
amino acid sequence that can be fused
to TAT thereby enhancing antiviral ac-
tivity.2 Here we build on this previous
study and insert single-point random
mutations in the sequence of TAT-I24.
New mutant peptide sequences are sub-
jected to MD simulations (250 ns). An
example for a structural snapshot of
such a single-point mutation is shown
in Fig 1.

After the MD simulations MM-GBSA
and MM-PBSA binding free energies3

are calculated. Peptides with better-
than-previous MM-PBSA and MM-GBSA
scores can be proposed as new drug can-
didates and further confirmed in wet-
lab experiments.

Figure 1: Structural snapshot of mutant TAT-
M178 taken from MD simulation.

Methods

AMBER/204 was used throughout.
Given the rather extended target length
of 250 ns of MD simulation, it was es-
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sential to employ MD programs of max-
imum compute performance. As seen
in Fig 2 the GPU implementation of
pmemd — the major MD code in AM-
BER — gave sufficient levels of compute
performance.

Figure 2: Computational Performance: AM-
BER/20 benchmark for MD simulations of
protein 6OMU.pdb in explicit water (≈51k
atoms). Red bars are MPI parallel runs while
blue bars represent the achievable perfor-
mance using a single GPU of type NVIDIA
GTX 1080 or A40.

A set of 120 candidate peptides was
formed from inserting random muta-
tions into the TAT-I24 sequence of the
wt. In a small subset of these constructs
deletions were considered instead of
single point mutations (either TAT or
I24 box). Each of these mutant peptides
became subject to long term MD simu-
lation in explicit water (250 ns) start-
ing from the wt structure with modified
amino acid sequence. This way individ-
ual peptides were given sufficient time
to evolve into their native state of com-
plex geometry between peptide and ds-
DNA provided as helical hairpins made
of GC base pairs.5

Upon termination of the MD simula-
tions the final 50 ns of individual trajec-
tories were taken into account for bind-
ing free energy calculations, ∆G, follow-
ing the MM-PB(GB)SA approach.3 Here

the reaction R + L
∆G⇌ R/L is quanti-

fied with R the receptor (ds-DNA in our
case), L the ligand (TAT-I24 variants in
our case) and R/L the complex formed
from free non interacting reactants, ie
isolated R and L in aqueous solution.
The equilibrium will be shifted to the
product site — hence the complex will
be formed strongly — the larger value
of negative sign we obtain for ∆G. Thus
we can conveniently rank all of the 120
TAT-I24 variants because the reference
state of the wt was previously estimated

to amount to ∆Gwt=-36 kcal/mol.2

Results

Top ranked candidates for new peptidic
drugs enhancing the affinity to ds-DNA
are summarized in Fig 3. Both, MM-
PBSA (Fig 3a) as well as MM-GBSA re-
sults (Fig 3b) are included. The list com-
prises more than 10 peptides with signif-
icantly improved binding affinity when
compared to the wt, some of them even
showing an impressive shift in ∆G. Simi-
lar to previous observations2 MM-GBSA
results tend to display larger ∆G val-
ues (of negative sign) when compared
to MM-PBSA results. TAT-M178 was the
highest ranked new drug candidate to
substitute TAT-I24(wt) with an associ-
ated ∆GPB of -77 kcal/mol.

a)

b)

Figure 3: Top ranked mutant peptides with
corresponding binding free energies ob-
tained from MM-PBSA analysis (a) or MM-
GBSA analysis (b).

In addition to bare thermodynamic
assessment, the underlying MD simula-
tions can also give structural insights
into the binding process. For example
at the start of the MD simulation of TAT-
M178 there is clearly a lack of tight
interactions between ds-DNA and the
peptide as visible from the detached α-
helical stretch to the right (Fig 4a). Only
at later stages overall strong interaction
between the entire peptide and ds-DNA
can be established (Fig 4b).

a)

b)

Figure 4: Early (a, frame 0) and late (b,
frame 100) structural snapshot in the MD
trajectory of TAT-M178.
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